Cosmic Rays: Agents of Feedback, Probes of Star Formation

Ellen Zweibel

zweibel@astro.wisc.edu

Departments of Astronomy & Physics

University of Wisconsin, Madison

and

Center for Magnetic Self-Organization

in

Laboratory and Astrophysical Plasmas

Outline

The basis for cosmic ray hydrodynamics

- Observational motivation
- Self confinement picture
- Extrinsic turbulence picture
- Effects of magnetic field & background gas properties
- Application to galactic winds
- Cosmic rays as a probe of star formation

Salient Observations

- Proken power law spectrum; $E^{-2.6}$ in GeV range; $\langle E \rangle \sim 3$ GeV.
- Energy density $U_{cr} \sim U_B \sim U_{th} \sim 1 \text{ eV cm}^{-3}$.
- Isotropic to 0.1 0.01%.
- Confined for \sim 2 10⁷ yr & cross 3-5 gm cm⁻².
- Composition is similar to interstellar (*not r-process*).
- Occupy a thick disk, similar to warm ionized gas.
- Robust Far-IR radio correlation for many galaxies.

Diffusive Transport

- Well defined B field that varies little over a gyro-orbit $r_g \sim 0.2 (E_{GeV}/B_{\mu})$ AU.
- Slow drifts: $v_d/v \sim r_g/L_B \ll 1$ → particles tied to fieldlines.
- Cosmic rays diffuse up & down the fieldlines, & the fieldlines wander (FLRW).

$$D \sim \frac{c}{3} \frac{\lambda_c \lambda_B}{\lambda_c + \lambda_B}$$

• $\lambda \sim 1$ pc in Milky Way; $D \sim 10^{28-29}$ cm²s⁻¹.

Gyroresonant Pitch Angle Scattering

For fluctuations of frequency ω & parallel wavenumber k,

$$\omega - kv\mu \pm n\omega_c = 0,$$

where $\mu \equiv \mathbf{v} \cdot \mathbf{B}/vB$ & $n = \pm 1$ is the strongest resonance. Summing over many uncorrelated scatterings, the mean scattering rate ν is

$$\nu = \frac{\pi}{4}\omega_c k_r \frac{\delta B_k^2}{B^2}.$$

Fokker-Planck Equation

For $\omega_c^{-1} \ll \nu^{-1} \ll \tau_{dyn}$, a Fokker-Planck eqn. for the gyor-averaged distribution function holds

$$\frac{\partial f}{\partial t} + \mu v \hat{\mathbf{n}} \cdot \nabla f = \frac{df}{dt}|_{coll};$$
$$\frac{df}{dt}|_{coll} = \sum_{\pm} \frac{\partial}{\partial \mu} \left[\frac{1 - \mu^2}{2} \nu_{\pm} \frac{\partial f}{\partial \mu} + \nu_{\pm} \hat{\mathbf{n}} \cdot \mathbf{w}_{\pm} m \gamma \frac{\partial f}{\partial p} \right],$$

with $\pm \equiv$ direction of wave propagation & $\mathbf{w}_{\pm} \equiv \mathbf{v} \pm \mathbf{v}_{\mathbf{w}}$.

Momentum Transfer

Multiply Fokker-Planck eqn. by $p\mu$ & integrate over momentum space.

$$\frac{\partial}{\partial t}(n_c p_D) = -\nabla_{\parallel} P_c - n_{cr} \nu (v_D - v_w).$$

- Scattering drives *f* toward isotropy in the frame of the waves
- In a steady state, acceleration down the pressure gradient balances friction.
- Waves propagating in both directions contribute to ν

Energy Transfer: I

Work with the μ averaged Fokker-Planck eqn. for F

$$\begin{aligned} \frac{\partial F}{\partial t} &+ \frac{1}{3p^2} \frac{\partial}{\partial p} (p^3 \mathbf{u} \cdot \nabla F - (\nabla \cdot \mathbf{u}) \frac{p}{3} \frac{\partial F}{\partial p} = \frac{dF}{dt}|_{coll}; \\ \frac{dF}{dt}|_{coll} &= \nabla_{\parallel} D_{\parallel} \nabla_{\parallel} F + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D_{pp} \right) \frac{\partial F}{\partial p}, \end{aligned}$$
where $\mathbf{u} \equiv \mathbf{v} + \langle \frac{3}{2} (1 - \mu^2) \frac{\nu_+ \mathbf{w}_+ - \nu_- \mathbf{w}_-}{\nu_+ + \nu_-} \rangle, \ D_{\parallel} \equiv v^2 \langle \frac{1 - \mu^2}{2(\nu_+ + \nu_-)} \rangle, \end{aligned}$

- \bullet u is a mean (fluid plus wave) velocity.
- D_{pp} represents 2nd order Fermi acceleration & requires waves traveling in both directions.

Energy Transfer: II

Multiply by particle energy $\epsilon \sim cp$ & integrate over momentum space. Ignoring Fermi term for now,

$$\frac{\partial U_c}{\partial t} + \mathbf{u} \cdot \nabla U_c = -\frac{4}{3} U_c \nabla \cdot \mathbf{u} + \nabla \cdot \kappa_{\mathbf{c}} \cdot \nabla U_c$$

as we'd expect for a relativistic, diffusive gas with velocity $\mathbf{u}=\mathbf{v}+\mathbf{v_w}.$

Energy Transfer: III

Combine with the ideal fluid equations to yield an energy transport equation

$$\frac{\partial}{\partial t} \left(\frac{1}{2} \rho v^2 + \frac{P_g}{\gamma_g - 1} + \frac{P_c}{\gamma_c - 1} \right) = -\nabla \cdot \mathbf{F} + Q;$$

$$\mathbf{F} = \mathbf{v} \left(\frac{1}{2} \rho v^2 + \frac{\gamma_g P_g}{\gamma_g - 1} \right) + \mathbf{u} \frac{\gamma_c P_c}{\gamma_c - 1} - \frac{\kappa_c \nabla P_c}{\gamma_c - 1},$$
$$Q = \mathbf{v}_{\mathbf{w}} \cdot \nabla P_c.$$

What is v_w?

- Self confinement picture: Alfven waves amplifed by super-Alfvenic cosmic rays flowing down their pressure gradient.
 - $Q = |v_A \nabla_{\parallel} P_c|.$
- Extrinsic turbulence picture: Waves produced by an MHD turbulent cascade.
 - For balanced turbulence, Q = 0 & there is some Fermi acceleration.
 - For imbalanced turbulence, could be similar to self confinement picture.
- Long recognized that self confinement only works up to a certain energy.

Streaming Instability

Resonance condition

$$k \sim \frac{qB}{p\mu}$$

Higher energies resonate with longer wavelength waves, but as $\mu \to 0$, $k \to \infty$. Instability growth rate

$$\Gamma_c \sim \omega_{cp} \frac{n_c(>p_{min})}{n_i} \left(\frac{v_D}{v_A} - 1\right).$$

Because of powerlaw energy spectrum, Γ_c declines with cosmic ray energy.

Damping Balances Growth

- Ion neutral friction in weakly ionized regions: typically eliminates coupling.
- Nonlinear Landau damping on thermal ions: especially important in hot regions.
- Shearing apart of wave packets by background turbulence.

Marginal stability condition plus relationship between anisotropy & pressure gradient determines pressure profile & diffusivity κ_c . Self confinement works for E < 100-200 GeV for Milky Way conditions.

Wrinkles in the Picture

- Breakdown of diffusion theory as $\mu \to 0$; does $v_D \to v_A$?
 addressed with mirroring by Felice & Kulsrud 1991.
- Drastically modified waves and growth rates for $U_c/U_B > c/v_D$.
- Modification of Alfven wave dispersion relation for $\beta > (c/v_i)^2$.

Extrinsic Turbulence

- MHD cascade is too anisotropic to scatter cosmic rays efficiently; compressive waves must be generated.
- If turbulence is balanced, cosmic rays extract energy from the background rather than donating energy to it.
- Long confinement times & low anisotropy requirements can be met, but requires a separate theory.

Galactic Wind

<u>Top left</u>: Soft x-ray sky, <u>Bottom left</u>: Magnetic flux tube geometry. <u>Top right</u>: Domains of flow, with mass loss rates <u>Bottom right</u>: Gas temperature with & without cosmic ray heating.

Everett et al. 2008 ApJ

Cosmic Ray Coupling to Clouds

Top left: Model cloud setup. Top Right: Cosmic ray & wave pressure vs. depth. Bottom right: Transition from advection to diffusion, followed by free streaming -> **No force on the bulk of the cloud**.

Cosmic Ray Heating of Diffuse Interstellar Gas

Left: Galactic Ha emission, showing a thick layer of warm ionized gas. Right: Model of thermal equilibrium , including cosmic ray heating (Wiener et al. 2013)

Cosmic Ray Probes of Star Formation

- Can Milky Way-like models of cosmic ray acceleration by supernovae lead to the gamma ray and synchrotron emission observed in starburst galaxies?
- Are these galaxies calorimeters?
- What can we learn from about starburst galaxies by reproducing their spectra?

Fits to the Gamma Ray Sprectrum of M82

FIG. 5.— \Box -ray spectra. Left: \Box -ray spectrum with parameters p = 2.1, $M_{mol} = 4 \times 10^8 M_{\odot}$, $B = 275 \Box G$, $v_{adv} = 500 \text{ km s}^{-1}$, $n_{ion} = 100 \text{ cm}^{-3}$. This spectrum is the best fit to the \Box -ray data. Right: \Box -ray spectrum with parameters p = 2.2, $M_{mol} = 4 \times 10^8 M_{\odot}$, $B = 275 \Box G$, $v_{adv} = 400 \text{ km s}^{-1}$, $n_{ion} = 150 \text{ cm}^{-3}$. This is the \Box -ray spectrum that corresponds to the best radio fit for a spectral index of p = 2.2. The solid black lines represent the total \Box -ray flux, the dashed red lines represent the contribution from neutral pion decay, and the dotted blue lines represent the contribution from bremsstrahlung. \Box -ray data include: Ackermann et al. (2012) (Fermi - blue circles), Acciari et al. (2009) (VERITAS - red squares). Data with downward arrows represent upper limits for both Fermi and VERITAS data.

YEGZ ApJ 2013

Fit to the Radio Spectrum

Fitting Parameters

TABLE 3		
Best-Fit	MODEL	PARAMETERS

Physical Parameters	Best-Fit Value
Magnetic Field Strength (B) Advection (Wind) Speed (V _{adv}) Ionized Gas Density (n _{ion}) Spectral Index (p) Molecular Gas Mas (M _{mol})	$\begin{array}{c} 275 \ \Box G \\ 500 \ \mathrm{km \ s^{-1}} \\ 100 \ \mathrm{cm^{-3}} \\ 2.1 \\ 4 \times 10^8 \ \mathrm{M_{\odot}} \end{array}$

Note. — Results for $\Box^2_{radio}=22.6,\, \Box^2_{\gamma}=9.6$

M82 is an excellent electron calorimeter And a ~50% proton calorimeter.

Conclusions

- The long confinement times & near isotropy of cosmic rays motivated a theory of self confinement and resulting fluid picture.
 - Not tested by numerical simulations (but soon to be).
 - Many devilish details in the implementation.
- Applications include galactic winds, ISM/ICM heating, etc.
- Cosmic ray acceleration & confinement theory can be tested in other galaxies.