

(N=13k particles, tabulated EOS, no radiative cooling, 14 seconds wallclock time)

SPH Basics

- SPH = Smoothed Particle Hydrodynamics
- Lagrangian formuation: particles trace the fluid flow
- Each SPH particle is tagged with
 - Physical quantities
 - Mass m
 - Cartesian coordinates x, y, z
 - Velocity components v_x , v_y , v_z
 - Specific internal energy u or an entropic variable A
 - Composition
 - Numerical quantity: "smoothing length" h gives (half) radius of the mass distribution of a particle
- From these quantities, others can be constructed w/ help from kernel W:
 - Density $\rho_i = \sum_j m_j W(|\boldsymbol{r}_i \boldsymbol{r}_j|, h_i)$
 - Temperature & pressure (need EOS), acceleration
- Also can include dark matter/compact object/core particles that interact gravitationally but not hydrodynamically with the rest of the system

See Rosswog (2009) for a detailed review.

As in an N-body code

Image from Karekal et al. (2011)

Publicly available SPH codes (w/incomplete comments on each)

- Gadget-2 / Gadget-3 (http://wwwmpa.mpa-garching.mpg.de/gadget/)
 - Primarily cosmological simulations
 - Volker Springel is the primary/original code developer
 - Large user base
- PhantomSPH (https://phantomsph.bitbucket.io/)
 - From the makers of SPLASH
 - Well documented
 - MHD ("The only time magnetic fields aren't important is when they are zero." ---Joe Monaghan)
- StarCrash (http://ciera.northwestern.edu/StarCrash/)
 - FFTW calculation
 - Old equations of motion (i.e. not derived from a Lagrangian)
- Starsmasher (http://jalombar.github.io/starsmasher/)
 - Similar I/O to StarCrash
 - GPU calculation of gravity
 - Starting to be better documented

Starsmasher

- Equations of motion derived from Lagrangian (Gaburov et al. 2010)
- Parallelized
 - on CPUs (the hydrodynamics and bookkeeping)
 - on GPUs (gravity) ... thanks to Evghenii Gaburov
- Direct summation gravity ensures energy, angular momentum, and momentum conservation
- Options
 - Tabulated equation of state
 - Approximate radiative cooling (important when generating light curves)
 - Three different kernels to choose from

The cluster that we run most simulations on has 6 nodes and 4 GPUs per node; usually one job per node

Lots of undergraduates involved, e.g.

Travis Court '18 •

How to model a (synchronized) binary Step 0: Pick your stars

Decide on realistically modeled stars or polytropes. E.g.,

Primary:

Age = 10.006 Myr

 $M = 15.7 M_{\odot}$

 $R = 292 R_{\odot}$

Secondary:

Pre-MS modelled with *n*=1.5 density and pressure profiles but tabulated EOS

 $M = 1 M_{\odot}$

How to model a (synchronized) binary Step 1: Relax single stars

- Generate SPH models of polytropes or realistically modeled stars.
- Our example primary is given a $\sim 5 M_{\odot}$ core particle (representing He core)

Units:

Particle mass m_i

Smoothing length h_i

Neighbor number N_N

 $a_{\rm Hydro}$ (blue) & gravitational acceleration g(green)

Particle mass m_i

Smoothing length h_i

Neighbor number N_N

 a_{Hydro} (blue) & gravitational acceleration g (green)

Units: $G=M_{\odot}=R_{\odot}=1$

Radius

Radius

Gravitational energy

Kinetic energy (on log scale)

Total energy

Units: $G=M_{\odot}=R_{\odot}=1$

Out to ~30 dynamical times (which took ~30 wallclock minutes with one GPU)

Gravitational energy

Kinetic energy (on log scale)

Total energy

Units: $G=M_{\odot}=R_{\odot}=1$

Out to ~300 dynamical times (which took ~4 wallclock hours)

How to model a (synchronized) binary Step 2: Scan binary equilibrium sequences

- Copies of the isolated stars from the relaxation runs are placed in orbit around each other
- Hold in place while oscillations die out, then slowly bring together.
- Angular velocity Ω of corotating frame continually updated to balance centrifugal & physical forces.

Side notes:

- 0.12 s per iteration
- ~3.5 hours wallclock
- Gravity is the bottleneck, taking 80% of the wallclock time.
- Happily, CPUs are working simultaneously with the GPUs for some of that time.

Gravitational energy

Kinetic energy

Total energy

Total angular momentum

Units: $G = M_{\odot} = R_{\odot} = 1$

How to model a (synchronized) binary Step 3: Perform dynamical runs

Choose various snapshots from the scanning runs as initial conditions, and allow the system to evolve

freely

Side notes:

- ~same cost
 per iteration
 as binary scan
- ~16 hours wallclock
- 1.1 M_{\odot} ejected

How to model a (synchronized) binary Step 3: Perform dynamical runs

Another look at the exciting part...

How to model a (synchronized) binary Step 3: Perform dynamical runs

Now a look at column density in z vs. x

Gravitational energy

Kinetic energy

Total energy

Total angular momentum

Units: $G=M_{\odot}=R_{\odot}=1$

Final c.o.m. speed $< 2 \times 10^{-6}$

How to model a (synchronized) binary Step 4: Complete a convergence study

- As the resolution of the simulation is increased, the effective radius of the parent stars changes.
- Mass transfer rate is sensitive to how the outer layers are modelled.
- Timescale leading up to merger can change (usually lengthen) with increased resolution.

What a bad relaxation can look like...

```
Previous primary:
M_{\rm ZAMS} = 16 M_{\odot}
Age = 10.006 Myr (base of RG branch)
M = 15.7 M_{\odot}
R = 292 R_{\odot}
Now let's try
M_{7\text{AMS}} = 20 M_{\odot}
Age = 7.75 Myr (base of RG branch)
M = 19.4 M_{\odot}
R = 460 R_{\odot}
```


P/ρ^(5/3) (even though EOS is not monatomic ideal gas)

Pressure P

Density ρ

Units: $G=M_{\odot}=R_{\odot}=1$

Gravitational energy

Kinetic energy (on log scale)

Total energy

Units: $G = M_{\odot} = R_{\odot} = 1$

Things I'd like to improve in Starsmasher

- Tabulated EOS used by Starsmasher is from MESA, but it assumes all particles have the same composition.
 - This isn't precisely the same EOS used by the stellar evolution code TWIN. (Could this cause relaxation problems?)
 - Generating all 1D models from MESA will help, but still have the problem that Starsmasher is currently set up to read in an EOS table of fixed composition.
- Non-synchronized binaries with accurate tidal bulges
 - For mass ratios close to zero (or very large), the primary won't be tidally locked to the secondary
 - Presumably mass ejected when secondary rams through envelope
- Godunov-treatment for shocks to replace classical AV