Outflows from High-Redshift
Galaxies
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Overview

 Importance of outflows
* Properties of outflows
* Direct Probes of Outflows at High Redshift (z~1-4)

* M-Z relation and the MOSDEF project
 Concluding thoughts



|mportance of Outflows

10g,0(M/M

(Moster et al. 2010)

 Feedback processes are key to
successful models of galaxy
formation and the IGM.

o Stellar vs. halo masses,
especially at low and high-mass
end.

e Red colors of massive
galaxies at z~0.

 The enrichment of the IGM.

e Qutflows are observed In
local starbursts, and,
commonly, at z>1.
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Importance of Outflows
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Properties of Outflows

- Mass outflow rates (e.g., M,;,=Qr2pv)
e Mass loading factor: n=M,,,,/SFR
 Scaling with galaxy mass or circular velocity

 Discriminate between “momentum driven” (n~1/v.) and
“energy driven” (m~1/v.?) winds

* Scaling with other galaxy properties (e.g., XccR)
* Metal loading factor: { =Z,;.4/Z,s X 1 and scaling with mass
* Multi-phase structure and mass in each phase
« Geometry (e.g., bipolar or spherical, physical extent)
* Velocity structure (Vg VS. I)
 Outflow kinematics vs. galaxy properties

» Fate of outflowing gas (Vg VS. V)



7>2 Outflow Features
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(Shapley et al. 2003)

* |n star-forming galaxies at z>2, a host
of rest-frame UV features within the
range ~1200-2000 A is used to trace
outflows:
* HI Lya absorption and emission.
 Low-ionization interstellar
absorption lines (Sill, Ol, Cll, Fell,
Alll) probing cool, neutral phase.
 High-ionization interstellar
absorption lines (SilV, CIV) probing
warmer, more highly ionized phase.
« Potential to estimate HI column
directly!



Z~1 Outflow Features

* In galaxies at z~0.5-1.5, use near-UV
features:
. Fell A2250, A2261, A2344,
A2374, A2382, 12587, 42600 A.
* Mgll doublet AA 2796, 2803.
A2852.
* Probe cool gas.
« Can use CI1V, Sill, Alll as well, at
z>1.1 with Keck/LRIS.




Quantifying an “Outflow”

Fell adl Mgll . Different methods for estimating

i outflow properties:
* Velocity centroid of single-

ﬂv A e MWWU rﬂ, component fit
|

® l

/ \4'-. ")‘ R f“LUJWMN\hJ’M“IJ‘r\%ﬂfUV
[ '|f * Decomposition into ISM+outflow
Um \ components, velocity centroid of
‘ outflow component
‘ « EW of outflow component
* Blue wing of single/outflow
component
* Full velocity profile
 Resolution of data is very important.

Wavelength (engstroms)



Systemic Redshifts

| <z>=2.27

<AV, >=445+27

(Steidel et al. 2010)

« Kinematic signature: Redshifts
measured for interstellar
absorption, Lyo emission differ.

* At z~2-3, systemic redshifts
Indicate: Low-ionization
absorption features typically
blueshifted (Av=-150 km/s), Lya
emission typically redshifted
(Av=+400-500 km/s).

* E.g., 89 galaxies at <z>=2.3 with
Keck/NIRSPEC systemic
redshifts, and rest-UV spectra
(Steidel et al. 2010)



Resonant UV Emission Lines

* Resonant Lyo emission, typically
redshifted.

* Velocity structure of line should
contain rich information about
geometry, column density, and velocity
structure of outflow (or inflow). See
models by Verhamme, Schaerer et al.
« Angular extent also contains
Important clues (Steidel et al. 2011).

* Issue: most observations of unlensed
high-z galaxies have velocity resolution
coarser than ~200 km/s (typical is ~400-
500 km/s), which limits ability to
compare with model velocity profiles.
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Resonant UV Emission Lines

« Resonant Mgll emission, typically
redshifted.

* At least a couple of cases where Mgll
Is spatially extended relative to the
continuum, with different velocity
structure from that of [OI1] emission.
 Useful target for IFU measurements.
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Fine Structure UV Emission Lines
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Fell* emission not seen in composite
UV spectrum of local starbursts
(Leitherer et al. 2010). Commonly
detected at z>1, generic prediction
given Fell energy levels.
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Broad Ho, Emission

 VLT/SINFONI IFU maps of Ha
from star-forming galaxies at z~2.

« Decompose Ha profiles into double-

Gaussian fits.

)1 * Broad Ho emission components

J - N (sometimes systematically

ey ‘ blueshifted) associated with

E— “clumps” and nuclei, interpreted as

outflows.

. Clump A

ZC406690 (z=2.19), Ho map

(A1018AU8SQO NUeqNS :11Patd abew|)



Mass Outflow Rates

« Expression for outflow rate:

Alu = QOr ’ I (‘it ’) n (} ‘) v (} ’ )~

 For absorption measurements, use column density N(HI), to
rewrite as:

ﬂfw ~ () REI my *\TH IV

» Need to estimate ¢ (covering factor), -2, (radius at which wind
IS measured), , In addition to v_ (terminal velocity)



Mass outflow rates at z>2: Absorption

1300 1400
Wavelength (&)

cB58 has non-average
spectrum -- very
strong Lyo and metal
absorption lines

* MS1512-cB58, z=2.73, x30
magnification, R-mag~20.5 (Yee
et al. 1996). Detailed studies of
outflowing ISM, abundance
pattern, multi-wavelength
follow-up, very strong
absorption lines (Pettini et al.
2000, 2002).

 For 10 years, this was the only
LBG with a mass outflow
estimate, where dM/dt~SFR,
based on , , (=47,
assumption of ~=1kpc



Mass outflow rates at z~1: Absorption

* Multiple Fell lines
allow for N(Fe+) estimate
in DEEP2/LRIS sample
at z~1.

* In practice, estimate mass outflow rate as JVEKONE MM
» Martin, AS et al. (2012) use Fell column densities as follows

. it R
M =23 Mo yr l( )(‘{H}Lma )(1 : )

( N(Fe™) ) ( 3.16 x 10~ ) ( '[I. 3 ) ( 0.20 )
0% em—2 / \ n(Fe)/n(H) / \ x(Fe") /) \ d(Fe),

* For typical values in z~1 DEEP2 galaxies w/ significant blueshifts (35
galaxies out of 165 with absorption-line fits), suggests n~1.9.

* Fell column densities are uncertain. So is R, Fe/H, y(Fe+), d(Fe).

* Lower 1 inferred when using only Doppler component.



Mass outflow rates at z>2: Emission

* Broad component of clump Ho
profiles used to estimate mass outflow

+ Clump A rates and mass loading factor:
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ZC406690 (z=2.19), Haomap Major uncertainty is density

distribution of wind, R, .. Conclude
M, ~SFR (i.e. n~1), but
uncertain (e.g., n1=2.9 *27°_ ).



Z~0 Outflow Kinematic Trends

....................................................

* ~140,000 galaxies drawn SDSS DR,
Zmeg~0.09, SFR~1 Mgl/yr.

» Stack according to inclination, SFR,
Ysrr: Ay M*. Correct Na | spectra for
both stellar and systemic ISM
component.

 Outflow component more prevalent in
face-on galaxies.

 Outflow component EW correlates
primarily with £, and then A,
Amount of material propelled in
outflow depends on X k.

» Shallow trend of v, with Z¢, with
Vout "Zger”*

out



Outflow kinematics at z~1

EGS Somple « 72 galaxies in the EGS field with
600~ line grism; 600—fine groting o Keck/LRIS spectra.

400—line grism; B800—line grating <

* Outflow speed and X - are
correlated at >3¢

« Composite spectra show the
same effect (Mgll)

* See also Bordoloi et al. (2013)
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e 27 galaxies with SINFONI IFU
Hao spectra.

« Strongest correlation of broad
flux fraction with Xq .

Also find that more massive,
smaller, higher-SFR, face-on
galaxies have larger broad flux
fraction. But £, connection is
the strongest.

* Suggest X threshold for wind
breaking out, ~1 M /yr/kpc



Outflow kinematics at z~2-3

e Sample of 89 galaxies with rest-
frame optical spectra, stellar and gas
(stellar+gas=total baryonic) mass
estimates. Strongest trend is between
" o s o IVl @nd M, with smaller |v | for
T T larger M,
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« Law et al. (2012c) use sample of 35
galaxies w/ HST/WFC3, rest-UV
spectra, and systemic redshifts.

« Galaxies with large radius have
stronger v~0 component as well
(strongest correlation).

* 2.16 correlation between absorption
velocity centroid and X

 No evidence for correlation between
outflow speed and inclination.

10.5 11 0 1
log(M,,,,/Ms)  log(Zgm/(Mg/kpc?/yr))



Outflow Geometry at z~1

0436 < z < 0.842

H[E> 30 Outflow (Inflow)
¥ > 1o Outflow (Inflow)
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10°
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* Qutflows detected in ~40% of
DEEP2/LRIS sample at z~1.
 Outflow detection relatively
Independent of galaxy properties.
 Outflows more common in face-on
systems (Kornei, AS et al. 2012;
Bordoloi et al. 2013)

* z~1 outflows are collimated!!

* With detection fraction 2/4s:

0
¢ace™® edge-on
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Outflow Geometry at z~1
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* Qutflows detected in ~40% of
DEEP2/LRIS sample at z~1.
 Outflow detection relatively
Independent of galaxy properties.
 Outflows more common in face-on
systems (Kornei, AS et al. 2012;
Bordoloi et al. 2013)

« z~1 outflows are collimated!!

* With detection fraction €2/47:
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Evolution Iin Outflow Geometry

* Qutflow signature detected in
almost all z>2 LBGs (in contrast
to lower-z result).

» Law et al. (2012c) found no
correlation between v, , and
Inclination.

* Suggests z>2 outflows are not
collimated! More spherical in
geometry?

 Related to emergence of disks
at z~1.57?

* NB: Newman et al. (2012b) find
difference in Ha broad flux
fraction as a function of
inclination.
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e Sample of 81 at 3.5<z<4.5 with
Keck/DEIMOS or VLT/FORS
spectra.

 Construct composite, which shows
broad, blue-shifted IS absorption.

* For fixed Lya EW and M,,,
galaxies at z~4 have lower IS
absorption EW than at z~3.

« Evolution in spatial distribution,
kinematics, covering fraction, optical
depth?

 Other evidence that circumgalactic
gas is less extended at z~ 4 than z~3:
Sill* fine structure lines stronger at
z~4 than at z~3.



Mass-Metallicity Relation

12 + log(O/H)

== Direct Method
— T04

7.
50 7.5 8.0 8.5 9.0 9.5 10010.511,
log(M,,) [M o]

» Metal content of galaxies reflects the past integral of star formation, modified
by the effects of gas inflow (i.e., accretion) and outflow (i.e., feedback).

(Tremonti et al. 2004)
(Andrews & Martini 2013)

«“Metallicity” here means O/H gas-phase abundance.

 Consider together with stellar masses (M-Z relation), gas masses and SFRs
(Fundamental Metallicity Relation.)

* Slope, normalization, and scatter in MZR, FMR, place constraints on models
of gas outflow/inflow (e.g., Finlator & Dave 2008; Dave et al. 2012)!



Mass-Metallicity Relation

(Mannucci et al. 2010)
(Andrews & Martini 2013)
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* Metal content of gaIaX|es reflects the past integral of star formation, modified
by the effects of gas inflow (i.e., accretion) and outflow (i.e., feedback).

«“Metallicity” here means O/H gas-phase abundance.

 Consider together with stellar masses (M-Z relation), gas masses and SFRs
(Fundamental Metallicity Relation.)

* Slope, normalization, and scatter in MZR, FMR, place constraints on models
of gas outflow/inflow (e.g., Finlator & Dave 2008; Dave et al. 2012)!



Mass-Metallicity Relation

! OMAdsEs k) i (1) [OI]AAT320,7330 § !
: ol ,"-’uuﬁ-.'m stellar cont. sub.

L,__...?.___r__'_,_.“,_ —0.01 - - : (fit over 200 A)
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s ’ log(M )10 " log(M*) [M] =
* New SDSS results from Andrews & Martini (2013) make use of “direct”

oxygen abundances in stacked spectra — rather than empirical calibration.

o If Z,o\Ry/(1+1]), new SDSS MZR suggests 1 scales as M..1? at low-mass end.

* Also obtain constraints on scaling of metal outflow rate ({) with M..(much
higher at lower stellar mass).

« Scatter in MZR may indicate time scale for equilibration following gas
accretion event, merger, starburst.



The MZR at High-z

— z=0.29, SHELS
e — z=0.78, DEEP2
— z=1.55, COSMOS
10.5

8.5 9.0 9.5 10.010511.0

(Zahid et al. 2014) (Troncoso et al. 2014)

« Samples of objects at z > 1 with individual M-Z measurements are small,
while the stacked samples at, e.g., z =2. 2 ,mask the scatter in the relation.

* Lots of new z>1 data coming in!

S0, how do we estimate O/H at high redshift, given that we can’t make
“direct” measurements like Andrews & Martini (2013)?



Rest-frame Optical Spectra

* Emission-line set: [Ol1], HB, [Ol11],
Ha, [NII], [SII]

e Ratios of emission lines used to infer a
wide range of physical conditions:

* SFR

- Metallicity (oxygen)

* Electron density

4000 4500 Q00 5600 €000 8500 o0
Wavelength {A)

* lonization parameter
(Kennicutt 1998)  Electron temperature

e Dust extinction
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Rest-frame Optical Spectra
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Common Metallicity Indicators

- Subsets of strong, rest-frame optical
emission lines have been calibrated
against “direct” methods, and
photoionization models for local

galaxies.
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(Steidel et al. 2010)
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Spectroscopy at z>1.5
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» Most studies of galaxies at
z>1.5 based on multi-
wavelength photometry
photometric redshifts.

 Until recently, spectroscopy
was dominated by rest-UV
observations of UV-selected
galaxies (e.g., Steidel et al.
2003, 2004).

» Such studies are weighted
towards relatively blue, star-
forming galaxies.

» Rest-UV Is a great probe of
the ISM, outflows, and massive
stars.



(Brammer et al. 2012)

(Erb et al. 2006)

Spectroscopy at z>1.5

* With the HST WFC3/IR
grism, new surveys of ~10,000
galaxies with rest-frame optical
spectroscopy for full range of
galaxy types (3D-HST, WISP).

 Low resolution (R~130, I.e.
>2,000 km/s), limited
wavelength range (A<1.6 um).

« Samples of moderate
(R>1000) resolution spectra at
these redshifts are very small,
and typically for one near-IR
filter at a time (e.g., Erb et al.
2006).



Keck/MOSFIRE

. :lF

http://www.astro.ucla.edu/~irlab/mosfire/

» Keck/MOSFIRE: Multi-Object
Spectrometer for Infra-Red
Exploration; co-Pis: McLean
(UCLA) and Steidel (Caltech)

* Near-IR (0.9-2.5 um) spectroscopy
over 6.1’ X 3.0 FOV, one band
(YJHK) at a time, multiplex
advantage up to 46 slits using
robotic, cryogenic configurable slit
unit. R=2300-3300 with 0.7” slit .

« Commissioned in spring 2012 on
the Keck I telescope.

 Measurements of rest-frame
optical spectra for z=0.5-5 galaxies.



Keck/MOSFIRE

* Sensitivity boost of at least a factor
of ~5 relative to previous Keck
Instrumentation (NIRSPEC).

 Emission-line sensitivities of few x
10-18erg/s/cm? in 2 hours.

* In practice, typical multiplexing of
30-35.

* Increase in survey efficiency of >2

/ o = |
‘{ V -

http://www.astro.ucla.edu/~irlab/mosfire/



The MOSDEF Survey

» Key requirements for an evolutionary census of the galaxy
population at z~1.5-3.5:

1. Rest-frame optical spectroscopy covering all of the
strongest rest-frame optical emission/absorption
features (3700-7000 A).

2. Alarge (N>102) sample of objects, spanning the full
diversity of stellar populations.

3. Multiple redshift bins to enable evolutionary studies.




The MOSDEF Survey

The MOSFIRE Deep Evolution Field Survey

Co-Pls (in alphabetical order):
Alison Coil (UC San Diego)
Mariska Kriek (UC Berkeley)
Bahram Mobasher (UC Riverside)
Naveen Reddy (UC Riverside)
Alice Shapley (UC Los Angeles)
Brian Siana (UC Riverside)

Students:

William Freeman (UC Riverside)
Sedona Price (UC Berkeley)
Ryan Sanders (UC Los Angeles)
Irene Shivaei (UC Riverside)

Theory Co-ls:

James Bullock (UC Irvine)

Charlie Conroy (UC Santa Cruz)

Romeel Dave (University of Western Cape)
Dusan Keres (UC San Diego)

Marc Krumholz (UC Santa Cruz)

Collaborators
James Aird (Durham University)
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The MOSDEF Survey: Science

e Star formation and the growth of galaxies
 Dust attenuation

 The cycle of baryons (outflows, inflows)
* Dynamical masses and structural evolution
* AGN accretion and BH/Galaxy co-evolution



The MOSDEF Survey: MZR

* We have assembled “N2” nad “O3N2”
" metallicities for our z~2 MOSDEF sample.

L] L) .

! — » Detect well-known offset towards lower
metallicity at fixed mass.

§ ‘E fl{_.il. S - Scatter!
l Pettini & Pagel 2004 -
ll | : * Fair sample at z~2.

J——.
.o 2 .'l'.. .:
L

Erb et al. 2006

10.0
log(M,/ M)

(Sanders, Shapley et al. 2014)
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The MOSDEF Survey: MZR

Pettinl & Pagel 2004 N2

HH mass bins
§ high SFR
¥ lowSFR

mass bins
high SFR
low SFR

(Sanders, Shapley et al. 2014)

* We don’t consistently detect the “FMR” seen
at low redshift, with higher-SFR galaxies offset
towards lower metallicity at fixed mass.

 Results depend on calibration, inclusion of
limits.

* Also need to consider division of sample along
SFR, bin in stellar mass.

» There may be issues with using locally-
calibrated metallicity indicators....



The MOSDEF Survey: BPT

 As we showed several years ago with small
samples of objects, z>1 star-forming galaxies
are “offset” in the BPT excitation diagram
used to separate star-forming galaxies from

AGNs.
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« With a statistical sample already in early
MOSDEF data, we can see that the offset is
real!

* If line ratios are different in high redshift
galaxies, suggests differences in physical
conditions in HII regions.

« Higher ionization parameter (geometry of
stars relative to gas); harder ionizing
radiation field (e.g., Steidel et al. 2014;
Kewley et al. 2013).

* With MOSDEF, we will isolate the factors
leading to this offset (HII region density,
lonization parameter, SFR surface density),
and attempt to recalibrate metallicity
Indicators!
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« With a statistical sample already in early
MOSDEF data, we can see that the offset is
real!

* If line ratios are different in high redshift
galaxies, suggests differences in physical
conditions in HII regions.

« Higher ionization parameter (geometry of
stars relative to gas); harder ionizing
radiation field (e.g., Steidel et al. 2014;
Kewley et al. 2013).

* With MOSDEF, we will isolate the factors
leading to this offset (HII region density,
lonization parameter, SFR surface density),
and attempt to recalibrate metallicity
Indicators!
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« With a statistical sample already in early
MOSDEF data, we can see that the offset is
real!

* If line ratios are different in high redshift
galaxies, suggests differences in physical
conditions in HII regions.

« Higher ionization parameter (geometry of
stars relative to gas); harder ionizing
radiation field (e.g., Steidel et al. 2014;
Kewley et al. 2013).

* With MOSDEF, we will isolate the factors
leading to this offset (HII region density,
lonization parameter, SFR surface density),
and attempt to recalibrate metallicity
Indicators!
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« With a statistical sample already in early
MOSDEF data, we can see that the offset is
real!

* If line ratios are different in high redshift
galaxies, suggests differences in physical
conditions in HII regions.

« Higher ionization parameter (geometry of
stars relative to gas); harder ionizing
radiation field (e.g., Steidel et al. 2014;
Kewley et al. 2013).

* With MOSDEF, we will isolate the factors
leading to this offset (HII region density,
lonization parameter, SFR surface density),
and attempt to recalibrate metallicity
Indicators!



Summary

» Kinematic signatures of outflows at z~1-4 are straightforward to establish.

» We can further establish that the geometry of outflows appears to evolve:
collimated at z<1, not collimated at z>2, and that outflow kinematics are
significantly correlated with X .

 Outflow physical properties most relevant for models of galaxy formation are
very difficult to constrain observationally (e.g., mass/momentum/energy outflow
rate, and 1, mass loading factor).

» Absorption-line (and emission-line) data with higher spectral resolution will
help (lensed galaxies, ; bigger telescopes), as current velocity data are crude and
low-resolution.

* The M-Z relation holds promise for placing constraints on outflows, if we can
calibrate metallicity indicators.

* A different approach as well: perhaps better to “observe” simulations and
reproduce absorption-line profiles in order to infer mass outflow rates.



