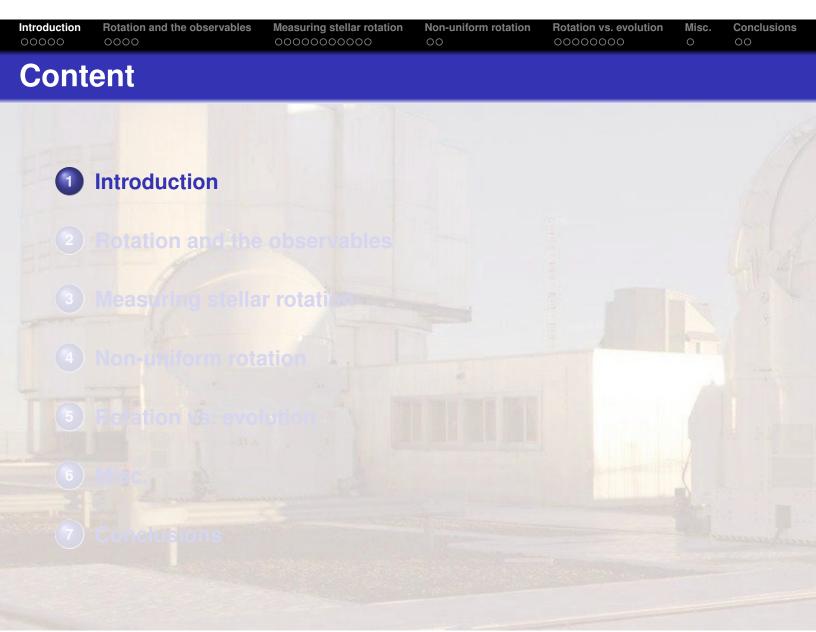
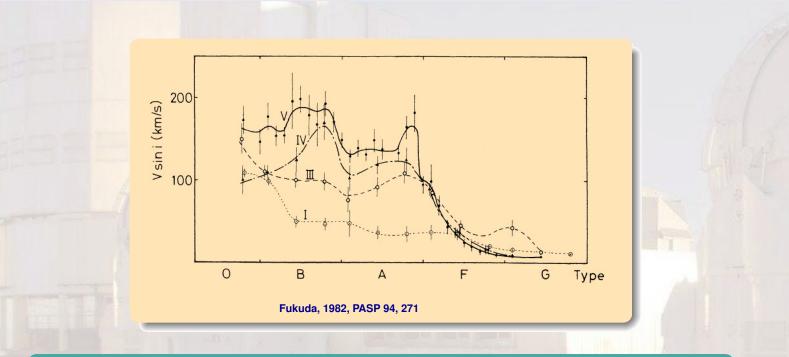

Massive Star Rotation – Observations


Th. Rivinius

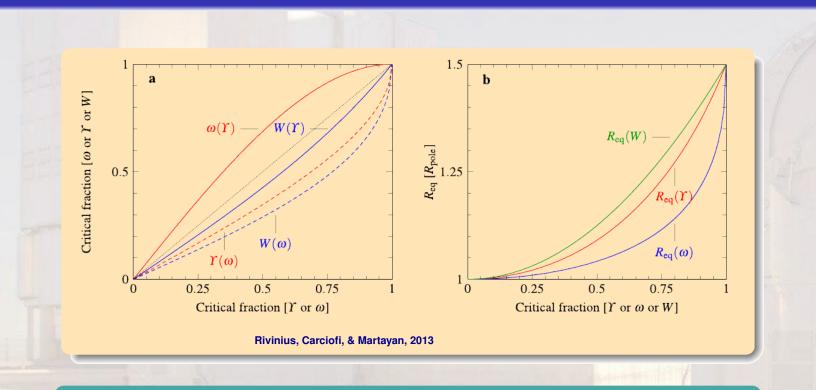
European Southern Observatory, Chile

March 2, 2017



Introduction ●○○○○	Rotation and the observables	Measuring stellar rotation	Non-uniform rotation	Rotation vs. evolution	Misc. O	Conclusions
Data	tion in oorly	tupo otoro				

Rotation in early type stars



Statistics of v sin i

- Radiative envelope stars hardly brake on the MS
 - → Some braking in O stars by strong winds
- The line width, *v* sin *i*, is not straightforwardly rotation
 - → Additional broadening important for O stars in particular

Introduction ○●○○○	Rotation and the observables	Measuring stellar rotation	Non-uniform rotation	Misc. O	Conclusions

Rotation defined

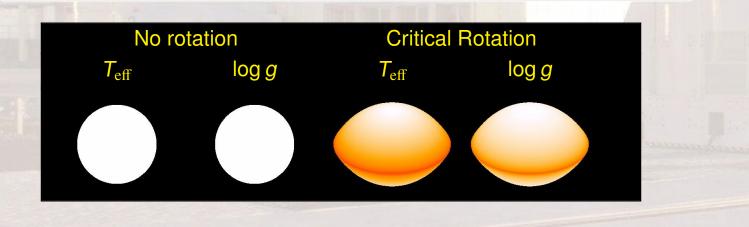
Statistics of v sin i

- In theory, often expressed as angular velocity $\Omega=\Omega_{rot}/\Omega_{crit}$
- Observers prefer linear velocity $\Upsilon = v_{\rm rot}/v_{\rm crit}$
- For problems involving circumstellar dynamics $W = v_{\rm rot}/v_{\rm orb}$

Introduction ○○●○○	Rotation and the observables	Measuring stellar rotation	Non-uniform rotation	Rotation vs. evolution	O O	Conclusions
von Z	Zeipel theore	em				
			m.			151
Α	rapidly rotating st	ar				
	• Can not be in sta	atic equilibrium				
	• Can not have a	uniform surface	temperature.			1
12224		ridional flow				1.44

- Must have a meridional flow
 - → that re-juvenates the core
 - → and enriches the surface
- Will be deformed from spherical shape
- With the pole hotter than the equator

Gravity darkening


For geometrically thin and radiative atmospheres

$$T(artheta)=T_{
m p}rac{g(artheta)}{g_{
m p}}^{eta}; \hspace{1em}eta=0.25$$

Introduction ○○●○○	Rotation and the observables	Measuring stellar rotation	Non-uniform rotation	Rotation vs. evolution	Misc. O	Conclusions
von Z	Zeipel theore	em				

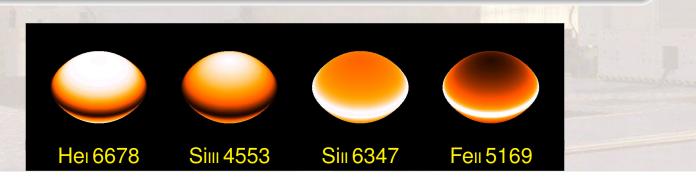
A rapidly rotating star

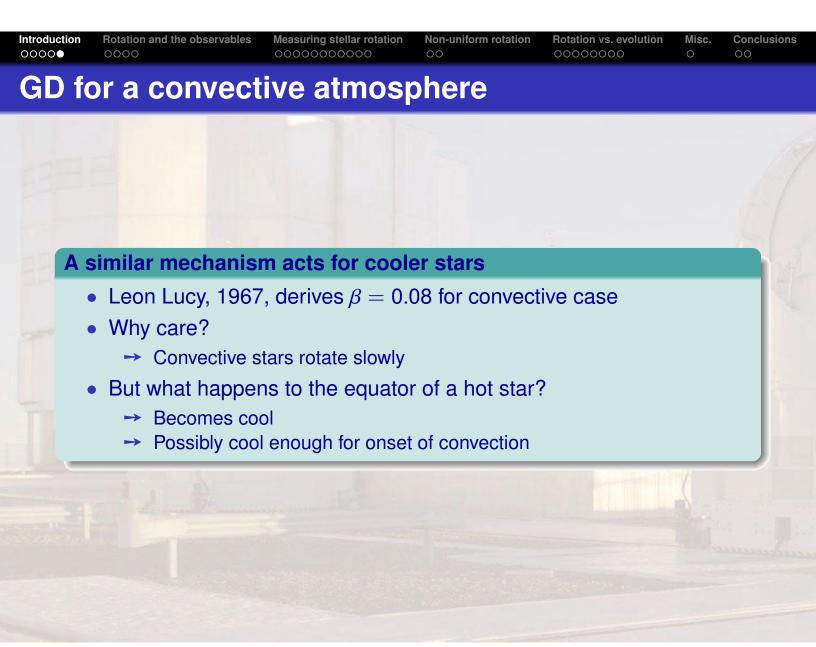
- Can not be in static equilibrium
- Can not have a uniform surface temperature.
- Must have a meridional flow
 - → that re-juvenates the core
 - → and enriches the surface
- Will be deformed from spherical shape
- With the pole hotter than the equator

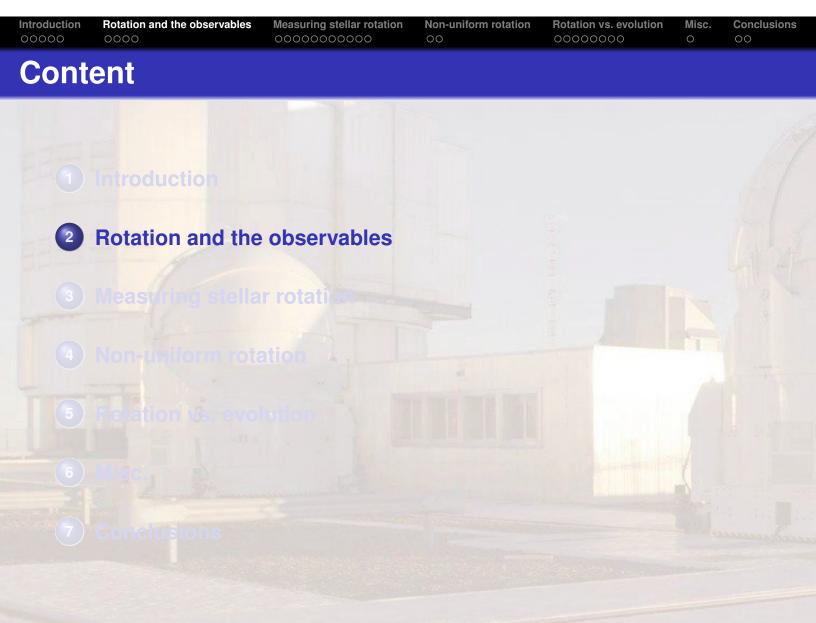
00000	0000	00000000000	00	00000000	0	00
GD f	or continuu	m vs. lines				
	2μm	668 nm	517 nm	455 nm		
S	stematics due to	used method				
		s out bluewards ds will derive a low	er temperature	-		
	 For spectroscop 	y, aepenas on lii	nes used			

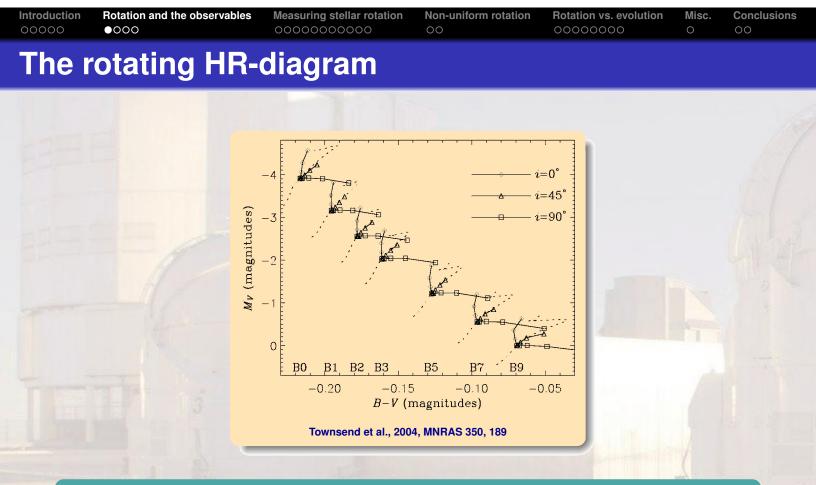
Non-uniform rotation

Rotation vs. evolution


Measuring stellar rotation


Introduction


Rotation and the observables


Conclusions

Misc.

Treating stellar flux as isotrope

- Causes apparent position in HRD to move
 - → Path direction depends on inclination
 - → Path distance depends on critical fraction

00000		00000000000	00	0000000	0	00	
wnat	t are the ste	llar param	eters (tirs	st order) :			
				· · · · · · · · · · · · · · · · · · ·			l

Measuring stellar rotation

Non-uniform rotation

Rotation vs. evolution

Misc.

Conclusions

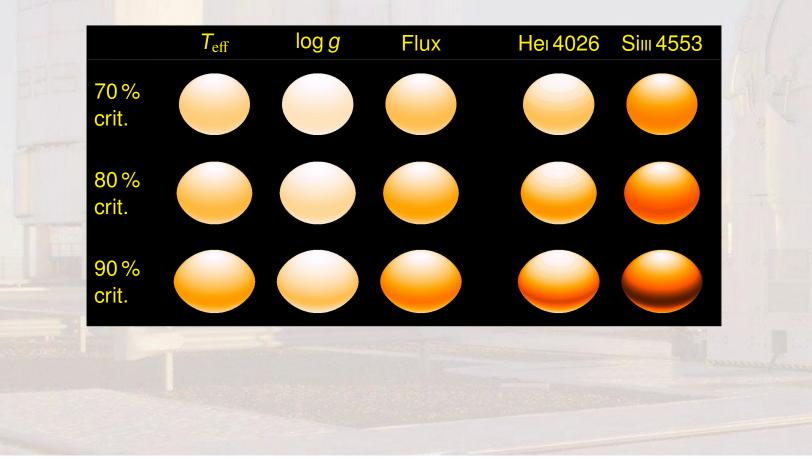
Traditional fundamental parameters

- Effective temperature $T_{\rm eff}$
- Surface gravity log g

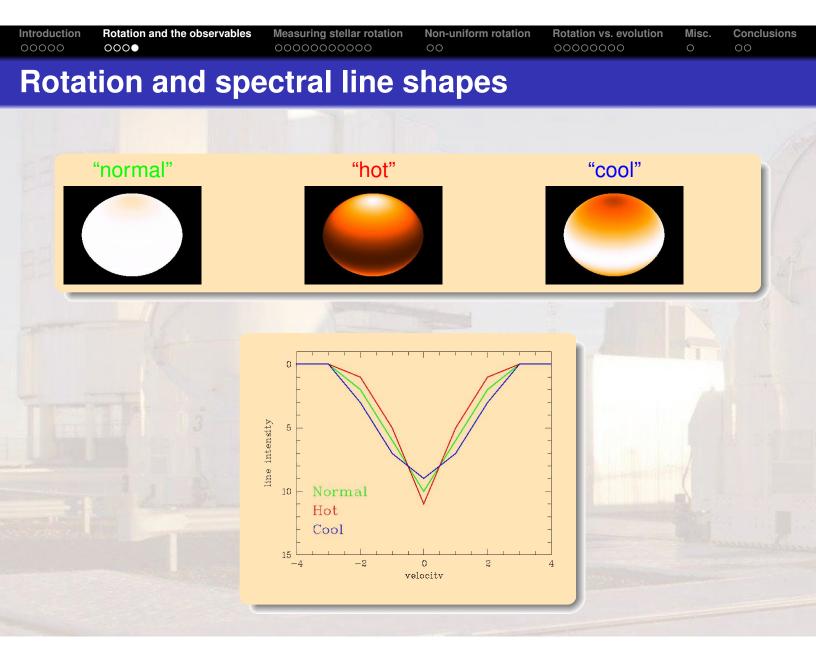
Rotation and the observables

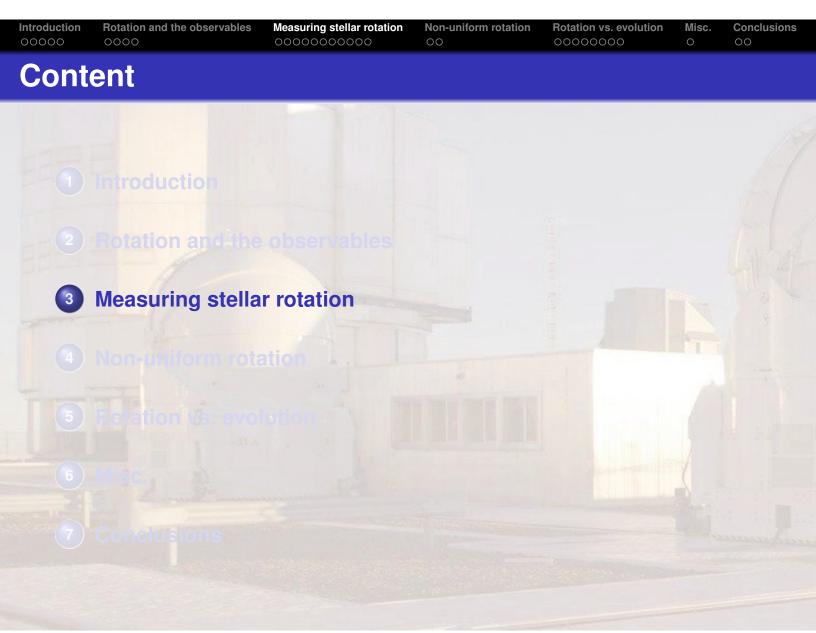
Introduction

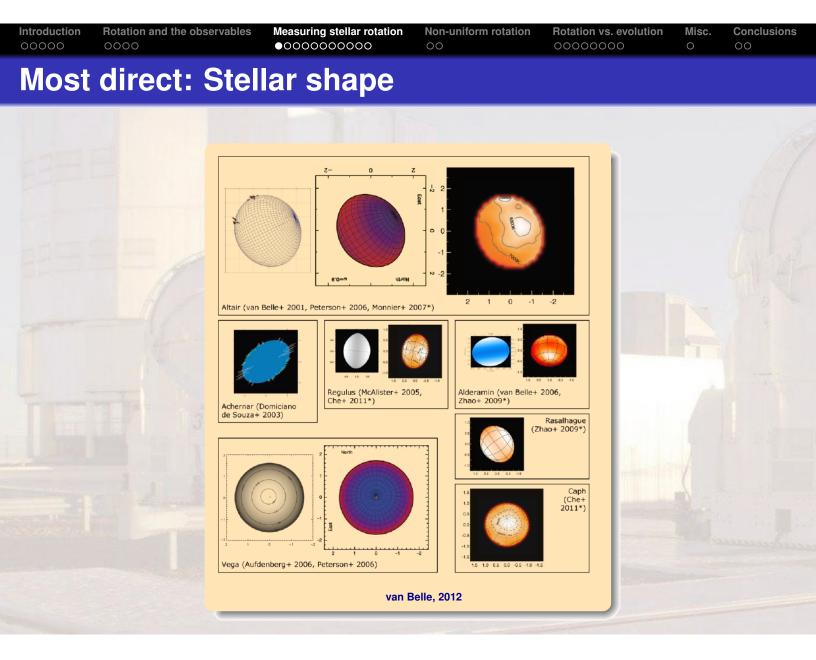
Enough to place star in HRD, gives evolutionary path


Fundamental parameters for rotating stars

- Effective temperature *T*_{eff,pole} at pole
- Surface gravity log g_{pole} at pole
- Critical fraction Ω
- Radius *R*_{pole} at pole


In addition, to translate observations to those quantitites:


• Inclination angle i


Introduction	Rotation and the observables ○○●○	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		Rotation vs. evolution	
Rota	tion and spe	ctral line f	ormation		

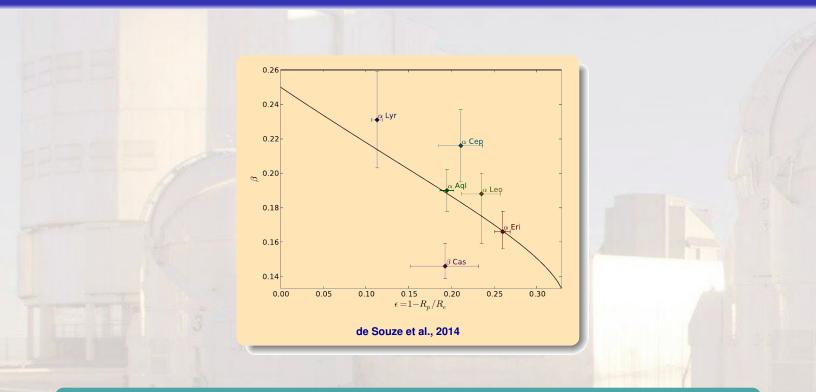
Introductio	n	Rotatio 000●		he obse	ervables	Measu		ellar rot	ation	Non- (uniform rota	tion		on vs. e	volutior	n Mi O	isc.	Conclusio	ons
Rot	at	ion	a	nd	spe	ectr	al	lin	e s	ha	pes								
	"	norr	nal"					"hc	\ t "					"CO	<u>م</u> ا"				
100																			
28																			
-																			
			2		2				3						1			h	
	_	2	2	2	-			2	2	2			_	2	2 3	2			
	2	2	2	2	2		1	1 2		1 2	1		3	3 2	3 2	3 2	3		
		2	2	2				2	2 3	2				2	2	2			
										10 182							1934	an and a second	

Introduction	Rotation and the observables	Measuring stellar rotation ○●○○○○○○○○○	Non-uniform rotation	Rotation vs. evolution	Misc. O	Conclusions	
_			_				

Interferometric image reconstruction

Sample not that great for massive star purpose

- Only very bright and large stars
- B4 III star Achernar the most massive so far
- Sepctral types:
 - \rightarrow 2 × B (B4 & B8), 4 × A, 1 × F


Regularization, even if called "model-free"

- Image reconstruction does require assumptions
- Typical cases:
 - → Shape, size, PA etc. might be forced to acceptable values
 - → No flux allowed from outside that shape

Assuming Roche model

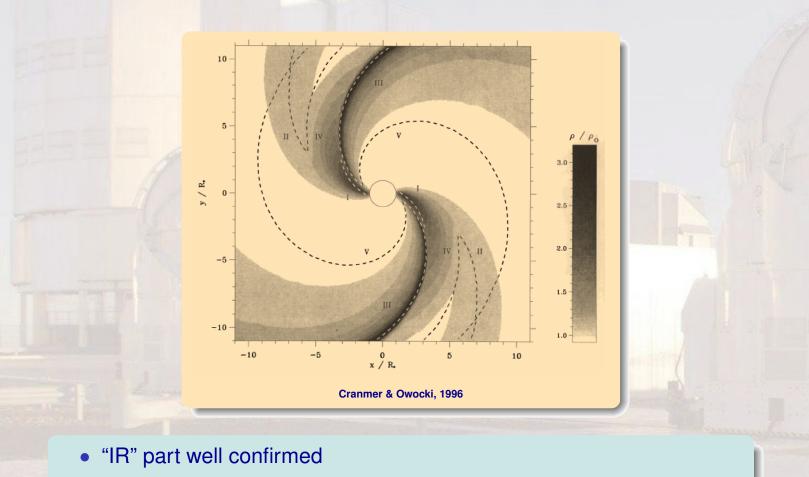
- Direct measurements of
 - → Critical fraction Ω
 - \rightarrow Gravity darkening parameter β

Introduction	Rotation and the observables	Measuring stellar rotation ○○●○○○○○○○○	Non-uniform rotation	Rotation vs. evolution	Misc. O	Conclusions
Meas	ured GD pa	rameter β				

Becomes lower with faster rotation

- Are these stars still fully radiative?
 - → Curve by Espinoza-Lara & Rieutord, 2011
- Or does Lucy's convective GD already play a role?

Introduction	Rotation and the observables	Measuring stellar rotation ○○○●○○○○○○○	Non-uniform rotation	Rotation vs. evolution	Misc. O	Conclusions
Rotat	tional period	ds				


Clock is clear, but what is ticking?

- Magnetic fields, spots, magnetosphere etc.
 - → Mostly late B and A stars
 - → Very few really rapid rotators (Two above 50% critical)
 - → All magnetic O stars rotate sloooowly (very efficient braking)
- Winds
 - → Corotating Inetraction Regions (CIR)
 - → Star is having alternating sectors w/ slow and fast wind
 - Winds running into each other create garden sprinkler type wind-density

Other parameters needed to get to Ω

- Equatorial radius
- Stellar mass

Introduction	Rotation and the observables	Measuring stellar rotation 00000000000	Rotation vs. evolution	Misc. O	Conclusions
The Q	CIR model				

• "C" part more tricky: lack of long-term coherence

Introduction	Rotation and the observables	Measuring stellar rotation 00000●00000	Rotation vs. evolution	Conclusions
		•		

In terms of massive stars, the best we have

HD 64760, B0 lb

• Seemed to be a clear case with P=4.12 d, but detailed modeling...

→ E.g.: "... 2 unequally bright equatorial spots that rotate 5 times slower..." (Lobel, 2013)

Probably many stars like this

- In the B0-range with rapid rotation, luminosity classification blurry
 → The spectroscopic twin of HD 64760 (B0 lb) κ Aql, is listed as B0.5 IIIn
- There might be a dozen or more such stars with HD-numbers

		n mode splitting or rapid rotation	
 Easiest to → No da → Seque Example I → Looks 	find in moderate	e rotators g splitting with amplitude changes easily identified even by eye $\ell = 2$ quintuplet	
	and he		1
0, 1	501169_perPERIG. (61	кіс5450881	and the structure of the

Non-uniform rotation

15

freq (c/d)

Rotation vs. evolution

Conclusions

User: triv

Misc.

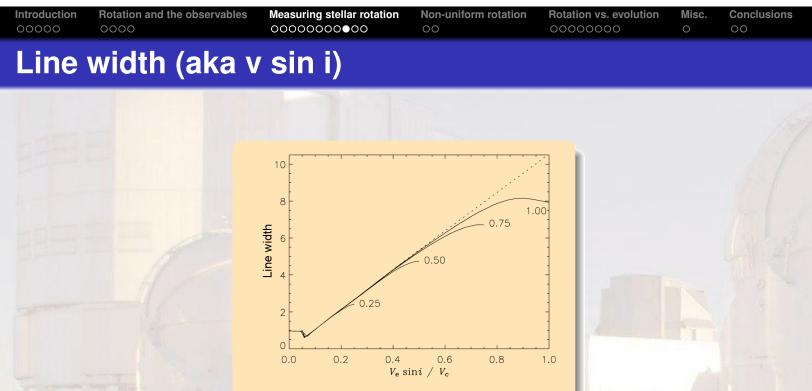
Measuring stellar rotation

Introduction

Rotation and the observables

0.00001

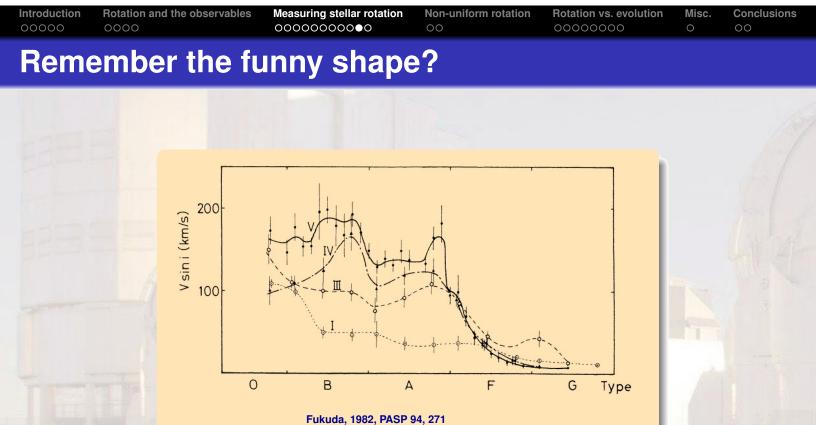
0.000001 l


5

Introduction	Rotation and the observables	Measuring stellar rotation ○○○○○○○●○○○	Non-uniform rotation	Rotation vs. evolution	Misc. O	Conclusions
But e	even in this o	case				

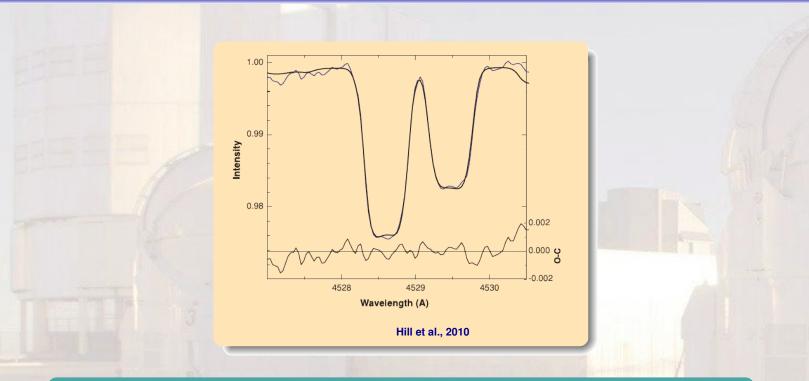
Kurtz et al., 2015

- Accept only two frequencies as genuine
 - → Construct all the rest by addition/subtraction with integer factors
- Which one is harder to believe:
 - → Combination frequencies mimicking rotational splitting?
 - → Rotational splitting mimicking combination frequencies?

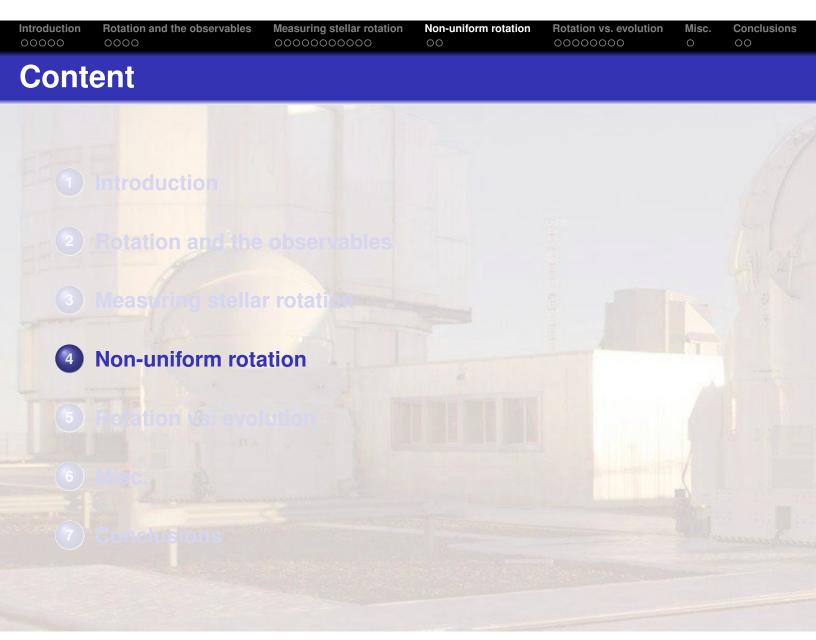

Labels	Frequency (d ⁻¹)	Amplitude (mmag) ±0.001	Phase (rad)
$-v_1 + v_2$	0.408 7346	0.110	0.9693 ± 0.0107
$-2\nu_1 + 2\nu_2$	0.817 4692	0.007	1.4095 ± 0.1584
v_1	3.269 9899	0.768	1.4283 ± 0.0013
ν_2	3.6787245	1.117	2.5033 ± 0.001
$-\nu_1 + 2\nu_2$	4.087 4591	0.779	-0.8178 ± 0.0013
$2\nu_1$	6.5399798	0.013	0.0892 ± 0.092
$v_1 + v_2$	6.9487144	0.103	-0.4452 ± 0.0113
$2\nu_2$	7.357 4490	0.886	-2.6611 ± 0.0013

Townsend, Owocki, & Howarth, 2004

Gravity darkening strikes


- Measure $v \sin i \rightarrow$ statistics \rightarrow case settled? Not quite!
- Line width independent of rotation above $\approx 0.8w$ ($w \equiv v_{\rm rot}/v_{\rm crit}$)
- Not to mention non-rotational broadening

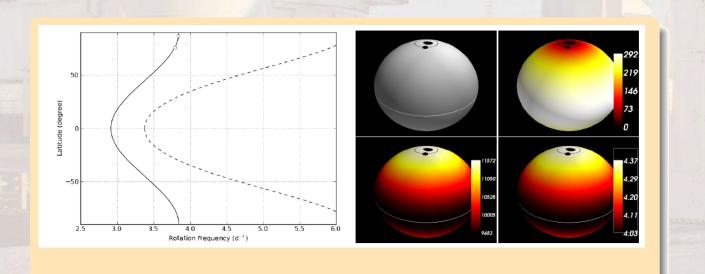
Statistics of v sin i

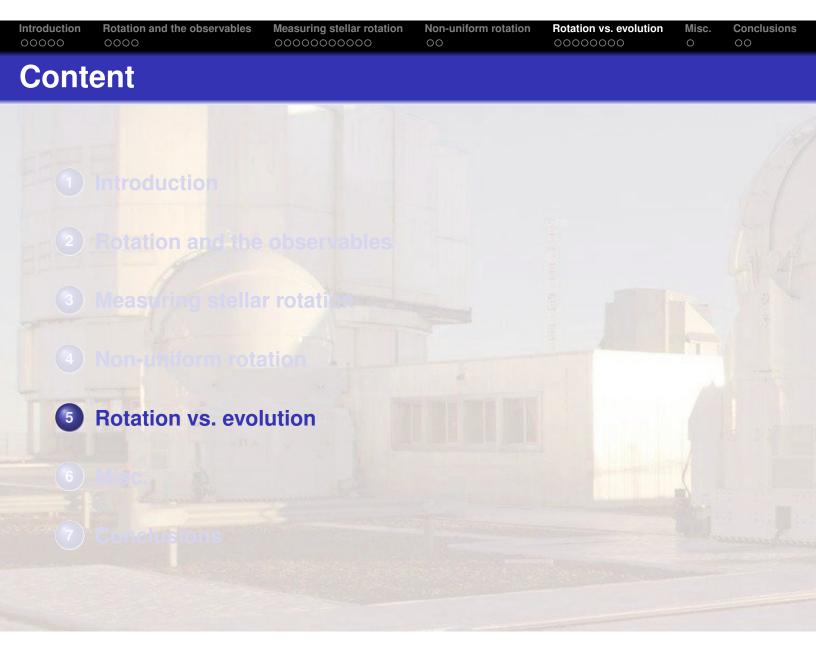

- High v sin i in supergiant O star not rotation
- Some other broadening

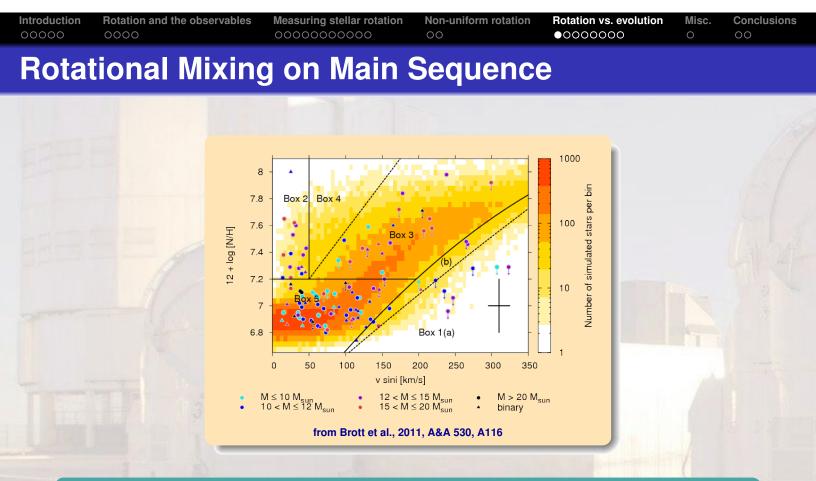
Introduction	Rotation and the observables	Measuring stellar rotation 0000000000●	Non-uniform rotation	Rotation vs. evolution	Misc. O	Conclusions		
Funn	Funny line shapes							

Pole-on rapid rotator Vega

- Shows flat-bottomed profiles
- Only equatorially formed, high $\boldsymbol{\Omega}$
- Incredibly high S/N needed

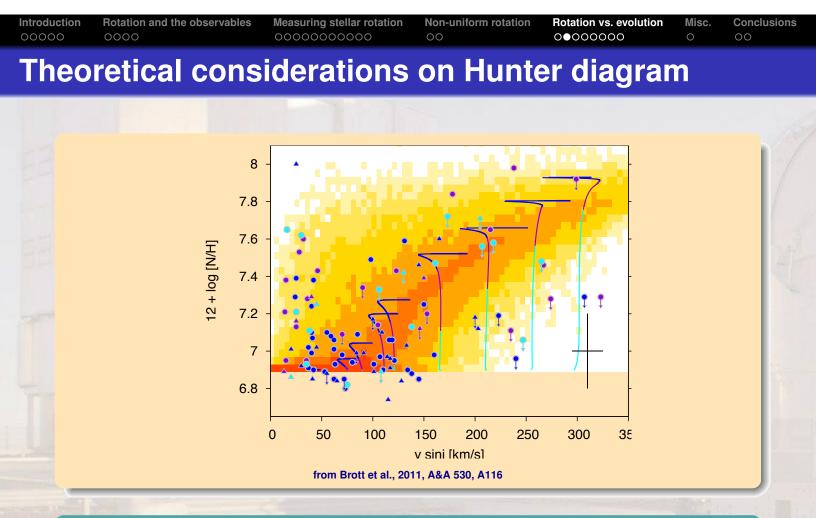

Introduc 00000		Measuring stellar rotation	Non-uniform rotation ●○	Rotation vs. evolution	Misc. O	Conclusions
Ro	tational period	ds with $\Delta\Omega$	(heta)?			
Ell.	BE					1
	Subset of stars with	n rotational mod	lulation			
Be	Need spots in ra	diative atmosph	ere			25-
		g from strong globa ert's talk yesterday	al magnetic filed	ls won't do		
	Do we have other	ers? Some claim	SO:			
I	→ Ramiaramar→ Balona & Ab	2015 for Vega edigamba, 2016, f antsoa et al. 2014 edigamba, 2016, f cults for differential ro	for ξ Per or several Keple			


Introduction	Rotation and the observables	Measuring stellar rotation	Rotation vs. evolution	 Conclusions
Deler				


Polar spots with a slower equator??

Degroote et al., 2011

- B8/B9 star HD 174648
- Two spots, both at polar latitudes
- Strong differential rotation
- Polar rotation faster than equator



Agreement Obs. vs. Theory only for box 5

- Boxes 3 and 4 underpopulated (4 not really an issue)
- Boxes 1 and 2 overpopulated
 - → Binarity cannot solve Boxes 1 and 2 simultaneously

Theoretical [N/H] enhancement pattern (for LMC)

- MS-enrichement paths are plotted
- Stellar age indicated

Introduction	Rotation and the observables	5	Non-uniform rotation	Rotation vs. evolution	Misc. O	Conclusions	
— • •							

Rotational mixing coefficients

There is an observational calibration!

- Georges mentioned it yesterday
- Until very recently, reliable results only up to moderate v sin i
- High v sin i mixing region extrapolated
- Look for most rapidly rotating massive stars: Be stars
 - Problem: Come with emission, line & continuum, which may affect results
 - \rightarrow Benefit: even if low v sin i, rapid rotation at 80% critical is certain

Introduction	Rotation and the observables	Measuring stellar rotation	Non-uniform rotation	Rotation vs. evolution	Misc. O	Conclusions
Sinal	le star result	ts: Unmixe	d Be star	rs		

Lennon et al. 2005, A&A, 438, 265

- Two Be stars in NGC 330 lack any sign for rotational mixing
 - → Narrow lined Be stars with strong emission, systematic problem?

Peters, 2011, IAUS 272, 101

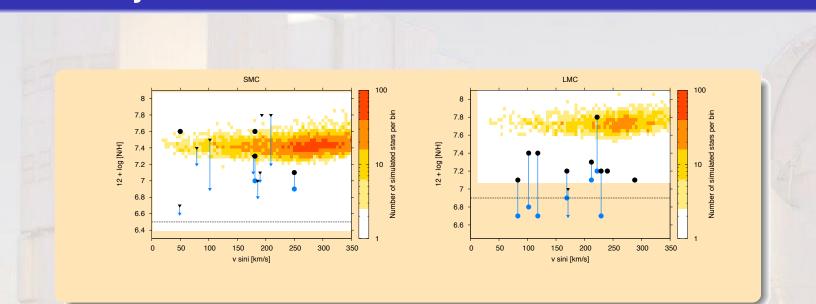
- IUE spectra of eight low v sin i Be stars
- Little to no rotational mixing found
 - → IUE data quality does not allow strong constraints

Hardorp et al, 1986, ESA-SP 263, "8 years of IUE", 377

- Carbon abundances of Pleiades Be vs. B stars
- All consistent with local contemporary B star values
- No depletion, i.e. no mixing
 - → Again, IUE data quality does not allow strong constraints

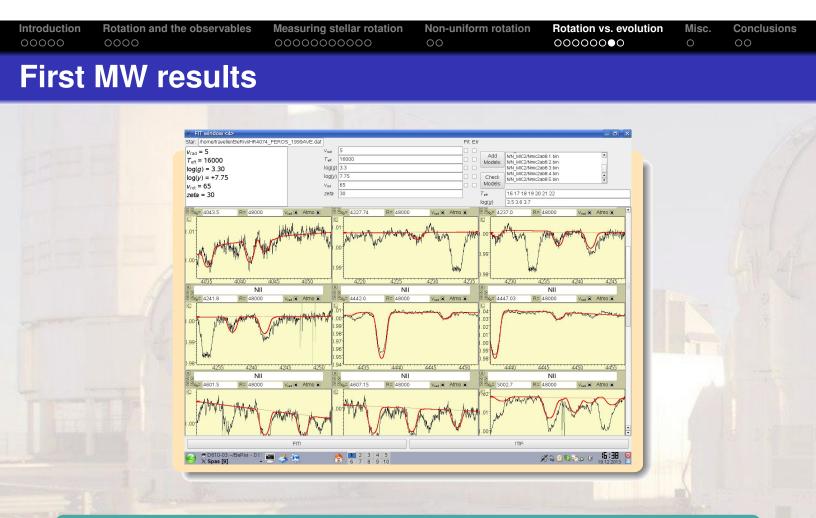
Introduction	Rotation and the observables	Measuring stellar rotation	Non-uniform rotation	Rotation vs. evolution ○○○○●○○○	Misc. O	Conclusions	
<u> </u>			_				

Single star results: Mixed Be stars


Levenhagen & Künzel, 2011, New Ast. 16, 307

- HD 171 054 is enriched, but even more than possible by evolution
 - → Some enriched elements shouldn't even form in a star of that mass
 - → Rather some binary evolution product

Villamariz & Herrero, 2005, A&A 442, 263


- ζ Oph is enriched
- Enrichment also higher than expected for evolutionary state
 - \rightarrow ζ Oph seems to be a runaway star
 - → As well binary evolution product?

Introduction	Rotation and the observables	Measuring stellar rotation	Non-uniform rotation	Rotation vs. evolution	Misc. O	Conclusions	
	rvev of N in		Ro etare				

Dunstall et al., 2011, A&A 536, A65

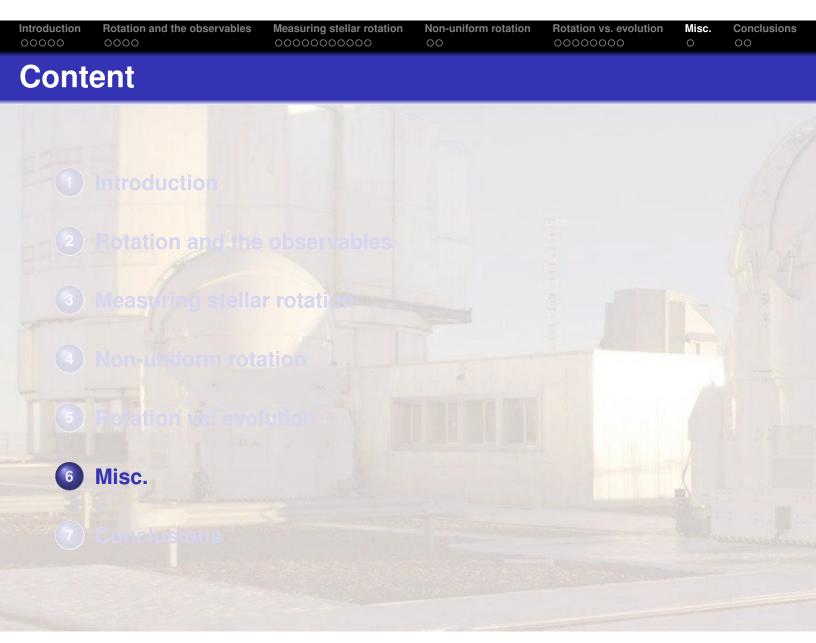
- Be stars are from FLAMES survey
- 30 Be stars in LMC and SMC, incl. correction for emission (blue points)
- Abundances inconsistent with rotational enrichment at given v sin i

M.F. Nieva, unpublished

- A number of Be stars analyzed by Fernanda
- All have solar values

Introduction	Rotation and the observables	Measuring stellar rotation	Non-uniform rotation	Rotation vs. evolution	Misc. O	Conclusions
Whe	re to do?					

Observer's task

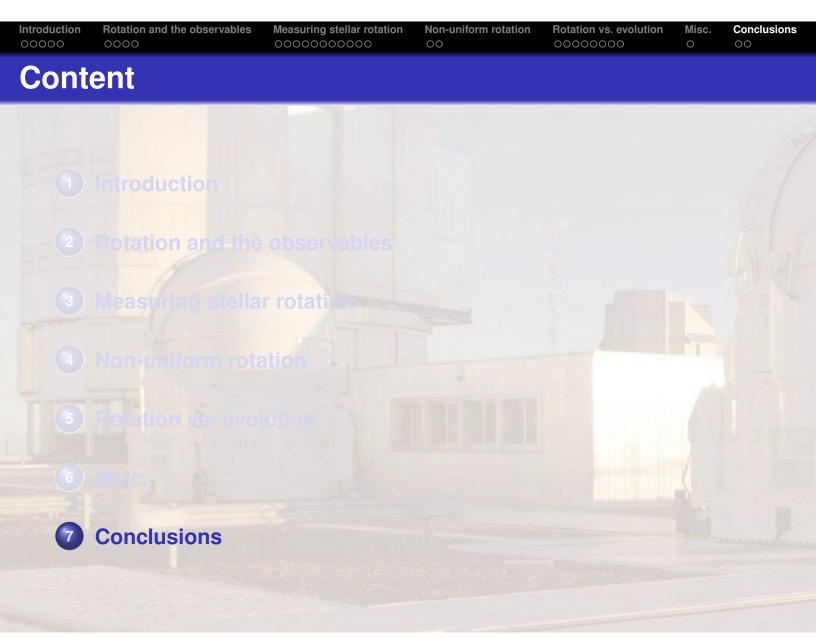

- Bring that result home: Be stars are not mixed
- Requires best current model vs. best current data
- If result (no mixing) turns out to be robust:

Hypothesis 1: Be stars rotate slowly most time on the MS

- Must be as low as 35 to 45% critical to be in line w/ mixing model
- Does rapid rotation occur quickly?
- Critical rotation phase short? All B stars become Be stars?

Hypothesis 2: Inhibition of mixing at highest v sin i

- Somewhere above model calibration v sin i, things go wrong
- A shell/layer inside the star which blocks mixing?
 - → Core dynamo inhibits overshooting?
 - → Or enforces rigid rotation in chemically enhanced region?


							_
ntroduction	Rotation and the observables	Measuring stellar rotation	Non-uniform rotation	Rotation vs. evolution	Misc.	Conclusions	
00000	0000	0000000000	00	0000000	•	00	

Stuff that didn't fit anywhere else

In

Turn-	-off broadening
	In many clusters, MS turn-off is broader than single age paradigm demands
	 Broadening could be due to pulsation Broadening could be due to rotation
• (Currently open discussion (my money is on pulsation, though)
Stella	ar winds
• (Original wind-compressed disk is not happening
•	Instead winds are focussed above pole, i.e., prolate
Spin	-up in binary evolution
• `	Yep, surely happens in many stars

- Exact consequences depend on when and how
- Pften invoked when other explanations fail (see above on mixing)

Introduction	Rotation and the observables	Measuring stellar rotation	Non-uniform rotation	Rotation vs. evolution	Misc. O	Conclusions ●○
Detetion						

Rotation

Measuring rotation

- Measuring rotation isn't easy, but after all we understand the problem...
- ...at least good enough to make do with it.

Are the most rapidly rotating stars different?

- All studies point to unexpected result wrt. to CNO abundances
- Inhibition of rotational mixing for most rapid rotators?
- Could have wide implications outside Be stars
 - Detailed and careful studies needed to get well-understood cases
 - E.g. get high S/N, high-resolution spectrum of inactive Be stars
 - → Make local (MW) equivalent to FLAMES survey analysis

Introduction	Rotation and the observables	3	Non-uniform rotation	Rotation vs. evolution	Misc. O	Conclusions ○●		
Stellar pulsation and seismology								

Asteroseismilogical modeling

- Kepler, CoRoT and others provided fantastic data
- Asteroseismology is extremely successful
- Is there a tendency to apply it beyond its validity region?
 - → Sometimes, I can't help the impression of data being over-interpreted