

The impact of stellar parameters on the mechanism of stellar explosions

Thierry Foglizzo CEA Saclay

the main parameters of "standard" core-collapse

- -ZAMS mass M_{ZAMS}, compacity ξ_{2.5}
- -neutrino driven convection & SASI χ , Q_{SASI}, r_{sh}/r_{NS}
- -explosion threshold M_4 , μ_4
- -precollapse inhomogeneities Ma_{conv}, I_{conv}
- -angular momentum in the stellar core $\,j_{\text{core}}\,$

their impact on the explosion

their relation to the stellar structure

modest energy in differential rotation: $E_{\rm diff} < E_{\rm rot} \sim 2.4 \times 10^{50} {\rm erg} \left(\frac{M_{\rm ns}}{1.5 M_{\rm sol}} \right) \left(\frac{R_{\rm ns}}{10 {\rm km}} \right)^2 \left(\frac{10 {\rm ms}}{P_{\rm ns}} \right)^2$

project PRACE 150 millions hours 16.000 processors, 4,5 months/model

evolution time: 500ms

diameter: 300km

 $27M_{sol}$

2 instabilities during the phase of stalled accretion shock

Neutrino-driven convection (Herant+92, ...)

- entropy gradient fed by neutrino absorption
- inhibited if the advection time is too short

(Foglizzo+06)

$$\chi \equiv \int_{\rm sh}^{\rm gain} \omega_{\rm BV} \frac{\mathrm{d}r}{v_r} < 3$$

SASI: Standing Accretion Shock Instability

(Blondin+03 ...)

- advective-acoustic cycle
- oscillatory, large angular scale l=1,2:
 pulsar kick, nucleosynthesis imprint
 gravitational waves & neutrino direct signatures

Vortical-acoustic coupling advected vorticity → pressure feedback

Entropic-acoustic coupling

advected entropy → pressure feedback

Progress of ab initio simulations: understandable diversity

-axisymmetric explosions from first principles

8.1, 9.6, 11.2, 15, 27M_{sol} (MPA)

-depending on the progenitor, the dynamical evolution can be dominated by neutrino driven buoyancy (11.2 M_{sol}) or by SASI (27 M_{sol}) or by both (15 M_{sol})

--competition between advection and buoyancy (Foglizzo+06, Fernandez+13)

$$\chi \equiv \int_{\rm sh}^{\rm gain} \omega_{\rm BV} \frac{\mathrm{d}r}{v_r} < 3$$

- -weakish explosion energy < 10⁵¹ erg
- -lack of convergence between the numerical models (Bruenn+13)
- -neutrino transport questioned by Dolence+15

Dynamics of water in the fountain

Dynamics of the gas in the supernova core

diameter 40cm 1 000 000 x bigger 3s/oscillation 100 x faster 0.03s/oscillation

Engartence Androwitque

SWASI: an experimental analogue of SASI

Shallow Water Analogue of a Shock Instability

Formal similarity between SASI and SWASI

accretion of gas (on a cylinder)

density ho, velocity v, sound speed $c \propto
ho^{\frac{\gamma-1}{2}}$

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) &= 0 \\ \frac{\partial v}{\partial t} + w \times v + \nabla \left(\frac{v^2}{2} + c^2 \log \frac{\rho}{\rho_0} + \Phi \right) &= 0 \\ \frac{\partial v}{\partial t} + w \times v + \nabla \left(\frac{v^2}{2} + \frac{c^2}{\gamma - 1} + \Phi \right) &= \frac{c^2}{\gamma} \nabla S \end{split} \qquad \text{adiabatic} \end{split}$$

inviscid shallow water accretion

depth H, velocity v, wave speed $c=(gH)^{\frac{1}{2}}$

$$\Phi = gz \qquad \frac{\partial H}{\partial t} + \nabla \cdot (Hv) = 0$$

$$c^2 = gH$$

$$\frac{\partial v}{\partial t} + w \times v + \nabla \left(\frac{v^2}{2} + c^2 + \Phi\right) = 0$$

- Inviscid shallow water: analogue to an isentropic gas γ=2

(intermediate between "isothermal" and " γ =2 without entropy")

3D spherical y=4/3

Blondin & Mezzacappa 07

expected scaling
$$\frac{t_{
m ff}^{
m sh}}{t_{
m ff}^{
m jp}} \equiv \left(\frac{r_{
m sh}}{r_{
m jp}}\right) \left(\frac{r_{
m sh}gH_{
m jp}}{GM_{
m NS}}\right)^{\frac{1}{2}} \sim 10^{-2}$$

shock radius $\times 10^{-6}$ oscillation period $\times 10^2$

$$200 \, \text{km} \rightarrow 20 \, \text{cm}$$

 $30 \, \text{ms} \rightarrow 3 \, \text{s}$

2D cylindrical γ=2 isentropic

-0.5 0.0

 r/r_{ab}

0.5

1.0

1.5

-1.5

-1.0

-the strength of SASI increases with the radius ratio $R = r_{sh}/r_{NS}$ -unexpected stochasticity

1-D models calibrated with SN1987A (~18M_{sol}) and the Crab (~10M_{sol})

but -SN1987A was peculiar (Morris & Podsiadlowski 07)

-the SASI/convective multi-D diversity is ignored

also -single star evolution: binarity is ignored (Sana+12)

-rotation is neglected

The compactness captures a large fraction of the explosion threshold

(Ugliano+12, Ertl+16, Sukhbold+16)

$$\xi_M \equiv \frac{M}{M_{\rm sol}} \frac{1000 \text{km}}{R(M)}$$
$$\sim 3 \times 10^{-3} \frac{R_{\rm Schw}(M)}{R(M)}$$

SN/BH threshold

 ξ =0.45 ? (O'Connor & Ott 11) ξ =0.2 ? (Horiuchi+14)

inconclusive for 0.15<\xi<0.32 (Ugliano+12)

A two-parameter criterion for the explosion?

from Burrows & Goshy 93 to Ertl+16

$$M_4 \equiv \frac{m(s=4)}{M_{\text{sol}}}$$
 $u_4 \equiv \frac{1000 \text{km}}{M_{\text{sol}}} \frac{dm}{dr} \Big|_{s=4}$

structural parameters measured **before collapse**, when $\rho(r=0)=5x10^{10}g/cm^3$

s=4 ~ base of the oxygen shell

 $M_4 \sim accretor mass$

 μ_4 ~ mass accretion rate

 $M_4 \mu_4 \sim$ neutrino luminosity

Effect of the missing parameters?

- advective stabilisation of advection
- SASI efficiency
- precollapse asymmetries
- angular momentum

The explosion is sensitive to precollapse convective asymmetries

(Couch & Ott+13, 15, Müller & Janka 15, Couch+15, Abdikamalov+16, Müller+16)

$$\Delta L_v/L_v \sim 2-3\% (15M_{sol})$$

Couch+Ott+13

$$\Delta L_{v}/L_{v} \sim 12-24\% (18M_{sol})$$

Müller+16

Müller+16: Oxygen burning during the last 5mn before the core-collapse of a 18M_{sol} progenitor

- -increase of the convective Mach number up to Ma_{conv}~0.1
- -impact of the radial size Δr of the convective O shell: final emergence of a large scale mode $I \sim \pi r/\Delta r \sim 2$ due to the fast contraction of the Si-Fe core
 - -reduction of the critical neutrino luminosity by 12-24% (18M_{sol} is a favourable case)

How to relate the explosion parameters to the stellar parameters?

NS, BH \leftrightarrow	collapse/explosion dynamics	←→ precollapse ←→ RSG/BSG ←→ MS ←→ ZAMS structure phase evolution
R _{NS} ~10km	R _{PNS} ~50km	R _{Fe} ~1500km
	mass accretion rate v luminosity	$\xi_{2.5}$ < 0.15-0.35
	v fulfilliosity	M_4 , μ_4 (Ertl+16) Si/O interface
NS kick $V_{NS} \sim 0-10^4 \text{km/s}$	χ >3 v-driven convection Q _{SASI} >1, r _{sh} /r _{NS} >2 SASI	11.2, $15M_{sol}$ 15, $27M_{sol}$
D 40.400ma	turbulent pressure low I=2 forcing	size of convective O, Si inhomogeneities
$P_{NS} \sim 10-100 \text{ms}$ $j_{NS} \sim 6 \times 10^{13-14} \text{cm}^2/\text{s}$ (Popov & Turolla 12)	j(r,θ,t) angular momentum	j_{core} (r,0) RG hints (Cantiello+14) ~ $4x10^{14}$ cm ² /s with B (Heger+05) ~ 10^{13-14} cm ² /s with IGW (Fuller+15)
j_{NS} <6 10 ¹⁵ cm ² /s P_{NS} > 1ms	low T/W instab. j _{NS} >10 ¹⁵ cm ² /s?	