
(N=13k particles , tabulated EOS, no radiative  cooling, 14 seconds wallclock time)



SPH Basics
• SPH = Smoothed Particle Hydrodynamics

• Lagrangian formuation: particles trace the fluid flow

• Each SPH particle is tagged with

– Physical quantities 

• Mass m

• Cartesian coordinates x, y, z

• Velocity components vx, vy, vz

• Specific internal energy u or an entropic variable A

• Composition

– Numerical quantity: “smoothing length” h gives (half) 
radius of the mass distribution of a particle

• From these quantities, others can be constructed w/ help 
from kernel W:

As in an N-body code

Image from Karekal et al. (2011)

• Density ri = Sj mj W(|ri – rj|, hi)
• Temperature & pressure (need EOS), acceleration

• Also can include dark matter/compact object/core particles 
that interact gravitationally but not hydrodynamically with 
the rest of the system

See Rosswog (2009) for a detailed review.



Publicly available SPH codes
(w/ incomplete comments on each)

• Gadget-2 / Gadget-3 (http://wwwmpa.mpa-garching.mpg.de/gadget/)

– Primarily cosmological simulations

– Volker Springel is the primary/original code developer

– Large user base

• PhantomSPH (https://phantomsph.bitbucket.io/)

– From the makers of SPLASH

– Well documented

– MHD (“The only time magnetic fields aren’t important is when they are zero.” ---Joe 
Monaghan)

• StarCrash (http://ciera.northwestern.edu/StarCrash/)

– FFTW calculation

– Old equations of motion (i.e. not derived from a Lagrangian)

• Starsmasher (http://jalombar.github.io/starsmasher/)

– Similar I/O to StarCrash

– GPU calculation of gravity

– Starting to be better documented

http://wwwmpa.mpa-garching.mpg.de/gadget/
http://wwwmpa.mpa-garching.mpg.de/gadget/
http://wwwmpa.mpa-garching.mpg.de/gadget/
http://wwwmpa.mpa-garching.mpg.de/gadget/
http://wwwmpa.mpa-garching.mpg.de/gadget/
https://phantomsph.bitbucket.io/
https://phantomsph.bitbucket.io/
http://ciera.northwestern.edu/StarCrash/
http://ciera.northwestern.edu/StarCrash/
http://jalombar.github.io/starsmasher/
http://jalombar.github.io/starsmasher/


Starsmasher
• Equations of motion derived from Lagrangian

(Gaburov et al. 2010) 
• Parallelized 

– on CPUs (the hydrodynamics and bookkeeping) 
– on GPUs (gravity) … thanks to Evghenii Gaburov

• Direct summation gravity ensures energy, angular 
momentum, and momentum conservation 

• Options
– Tabulated equation of state
– Approximate radiative cooling (important when 

generating light curves)
– Three different kernels to choose from

The cluster that we run most simulations 
on has 6 nodes and 4 GPUs per node; 

usually one job per node

Lots of undergraduates involved, e.g. 
Travis Court ‘18



How to model a (synchronized) binary
Step 0: Pick your stars

• Decide on realistically modeled stars or polytropes. E.g.,

HR track for
MZAMS=16M⊙

(calculated by TWIN)

Primary:
Age = 10.006 Myr
M = 15.7 M⊙

R = 292 R⊙

Secondary:
Pre-MS  modelled with n=1.5 
density and pressure profiles 
but tabulated EOS
M = 1 M⊙



How to model a (synchronized) binary
Step 1: Relax single stars

• Generate SPH models of polytropes or realistically modeled stars.

• Our example primary is given a ~5M⊙ core particle (representing He core)

80k particles Red circles in movie on right show kernel sizes



Units:
G=M⊙ =R⊙ =1 Radius Radius 

P/r^(5/3)
(even though

EOS is not 
monatomic 

ideal gas)

Pressure P

Density r

Particle mass mi

Smoothing 
length hi

Neighbor 
number NN

aHydro (blue)
&
gravitational 
acceleration g
(green)

t=0 of relaxation

Red curves 
are the 1D 

model 

Dots are 
SPH 

particles



P/r^(5/3)
(even though

EOS is not 
monatomic 

ideal gas)

Pressure P

Density r

Particle mass mi

Smoothing 
length hi

Neighbor 
number NN

aHydro (blue)
&
gravitational 
acceleration g
(green)

Units:
G=M⊙ =R⊙ =1 Radius Radius 

Final relaxed model



Units:
G=M⊙ =R⊙ =1

Internal energy

Gravitational 
energy

Kinetic energy
(on log scale)

Total energy

Energy isn’t supposed to be conserved
in relaxation calculations: drag force does

work on the system

Drag force removed

Out to ~30 
dynamical 
times
(which took 
~30 wallclock
minutes with 
one GPU)



Units:
G=M⊙ =R⊙ =1

Internal energy

Gravitational 
energy

Kinetic energy
(on log scale)

Total energy

Drag force removed

Out to ~300 
dynamical 
times
(which took
~4 wallclock
hours)

Drag force removed



How to model a (synchronized) binary
Step 2: Scan binary equilibrium sequences

• Copies of the isolated stars from the relaxation runs are placed in orbit around each other 

• Hold in place while oscillations die out, then slowly bring together. 

• Angular velocity W of corotating frame continually updated to balance centrifugal & physical forces. 

Side notes:
• 0.12 s per iteration
• ~3.5 hours wallclock
• Gravity is the 

bottleneck, taking 80% 
of the wallclock time.

• Happily, CPUs are 
working 
simultaneously with 
the GPUs for some of 
that time.



Internal energy

Gravitational 
energy

Kinetic energy

Total energy

Total angular 
momentum

start scan

Units:
G=M⊙ =R⊙ =1



How to model a (synchronized) binary
Step 3: Perform dynamical runs

• Choose various snapshots from the scanning runs as initial conditions, and allow the system to evolve 
freely 

Side notes:
• ~same cost 

per iteration 
as binary scan

• ~16 hours 
wallclock

• 1.1M⊙ ejected



How to model a (synchronized) binary
Step 3: Perform dynamical runs

• Another look at the exciting part…



How to model a (synchronized) binary
Step 3: Perform dynamical runs

• Now a look at column density in z vs. x



Internal energy

Gravitational 
energy

Kinetic energy

Total energy

Total angular 
momentum

~50 orbits before 
merger

0.14% error
(1 part in 700; can 
be improved w/ 
smaller timesteps)

1 part in 105 error

Units:
G=M⊙ =R⊙ =1

Final c.o.m. speed < 2 x 10-6



How to model a (synchronized) binary
Step 4: Complete a convergence study

• As the resolution of the simulation is increased, 
the effective radius of the parent stars changes.

• Mass transfer rate is sensitive to how the outer 
layers are modelled.

• Timescale leading up to merger can change 
(usually lengthen) with increased resolution.



What a bad relaxation can look like…

Previous primary:
MZAMS = 16 M⊙

Age = 10.006 Myr (base of RG branch)
M = 15.7 M⊙

R = 292 R⊙

Now let’s try
MZAMS = 20 M⊙

Age = 7.75 Myr (base of RG branch)
M = 19.4 M⊙

R = 460 R⊙



Units:
G=M⊙ =R⊙ =1 Radius Radius 

P/r^(5/3)
(even though

EOS is not 
monatomic 

ideal gas)

Pressure P

Density r

Particle mass mi

Smoothing 
length hi

Neighbor 
number NN

aHydro (blue)
&
gravitational 
acceleration g
(green)

t=0 of relaxation



P/r^(5/3)
(even though

EOS is not 
monatomic 

ideal gas)

Pressure P

Density r

Particle mass mi

Smoothing 
length hi

Neighbor 
number NN

aHydro (blue)
&
gravitational 
acceleration g
(green)

Units:
G=M⊙ =R⊙ =1 Radius Radius 

Final model



Units:
G=M⊙ =R⊙ =1

Internal energy

Gravitational 
energy

Kinetic energy
(on log scale)

Total energy

Particles reposition into new, 
lower energy configuration.

Drag force removed



Things I’d like to improve in 
Starsmasher

• Tabulated EOS used by Starsmasher is from MESA, but it assumes all 
particles have the same composition.
– This isn’t precisely the same EOS used by the stellar evolution code 

TWIN.  (Could this cause relaxation problems?) 
– Generating all 1D models from MESA will help, but still have the 

problem that Starsmasher is currently set up to read in an EOS table 
of fixed composition.

• Non-synchronized binaries with accurate tidal bulges
– For mass ratios close to zero (or very large), the primary won’t be 

tidally locked to the secondary
– Presumably mass ejected when secondary rams through envelope

• Godunov-treatment for shocks to replace classical AV


