

Where we stopped yesterday (blackboard courtesy Georges Meynet)

Radboud Universiteit Nijmegen

From a Kepler LC to core overshoot, near-core rotation, and envelope mixing

Starring May Gade Pedersen Timothy Van Reeth

KITP, 7 April 2017

Forward seismic modelling: simplest case

KU LEUVEN

Core overshoot: value & shape

PhD Thesis, May Gade Pedersen: plug in results from 2D/3D hydrodynamical simulations (cf. tutorials Tami, Daniel next Thursday)

Core overshoot: value & shape

H and He profiles

PhD Thesis, May Gade Pedersen

Seismic modelling: interior, not HRD or Kiel

Beauty of gravity modes (only since Kepler)

Allow probing of near-core regions & determine X, Z, M, age, overshoot, log D_{mix} in B & F-type stars

PhD thesis Valentina Schmid (2016)

Forward seismic modelling: simplest case

Kepler LCs from raw pixel data (MAST)

Pápics et al. (2014): LC: 29.42 min (sum of 270 exposures) Nyquist frequency: 24.47/d

10

Fourier analysis

Fourier transform of x(t):

$$F(f) \equiv \int_{-\infty}^{+\infty} x(t) \exp(2\pi \mathrm{i} ft) dt$$

Fourier transform F(f) of sum of harmonic functions with frequencies f_1, \ldots, f_n and amplitudes A_1, \ldots, A_n :

$$x(t) = \sum_{k=1}^{n} A_k \exp(2\pi i f_k t) : \quad F(f) = \sum_{k=1}^{n} A_k \delta(f - f_k)$$

For $x(t) = \text{sine with frequency } f_1, F(f) \neq 0 \text{ for } f = \pm f_1$ For $x(t) = \text{sum of } n \text{ harmonic functions with frequencies } f_{1,...,f_n}, F(f) = \text{sum of } \delta \text{-functions} \neq 0 \text{ for } \pm f_1, \dots, \pm f_n$

Real data set: x(t) known for a discrete number of times t_j , j=1,...,N

Radboud Universiteit Nijmegen

Discrete Fourier transform

$$F_N(f) \equiv \sum_{j=1}^N x(t_j) \exp(2\pi \mathrm{i} f t_j)$$

 $F_N \neq F$! but connected through window function: $w_N(t) \equiv \frac{1}{N} \sum_{i=1}^N \delta(t-t_j)$

Hence:
$$\frac{F_N}{N} = \int_{-\infty}^{+\infty} x(t) w_N(t) \exp(2\pi i f t) dt$$

Discrete Fourier transform of window function = spectral window $W_N(f)$:

$$W_N(f) = \frac{1}{N} \sum_{j=1}^N \exp(2\pi \mathrm{i} f t_j)$$

Discrete Fourier transform = convolution of spectral window and Fourier transform: $F_N(f)/N = F(f) * W_N(f)$

Detecting gravity-mode oscillations

Prewhitening & residuals

Least-squares fitting with *f* fixed: $x_i(t_i) = A \sin [2\pi (ft_i + \psi)] + C$

Variance reduction in $\in [0,1]$:

$$1 - \frac{\sum_{i=1}^{N} \left\{ x_i - \left[A \sin \left(2\pi (ft_i + \psi) \right) + C \right] \right\}^2}{\sum_{i=1}^{N} \left(x_i - \overline{x} \right)^2}$$

Search for new frequencies in **residuals** $R_i(f) \equiv x_i - x_i^c(f)$ with

$$x_i^c(f) \equiv A \sin\left[2\pi (ft_i + \psi)\right] + C$$

and so on. BUT: frequency is only known up to certain precision:

optimising f within uncertainty interval is necessary: $\sigma_f = \frac{\sqrt{6\sigma_R}}{\pi\sqrt{N}AT}$ do NLLS fitting + prewhitening

Forward seismic modelling: simplest case

MESA summerschool 2016

Receding core & µ-gradient zone

Radboud Universiteit Nijmegen

PhD Thesis, May Gade Pedersen

Dips & chemical mixing

Various types of mixing in MESA

- Mixing disconnected with rotation
- Rotationally induced mixing

Forward seismic modelling: simplest case

Gravity-mode period spacings massive stars

A real star:KIC 7760680

KIC7760680: M=3.25M^o, Xc=0.50, frot=0.48/d, fov=0.024 Hp log Dmix=0.75±0.25 (Moravveji et al. 2016)

Dependence on opacities and chemical mixture (Moravveji et al. 2015)