
(N=13k particles , tabulated EOS, no radiative cooling, 14 seconds wallclock time)

SPH Basics
• SPH = Smoothed Particle Hydrodynamics

• Lagrangian formuation: particles trace the fluid flow

• Each SPH particle is tagged with

– Physical quantities

• Mass m

• Cartesian coordinates x, y, z

• Velocity components vx, vy, vz

• Specific internal energy u or an entropic variable A

• Composition

– Numerical quantity: “smoothing length” h gives (half)
radius of the mass distribution of a particle

• From these quantities, others can be constructed w/ help
from kernel W:

As in an N-body code

Image from Karekal et al. (2011)

• Density ri = Sj mj W(|ri – rj|, hi)
• Temperature & pressure (need EOS), acceleration

• Also can include dark matter/compact object/core particles
that interact gravitationally but not hydrodynamically with
the rest of the system

See Rosswog (2009) for a detailed review.

Publicly available SPH codes
(w/ incomplete comments on each)

• Gadget-2 / Gadget-3 (http://wwwmpa.mpa-garching.mpg.de/gadget/)

– Primarily cosmological simulations

– Volker Springel is the primary/original code developer

– Large user base

• PhantomSPH (https://phantomsph.bitbucket.io/)

– From the makers of SPLASH

– Well documented

– MHD (“The only time magnetic fields aren’t important is when they are zero.” ---Joe
Monaghan)

• StarCrash (http://ciera.northwestern.edu/StarCrash/)

– FFTW calculation

– Old equations of motion (i.e. not derived from a Lagrangian)

• Starsmasher (http://jalombar.github.io/starsmasher/)

– Similar I/O to StarCrash

– GPU calculation of gravity

– Starting to be better documented

http://wwwmpa.mpa-garching.mpg.de/gadget/
http://wwwmpa.mpa-garching.mpg.de/gadget/
http://wwwmpa.mpa-garching.mpg.de/gadget/
http://wwwmpa.mpa-garching.mpg.de/gadget/
http://wwwmpa.mpa-garching.mpg.de/gadget/
https://phantomsph.bitbucket.io/
https://phantomsph.bitbucket.io/
http://ciera.northwestern.edu/StarCrash/
http://ciera.northwestern.edu/StarCrash/
http://jalombar.github.io/starsmasher/
http://jalombar.github.io/starsmasher/

Starsmasher
• Equations of motion derived from Lagrangian

(Gaburov et al. 2010)
• Parallelized

– on CPUs (the hydrodynamics and bookkeeping)
– on GPUs (gravity) … thanks to Evghenii Gaburov

• Direct summation gravity ensures energy, angular
momentum, and momentum conservation

• Options
– Tabulated equation of state
– Approximate radiative cooling (important when

generating light curves)
– Three different kernels to choose from

The cluster that we run most simulations
on has 6 nodes and 4 GPUs per node;

usually one job per node

Lots of undergraduates involved, e.g.
Travis Court ‘18

How to model a (synchronized) binary
Step 0: Pick your stars

• Decide on realistically modeled stars or polytropes. E.g.,

HR track for
MZAMS=16M⊙

(calculated by TWIN)

Primary:
Age = 10.006 Myr
M = 15.7 M⊙

R = 292 R⊙

Secondary:
Pre-MS modelled with n=1.5
density and pressure profiles
but tabulated EOS
M = 1 M⊙

How to model a (synchronized) binary
Step 1: Relax single stars

• Generate SPH models of polytropes or realistically modeled stars.

• Our example primary is given a ~5M⊙ core particle (representing He core)

80k particles Red circles in movie on right show kernel sizes

Units:
G=M⊙ =R⊙ =1 Radius Radius

P/r^(5/3)
(even though

EOS is not
monatomic

ideal gas)

Pressure P

Density r

Particle mass mi

Smoothing
length hi

Neighbor
number NN

aHydro (blue)
&
gravitational
acceleration g
(green)

t=0 of relaxation

Red curves
are the 1D

model

Dots are
SPH

particles

P/r^(5/3)
(even though

EOS is not
monatomic

ideal gas)

Pressure P

Density r

Particle mass mi

Smoothing
length hi

Neighbor
number NN

aHydro (blue)
&
gravitational
acceleration g
(green)

Units:
G=M⊙ =R⊙ =1 Radius Radius

Final relaxed model

Units:
G=M⊙ =R⊙ =1

Internal energy

Gravitational
energy

Kinetic energy
(on log scale)

Total energy

Energy isn’t supposed to be conserved
in relaxation calculations: drag force does

work on the system

Drag force removed

Out to ~30
dynamical
times
(which took
~30 wallclock
minutes with
one GPU)

Units:
G=M⊙ =R⊙ =1

Internal energy

Gravitational
energy

Kinetic energy
(on log scale)

Total energy

Drag force removed

Out to ~300
dynamical
times
(which took
~4 wallclock
hours)

Drag force removed

How to model a (synchronized) binary
Step 2: Scan binary equilibrium sequences

• Copies of the isolated stars from the relaxation runs are placed in orbit around each other

• Hold in place while oscillations die out, then slowly bring together.

• Angular velocity W of corotating frame continually updated to balance centrifugal & physical forces.

Side notes:
• 0.12 s per iteration
• ~3.5 hours wallclock
• Gravity is the

bottleneck, taking 80%
of the wallclock time.

• Happily, CPUs are
working
simultaneously with
the GPUs for some of
that time.

Internal energy

Gravitational
energy

Kinetic energy

Total energy

Total angular
momentum

start scan

Units:
G=M⊙ =R⊙ =1

How to model a (synchronized) binary
Step 3: Perform dynamical runs

• Choose various snapshots from the scanning runs as initial conditions, and allow the system to evolve
freely

Side notes:
• ~same cost

per iteration
as binary scan

• ~16 hours
wallclock

• 1.1M⊙ ejected

How to model a (synchronized) binary
Step 3: Perform dynamical runs

• Another look at the exciting part…

How to model a (synchronized) binary
Step 3: Perform dynamical runs

• Now a look at column density in z vs. x

Internal energy

Gravitational
energy

Kinetic energy

Total energy

Total angular
momentum

~50 orbits before
merger

0.14% error
(1 part in 700; can
be improved w/
smaller timesteps)

1 part in 105 error

Units:
G=M⊙ =R⊙ =1

Final c.o.m. speed < 2 x 10-6

How to model a (synchronized) binary
Step 4: Complete a convergence study

• As the resolution of the simulation is increased,
the effective radius of the parent stars changes.

• Mass transfer rate is sensitive to how the outer
layers are modelled.

• Timescale leading up to merger can change
(usually lengthen) with increased resolution.

What a bad relaxation can look like…

Previous primary:
MZAMS = 16 M⊙

Age = 10.006 Myr (base of RG branch)
M = 15.7 M⊙

R = 292 R⊙

Now let’s try
MZAMS = 20 M⊙

Age = 7.75 Myr (base of RG branch)
M = 19.4 M⊙

R = 460 R⊙

Units:
G=M⊙ =R⊙ =1 Radius Radius

P/r^(5/3)
(even though

EOS is not
monatomic

ideal gas)

Pressure P

Density r

Particle mass mi

Smoothing
length hi

Neighbor
number NN

aHydro (blue)
&
gravitational
acceleration g
(green)

t=0 of relaxation

P/r^(5/3)
(even though

EOS is not
monatomic

ideal gas)

Pressure P

Density r

Particle mass mi

Smoothing
length hi

Neighbor
number NN

aHydro (blue)
&
gravitational
acceleration g
(green)

Units:
G=M⊙ =R⊙ =1 Radius Radius

Final model

Units:
G=M⊙ =R⊙ =1

Internal energy

Gravitational
energy

Kinetic energy
(on log scale)

Total energy

Particles reposition into new,
lower energy configuration.

Drag force removed

Things I’d like to improve in
Starsmasher

• Tabulated EOS used by Starsmasher is from MESA, but it assumes all
particles have the same composition.
– This isn’t precisely the same EOS used by the stellar evolution code

TWIN. (Could this cause relaxation problems?)
– Generating all 1D models from MESA will help, but still have the

problem that Starsmasher is currently set up to read in an EOS table
of fixed composition.

• Non-synchronized binaries with accurate tidal bulges
– For mass ratios close to zero (or very large), the primary won’t be

tidally locked to the secondary
– Presumably mass ejected when secondary rams through envelope

• Godunov-treatment for shocks to replace classical AV

