Local Grand Unification

Michael Ratz

Santa Barbara, String Pheno, August 29, 2006

Based on:

W. Buchmüller, K. Hamaguchi, O. Lebedev & M.R. :

- Nucl. Phys. B 712, 139 &
- Phys. Rev. Lett. 96, 121602 &
- hep-ph/0512149 &
- hep-th/0606187

O. Lebedev, H. P. Nilles, S. Raby, S. Ramos-Sánchez, M. R., P. Vaudrevange & A. Wingerter :

in preparation

2 Local grand unification (using heterotic $\mathbb{Z}_3 \times \mathbb{Z}_2$ orbifold)

Brief discussion of the MSSM from the heterotic string

Beautiful and ugly aspects of GUTs The idea of 'local grand unification'

Beautiful and ugly aspects of GUTs

 \odot MSSM gauge coupling unification @ $M_{
m GUT} \sim 10^{16}\,{
m GeV}$

Beautiful and ugly aspects of GUTs The idea of 'local grand unification'

Beautiful and ugly aspects of GUTs

- $\odot\,$ MSSM gauge coupling unification @ $M_{
 m GUT} \sim 10^{16}\,{
 m GeV}$
- \odot One generation of observed matter fits into f 16 of ${
 m SO}(10)$

 $\begin{array}{rcl} \mathrm{SO}(10) & \rightarrow & \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{\mathrm{Y}} = G_{\mathrm{SM}} \\ \mathbf{16} & \rightarrow & (\mathbf{3}, \mathbf{2})_{1/6} \oplus (\overline{\mathbf{3}}, \mathbf{1})_{-2/3} \oplus (\overline{\mathbf{3}}, \mathbf{1})_{1/3} \\ & \oplus (\mathbf{1}, \mathbf{1})_1 \oplus (\mathbf{1}, \mathbf{2})_{-1/2} \oplus (\mathbf{1}, \mathbf{1})_0 \end{array}$

Beautiful and ugly aspects of GUTs The idea of 'local grand unification'

Beautiful and ugly aspects of GUTs

- $\odot\,$ MSSM gauge coupling unification @ $M_{
 m GUT} \sim 10^{16}\,{
 m GeV}$
- \odot One generation of observed matter fits into 16 of $\mathrm{SO}(10)$
- ⊖ However: Higgs only as doublet(s)

Beautiful and ugly aspects of GUTs The idea of 'local grand unification'

Beautiful and ugly aspects of GUTs

- \odot MSSM gauge coupling unification @ $M_{
 m GUT} \sim 10^{16}\,{
 m GeV}$
- \odot One generation of observed matter fits into 16 of $\mathrm{SO}(10)$
- ⊖ However: Higgs only as doublet(s)

convincing answer:

`localized gauge groups'

Summary & outlook

Beautiful and ugly aspects of GUTs The idea of 'local grand unification'

Local grand unification (using small extra dimensions)

Beautiful and ugly aspects of GUTs The idea of 'local grand unification'

Higher-dimensional GUTs vs. heterotic orbifolds

top-down \rightarrow Orbifold compactifications of the heterotic string

Dixon, Harvey, Vafa, Witten (1985-86) libáñez, Nilles, Quevedo (1987) libáñez, Kim, Nilles, Quevedo (1987) Font, Ibáñez, Nilles, Quevedo (1988) Font, Ibáñez, Quevedo, Sierar (1990) Katsuki, Kawamura, Kobayashi, Ohtsubo, Ono, Tanioka (1990)

- has UV completion
- automatically consistent
- explain representations

$\begin{array}{l} \text{bottom-up} \\ \rightarrow \text{Orbifold GUTs} \end{array}$

- Kawamura (1999-2001) Altarelli, Feruglio (2001) Hall, Nomura (2001) Hebecker, March-Russell (2001) Asaka, Buchmüller, Covi (2001) Hall, Nomura, Okui, Smith (2001)
- simple geometrical interpretation
- shares many features with 4D GUTs

combine both approaches

implement field-theoretic GUTs in non-prime orbifold compactifications of the heterotic string Kobayashi, Raby, Zhang (2004) Förste, Nilles, Vaudrevange, Wingerter (2004) Nilles (2004) Buchmüller, Hamaguchi, Lebedev, M.R. (2004-2006) Faraggi, Förste, Timigrazu (2006) Kim, Kyae (2006) Lebedev, Nilles, Raby, Ramos-Sánchez, M.R., Vaudrevange, Wingerter (to appear)

Beautiful and ugly aspects of GUTs The idea of 'local grand unification'

Higher-dimensional GUTs vs. heterotic orbifolds

combine both approaches

implement field-theoretic GUTs in non-prime orbifold compactifications of the heterotic string Kobayashi, Raby, Zhang (2004) Förste, Nilles, Vaudrevange, Wingerter (2004) Nilles (2004) Buchmüller, Hamaguchi, Lebedev, M.R. (2004-2006) Faraggi, Förtsr, Timilgradu (2006) Kim, Kyae (2006) Lebedev, Nilles, Raby, Ramos-Sánchez, M.R., Vaudrevange, Wingerter (to appear)

What's new?

- systematic analysis of non-prime orbifolds with Wilson lines
- geometric picture with various orbifold GUT limits
- anisotropic compactification may mitigate the discrepancy between GUT and string scales

Witten (1996)

Hebecker, Trapletti (2005)

localized 16-plets as the origin of complete generations

Local Grand Unification $\mathbb{Z}_6 - \mathbf{II} = \mathbb{Z}_3 \times \mathbb{Z}_2$ orbifolds

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6-II) and 'orbifold construction kit' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

Compactification on $\mathbb{T}^6/\mathbb{Z}_6$ orbifold $_{\mathbb{Z}_6-\mathbb{D}}$

 \mathbb{T}^6 torus is defined by the root lattice

Kobayashi, Raby & Zhang (2004)

 $\Lambda_{G_2 \times SU(3) \times SO(4)}$:= root lattice of Lie algebra of $G_2 \times SU(3) \times SO(4)$

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6-II) and 'orbifold construction kit' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

 \mathbb{T}^6 torus is defined by the root lattice

Kobayashi, Raby & Zhang (2004)

 $\Lambda_{G_2 \times SU(3) \times SO(4)}$:= root lattice of Lie algebra of $G_2 \times SU(3) \times SO(4)$

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6 – II) and 'orbifold construction kil' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

Compactification on $\mathbb{T}^6/\mathbb{Z}_6$ orbifold $_{^{(\mathbb{Z}_6-1)}}$

 \mathbb{T}^6 torus is defined by the root lattice

Kobayashi, Raby & Zhang (2004)

 $\Lambda_{G_2 \times SU(3) \times SO(4)} :=$ root lattice of Lie algebra of $G_2 \times SU(3) \times SO(4)$

and has \mathbb{Z}_k (k = 2, 3, 6) fixed points:

$$z^i_{\mathbb{Z}_k\mathrm{f.p.}} - e^{2\pi\mathrm{i}rac{6}{k} v_6^i} z^i_{\mathbb{Z}_k\mathrm{f.p.}} \in \Lambda_{\mathrm{G}_2 imes\mathrm{SU}(3) imes\mathrm{SO}(4)}$$

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6-II) and 'orbifold construction kit' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

 \mathbb{T}^6 torus is defined by the root lattice

Kobayashi, Raby & Zhang (2004)

 $\Lambda_{G_2 \times SU(3) \times SO(4)} :=$ root lattice of Lie algebra of $G_2 \times SU(3) \times SO(4)$

twist action is embedded into the gauge degrees of freedom

left-movers
$$X^I o X^I + \pi \, V_6^I$$
 (where ${}^{_{6}}{}_{_{6}} \in {}^{_{\Lambda_{E_8} imes E_8}}$

torus translations are associated to Wilson lines, e.g.

$$oldsymbol{z}_3
ightarrow oldsymbol{z}_3
ightarrow oldsymbol{z}_3
ightarrow oldsymbol{z}_3
ightarrow oldsymbol{z}_3
ightarrow oldsymbol{Z}_1
ightarrow X^I
ightarrow X^I + \pi \, W_2 \quad ext{(where $2W_2 \in \Lambda_{ ext{E}_8 imes ext{E}_8})}$$

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6-II) and 'orbifold construction kit' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

Light states

Light states of effective field theory ($k \equiv 0$ for untwisted sector)

<mark>ا ج</mark>	٩	
•	-0-	->

neterotic string	field theory	
untwisted sector = trings closed on the orus	extra com- ponents of gauge fields	
T_k twisted sector = strings which are only closed on the orbifold	'brane fields' (hard to understand in field-theoretical framework)	

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6-II) and 'orbifold construction kit' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

Local gauge symmetry (breaking)

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6 – II) and 'orbifold construction kil' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

Local gauge symmetry (breaking)

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6 – II) and 'orbifold construction kil' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

Local gauge symmetry (breaking)

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6-II) and 'orbifold construction kit' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

Local gauge symmetry (breaking)

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6 – II) and 'orbifold construction kil' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

Local gauge symmetry (breaking)

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6-II) and 'orbifold construction kit' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

Local gauge symmetry (breaking)

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6 – II) and 'orbifold construction kil' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

Local gauge symmetry (breaking)

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6-II) and 'orbifold construction kil' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

Local gauge symmetry (breaking)

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6 – II) and 'orbifold construction kil' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

Local gauge symmetry (breaking)

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6 – II) and 'orbifold construction kil' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

The `orbifold construction kit'

basic structure: one `corner' with shift V

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6 – II) and 'orbifold construction kil' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

The `orbifold construction kit'

simplest possibility: consider identical corners

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6 – II) and 'orbifold construction kil' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

The `orbifold construction kit'

the combination corresponds to an

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6 – II) and 'orbifold construction kil' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

The `orbifold construction kit'

orbifold without Wilson lines

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6-II) and 'orbifold construction kit' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

The `orbifold construction kit'

one can combine different 'corners'

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6-II) and 'orbifold construction kit' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

The `orbifold construction kit'

this leads to an orbifold with Wilson lines

where the Wilson lines correspond to the differences of local shifts and

 $G_{\text{low}-\text{energy}} = G \cap \overline{G'} \cap \overline{G''} \cap \overline{G'''}$

 π^6/\mathbb{Z}_6 orbifold (\mathbb{Z}_6 – II) and 'orbifold construction kil' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

The `orbifold construction kit'

but there are restrictions from modular invariance i.e., one may combine the `corners' not arbitrarily

 $\mathbb{T}^6/\mathbb{Z}_6$ orbifold ($\mathbb{Z}_6-\Pi)$ and 'orbifold construction kil' The role of localized 16-plets of SO(10) 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

The role of localized 16-plets of SO(10)

Buchmüller, Hamaguchi, Lebedev, M.R. (2004)

- basic observation: the states of the 1st twisted sector appear as complete multiplets of the local gauge group
- main idea: use localized 16-plets of SO(10) to explain generations
- $\ensuremath{\mathbb{Z}_3} \times \ensuremath{\mathbb{Z}_2}$: there are two shifts which `produce' local $\mathrm{SO}(10)$ and 16-plet in 1st twisted sector

$$\begin{array}{rcl} V_6 & = & \displaystyle \frac{1}{6} \left(3,3,2,0,0,0,0,0 \right) \left(2,0,0,0,0,0,0,0 \right) \\ V_6' & = & \displaystyle \frac{1}{6} \left(2,2,2,0,0,0,0,0 \right) \left(1,1,0,0,0,0,0,0 \right) \end{array}$$

cf. Katsuki, Kawamura, Kobayashi, Ohtsubo, Ono, Tanioka (1990)

 $\mathbb{T}^6/\mathbb{Z}_6$ orbifold $(\mathbb{Z}_6-\Pi)$ and 'orbifold construction kit' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Oblifold vacua, decoupling and U(1) breaking

No-Go for three sequential families

simplest implementation: three `sequential' 16-plets

 $\mathbb{T}^6/\mathbb{Z}_6$ orbifold $(\mathbb{Z}_6-\Pi)$ and 'orbifold construction kit' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Oblifold vacua, decoupling and U(1) breaking

No-Go for three sequential families

- simplest implementation: three `sequential' 16-plets
- however: in all models there are chiral exotics (at least when hypercharge is correctly normalized)

 $\mathbb{T}^6/\mathbb{Z}_6$ orbifold $(\mathbb{Z}_6-\Pi)$ and 'orbifold construction kit' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Oblifold vacua, decoupling and U(1) breaking

No-Go for three sequential families

- simplest implementation: three `sequential' 16-plets
- however: in all models there are chiral exotics (at least when hypercharge is correctly normalized)

bottom-line

not possible in $\mathbb{Z}_{N\leq 7}$ orbifolds

 $\mathbb{T}^6/\mathbb{Z}_6$ orbifold $(\mathbb{Z}_6-\Pi)$ and 'orbifold construction kit' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

2+1 family models

Features:

- Two families come from two equivalent fixed points
- 3rd family has to come from 'somewhere else' (untwisted sector, T_{k>1})

$\mathbb{T}^6/\mathbb{Z}_6$ orbifold $(\mathbb{Z}_6-\Pi)$ and 'orbifold construction kit' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

2+1 family models

Features:

- Two families come from two equivalent fixed points
- 3rd family has to come from 'somewhere else' (untwisted sector, T_{k>1})
- $\bigcirc \mathcal{O}(100)$ models with:
 - ${
 m E}_8
 ightarrow G_{
 m SM} imes {
 m U}(1)^4$
 - 3 <u>generations</u> + vector-like exotics X_i, \overline{X}_j

 $X_i \overline{X}_i$

• X_i, \overline{X}_j have couplings

 $\mathbb{T}^6/\mathbb{Z}_6$ orbifold $(\mathbb{Z}_6-\Pi)$ and 'orbifold construction kit' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

2+1 family models

Features:

- Two families come from two equivalent fixed points
- 3rd family has to come from 'somewhere else' (untwisted sector, T_{k>1})
- $\bigcirc \mathcal{O}(100)$ models with:
 - ${
 m E}_8
 ightarrow G_{
 m SM} imes {
 m U}(1)^4$
 - 3 generations + vector-like exotics X_i, \overline{X}_j

 $X_i \overline{X}_i$

• X_i, \overline{X}_j have couplings

? are the exotics' mass terms consistent with supersymmetry?

 $\mathbb{T}^6/\mathbb{Z}_6$ orbifold ($\mathbb{Z}_6-\Pi$) and 'orbifold construction kit' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

Orbifold vacua, decoupling and U(1) breaking

 $\mathbb{T}^6/\mathbb{Z}_6$ orbifold $(\mathbb{Z}_6-\Pi)$ and 'orbifold construction kit' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

Orbifold vacua, decoupling and U(1) breaking

 $\mathbb{T}^6/\mathbb{Z}_6$ orbifold $(\mathbb{Z}_6-\Pi)$ and 'orbifold construction kit' The role of localized 16-plets of SO(10) 3 vs. 2+1 family models Orbifold vacue, decoupling and U(1) breaking

 $\overline{}$

Orbifold vacua, decoupling and U(1) breaking

orbifold point is `saddle point'

$$V_D = g^2 \left(\sum q_{anom}^{(i)} |\phi_i|^2 + g\xi \right)^2 + \dots \quad V\xi^2$$

$$V_F = \sum_i \left| \frac{\partial W}{\partial \phi_i} \right|^2 + \text{SUGRA} + \text{non-perturbative} + \dots \quad \sqrt{\xi}$$

It is possible to `rescale' solutions of $\partial W / \partial \phi_i = 0$ to $V_D = 0$ by `complexified gauge transformations' e.g. Wess & Bagger ... Gray, He, Jejiala, Nelson (06)
 These solutions are manifolds or points in field space

 $\mathbb{T}^6/\mathbb{Z}_6$ orbifold $(\mathbb{Z}_6-\Pi)$ and 'orbifold construction kit' The role of localized 16-plets of $\mathrm{SO}(10)$ 3 vs. 2+1 family models Orbifold vacua, decoupling and U(1) breaking

 $\overline{}$

Orbifold vacua, decoupling and U(1) breaking

orbifold point is `saddle point'

$$V_D = g^2 \left(\sum q_{anom}^{(i)} |\phi_i|^2 + g\xi \right)^2 + \dots \quad V\xi^2$$

$$V_F = \sum_i \left| \frac{\partial W}{\partial \phi_i} \right|^2 + \text{SUGRA} + \text{non-perturbative} + \dots \quad \sqrt{\xi}$$

- ${\mathscr T}$ In models with discrete Wilson lines: there are usually no fields charged only under $U(1)_{anom}$
- @ the minimum of V: n > 1 gauge factors are broken (rank reduction)

 $\mathbb{T}^6/\mathbb{Z}_6$ orbifold $(\mathbb{Z}_6-\Pi)$ and 'orbifold construction kit' The role of localized 16-plets of SO(10) 3 vs. 2+1 family models Orbifold vacue, decoupling and U(1) breaking

Orbifold vacua, decoupling and U(1) breaking

orbifold point is `saddle point'

$$V_D = g^2 \left(\sum q_{anom}^{(i)} |\phi_i|^2 + g\xi \right)^2 + \dots \quad V\xi^2$$

$$V_F = \sum_i \left| \frac{\partial W}{\partial \phi_i} \right|^2 + \text{SUGRA} + \text{non-perturbative} + \dots \quad \sqrt{\xi}$$

The MSSM

from the

heterotic string

Summary & outlook

Input: Lattice, shift and Wilson lines Spectrum @ orbifold point Phenomenology and $U(1)_{R-I}$.

Lattice, shift and Wilson lines

$$\begin{split} V_6 &= \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, 0, 0, 0, 0, 0\right) \left(\frac{1}{3}, 0, 0, 0, 0, 0, 0, 0\right), \\ W_2 &= \left(\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, 0, 0\right) \left(-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, -\frac{1}{4}\right), \\ W_3 &= \left(\frac{1}{3}, 0, 0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) \left(1, \frac{1}{3}, \frac{1}{3}, 0, 0, 0, 0\right), \end{split}$$

Gauge group after compactification:

 $SU(3)\times SU(2)\times U(1)_Y\times [SU(4)\times SU(2)\times U(1)^8]$

Input: Lattice, shift and Wilson lines Spectrum @ orbifold point Phenomenology and $U(1)_{R-I}$

Summary & outlook

Spectrum @ orbifold point

The model exhibits 3 generations + vectorlike matter

name	irrep	count	name	irrep	count
q_i	$(3,2;1,1)_{1/6}$	3	\overline{u}_i	$({\overline{\bf 3}},{f 1};{f 1},{f 1})_{-2/3}$	3
\overline{d}_i	$(\overline{\bf 3},{\bf 1};{\bf 1},{\bf 1})_{1/3}$	3+4	d_i	$({f 3},{f 1};{f 1},{f 1})_{-1/3}$	4
$\overline{\ell}_i$	$({f 1},{f 2};{f 1},{f 1})_{1/2}$	1+4	ℓ_i	$(1,2;1,1)_{-1/2}$	3+1+4
m_i	$({f 1},{f 2};{f 1},{f 1})_0$	8	\overline{e}_i	$({f 1},{f 1};{f 1},{f 1})_{f 1}$	3
s_i^-	$({f 1},{f 1};{f 1},{f 1})_{-1/2}$	16	s_i^+	$({f 1},{f 1};{f 1},{f 1})_{1/2}$	16
s_i^0	$({f 1},{f 1};{f 1},{f 1})_0$	69	$\dot{h_i}$	$({f 1},{f 1};{f 1},{f 2})_0$	14
f_i	$({f 1},{f 1};{f 4},{f 1})_0$	4	\overline{f}_i	$(1,1;\overline{4},1)_0$	4
w_i	$({f 1},{f 1};{f 6},{f 1})_0$	5			

remarks:

- ${\mathscr T}$ extra states vectorlike $\to U(1)_Y$ non-anomalous
- $<\!\!<$ none of the oscillators is charged under $G_{
 m SM}$

 \ldots and if all oscillators get vevs, $G=G_{ ext{SM}} imes ext{SU}(4) imes ext{U}(1)_{ ext{hidden}}$

Input: Lattice, shift and Wilson lines Spectrum @ orbifold point Phenomenology and $U(1)_{B-L}$

Vacua with B-L symmetry at high energies

- ? How to distinguish between lepton and Higgs doublets?
- one possibility
- break at high scale to

2 break $U(1)_{B-L}$ at a hierarchically smaller scale

Input: Lattice, shift and Wilson lines Spectrum @ orbifold point Phenomenology and $U(1)_{B-L}$

Decoupling of exotics

mass terms for the exotic states

$$W = x_i \overline{x}_j \mathcal{M}_x^{ij}(\widetilde{s}) \quad \text{with} \quad \mathcal{M}_x^{ij}(\widetilde{s}) = \sum \widetilde{s}_{i_1} \cdots \widetilde{s}_{i_n}$$
vector-like exotics $B-L$ neutral singlets

Input: Lattice, shift and Wilson lines Spectrum @ orbifold point Phenomenology and $U(1)_{B-L}$

Decoupling of exotics

mass terms for the exotic states

$$W = x_i \bar{x}_j \mathcal{M}_x^{ij}(\tilde{s}) \quad \text{with} \quad \mathcal{M}_x^{ij}(\tilde{s}) = \sum \tilde{s}_{i_1} \cdots \tilde{s}_{i_n}$$
$$\mathcal{M}_d^{ij}(\tilde{s}) = \begin{pmatrix} 0 & 0 & \tilde{s}^6 & 0 & 0 & \tilde{s}^6 & \tilde{s}^6 \\ 0 & 0 & \tilde{s}^6 & 0 & 0 & \tilde{s}^7 & \tilde{s}^7 \\ 0 & 0 & \tilde{s}^6 & 0 & 0 & \tilde{s}^7 & \tilde{s}^7 \\ \tilde{s}^8 & 0 & 0 & \tilde{s}^6 & \tilde{s}^6 & 0 & 0 \end{pmatrix}$$

 $<\!\!< \mathcal{M}_d$ has full rank

- \rightarrow all extra $d_i \cdot \bar{d}_j$ decoupled
- \sim **note**: zeros partially dictated by B-L

Input: Lattice, shift and Wilson lines Spectrum @ orbifold point Phenomenology and $U(1)_{B-L}$

Decoupling of exotics

mass terms for the exotic states

$$W = x_i \bar{x}_j \mathcal{M}_x^{ij}(\tilde{s}) \quad \text{with} \quad \mathcal{M}_x^{ij}(\tilde{s}) = \sum \tilde{s}_{i_1} \cdots \tilde{s}_{i_n}$$
$$\mathcal{M}_\ell^{ij}(\tilde{s}) = \begin{pmatrix} \tilde{s}^3 & 0 & 0 & 0 & 0 & \tilde{s}^8 & 0 & 0 \\ \tilde{s} & 0 & 0 & 0 & 0 & \tilde{s}^6 & 0 & 0 \\ \tilde{s} & 0 & 0 & 0 & 0 & \tilde{s}^6 & 0 & 0 \\ 0 & \tilde{s}^8 & \tilde{s}^8 & 0 & 0 & 0 & \tilde{s}^6 & \tilde{s}^6 \\ \tilde{s} & 0 & 0 & \tilde{s}^6 & \tilde{s}^6 & 0 & 0 \end{pmatrix}$$

 $<\!\!<$ 1 eigenvalue is zero \sim Higgs

note: we do not need to tune VEVs against each other in order to achieve doublet-triplet splitting

 \sim mass-less $\overline{\ell}$ eigenstate dominated by $\overline{\ell}_1$ (untwisted state)

Input: Lattice, shift and Wilson lines Spectrum @ orbifold point Phenomenology and $U(1)_{B-L}$

Gauge-Top unification

Untwisted sector (=internal components of the gauge bosons)

	field-theoretic description	state
U_1	$\sim\!A_5+{\mathsf i}A_6$	$\overline{u}_1 + \ldots$
U_2	$\sim\!A_7+iA_8$	$q_1 + \ldots$
U_3	$\sim\!A_9+iA_{10}$	$\overline{\ell}_1 \simeq H_u + \dots$

Input: Lattice, shift and Wilson lines Spectrum @ orbifold point Phenomenology and $U(1)_{B-L}$

Some taste of flavor

- \ll matter : right B-L charges
- ${}^{\sim}$ Higgs : massless ${
 m SU}(2)$ doublets with zero $B\!-\!L$ charge

Input: Lattice, shift and Wilson lines Spectrum @ orbifold point Phenomenology and $U(1)_{B-L}$

Some taste of flavor

 $W_{\rm Yukawa} = Y_u^{ij}(\tilde{s}) \phi_u \, q_i \, \bar{u}_j + Y_d^{ia}(\tilde{s}) \phi_d \, q_i \, \bar{d}_a + Y_e^{ib}(\tilde{s}) \phi_d \, \bar{e}_i \, \ell_b \, ,$

Input: Lattice, shift and Wilson lines Spectrum @ orbifold point Phenomenology and $U(1)_{B-L}$

Some taste of flavor

 $W_{\rm Yukawa} \;=\; Y^{ij}_u(\widetilde{s}) \, \phi_u \, q_i \, \bar{u}_j + Y^{ia}_d(\widetilde{s}) \, \phi_d \, q_i \, \bar{d}_a + Y^{ib}_e(\widetilde{s}) \, \phi_d \, \bar{e}_i \, \ell_b \ ,$

$$Y_d^{ia}(\widetilde{s}) = \left(egin{array}{ccc} 0 & \widetilde{s}^2 & \widetilde{s}^2 & 0 \ \widetilde{s}^5 & \widetilde{s}^5 & \widetilde{s}^5 & 0 \ 0 & \widetilde{s} & \widetilde{s} & 0 \end{array}
ight)$$

 $@~Y_d$$ becomes 3 imes 3 matrix after integrating out the heavy $dar{d}$ pair

- $\gg Y_d$ has full rank
- flavor structure à la Froggatt-Nielsen

Input: Lattice, shift and Wilson lines Spectrum @ orbifold point Phenomenology and $U(1)_{B-L}$

Some taste of flavor

 $W_{\rm Yukawa} \;=\; Y^{ij}_u(\widetilde{s}) \, \phi_u \, q_i \, \bar{u}_j + Y^{ia}_d(\widetilde{s}) \, \phi_d \, q_i \, \bar{d}_a + Y^{ib}_e(\widetilde{s}) \, \phi_d \, \bar{e}_i \, \ell_b \ ,$

$$Y_{e}^{ib}(\widetilde{s}) = \left(egin{array}{cccc} 0 & \widetilde{s}^{6} & 0 & 0 \\ \widetilde{s}^{5} & 0 & 0 & 0 \\ 0 & \widetilde{s}^{5} & 0 & 0 \end{array}
ight)$$

 $@~Y_e$ becomes 3 imes 3 matrix after integrating out the heavy $dar{d}$ pair

- $<\!\!< Y_e$ has not full rank \curvearrowright electron massless
- T Yukawa coupling seems unrealistic

Summary

and OUTIOOK

Summary 'Orbifold landscape' Outlook

Summary

Guided by the idea of local grand unification we have obtained $\mathcal{O}(100)$ models with the following features:

 $1 3 \times 16 + \text{Higgs} + \text{nothing}$

Summary 'Orbifold landscape' Outlook

Summary

 $\mathcal{O}(100)$ models with:

 $1 3 \times 16 + \text{Higgs} + \text{nothing}$

 $\bigcirc SU(3) \times SU(2) \times U(1)_Y \times G_{hid}$

Summary 'Orbifold landscape' Outlook

Summary

$\mathcal{O}(100)$ models with:

- $1 3 \times 16 + \text{Higgs} + \text{nothing}$
- 2 SU(3) × SU(2) × U(1)_Y × G_{hid}

3 unification

Summary 'Orbifold landscape' Outlook

Summary

$\mathcal{O}(100)$ models with:

- $1 3 \times 16 + \text{Higgs} + \text{nothing}$
- 2 $SU(3) \times SU(2) \times U(1)_Y \times G_{hid}$

3 unification

4 $y_t \simeq g @ M_{GUT} \&$ realistic flavor structures à la Froggatt-Nielsen

Summary 'Orbifold landscape' Outlook

Summary

$\mathcal{O}(100)$ models with:

- $1 3 \times 16 + \text{Higgs} + \text{nothing}$
- 2 $SU(3) \times SU(2) \times U(1)_Y \times G_{hid}$

3 unification

- **4** $y_t \simeq g @ M_{GUT}$ & realistic flavor structures à la Froggatt-Nielsen
- bidden sector gaugino condensation
- Spontaneously broken SUSY with TeV scale soft masses

Shine man with the shirt of the

Summary 'Orbifold landscape' Outlook

orbifold models

'Orbifold landscape'

 $\mathbb{Z}_3 imes \mathbb{Z}_2$

16 other geometries

Contraction and a state of the second state of the second state of the second state of the second state of the

Shine man with the shirt of the

Summary 'Orbifold landscape' Outlook

'Orbifold landscape'

 $\mathbb{Z}_3 imes \mathbb{Z}_2$

orbifold models

16 other geometries

 $\mathcal{O}(10^{7\pm3})$ other gauge embeddings

V_6, W_2, W_3 as discussed

South the N

Summary 'Orbifold landscape' Outlook

'Orbifold landscape'

 $\mathbb{Z}_3 \times \mathbb{Z}_2$

orbifold models

16 other geometries

 $\mathcal{O}(10^{7\pm3})$ other gauge embeddings

 V_6, W_2, W_3 as discussed

SUSY vacuum with B-L high energies

many other 'vacua'

Sand and the grade and a start of the second of the second of the

Summary 'Orbifold landscape' Outlook

Outlook

we're studying the $\mathcal{O}(100)$ $\text{MSSM}_{\text{\tiny (like)}}$ models. . .

- ? Discrete symmetries ~ talk by S. Raby
- ? SUSY breakdown

 \sim talk by H.P. Nilles

? Neutrino masses... yes, we get see-saw

Further questions:

? Relation to the bundle constructions?

? Relation to free fermionic models?

 \sim talk by A. Faraggi

'Appendix'

Gauge group topography

Gauge group topography

Gauge group topography

Orbifold GUT limit: SO(4) plane `large'

Motivation: anisotropic compactification may allow to understand why $M_{\rm GUT} < M_{\rm string}$

Witten (1996) ... Hebecker, Trapletti (2005)

Orbifold GUT limit: SU(3) plane `large'

back

Orbifold GUT limit: G₂ plane `large'

Hidden sector gaugino condensation

Hidden sector stronger coupled

Hidden sector gaugino condensation

e.g. Kähler stabilization: large coefficients in the relation

$$m_{3/2} \simeq rac{\Lambda_4^3}{M_{
m P}^2}$$

bottom-line: $m_{3/2}$ is fine

e.g. Barreiro, de Carlos, Copeland 1998

\mathbb{Z}_3 and \mathbb{Z}_2 subtwists

Decoupling of the extra states for `generic' SM singlet vevs

The $\overline{d}_a d_b$ mass matrix (@ order 8)

- rank of the mass matrix is
 maximal
- ➡ four combinations d̄_ad_b disappear from the low-energy spectrum

	\overline{d}_1	\overline{d}_2	\overline{d}_3	\overline{d}_4	\overline{d}_5	\overline{d}_6	\overline{d}_7
d_1	s^5	s^5	s^5	s^5	s^5	s^3	s^3
d_2	s^1	s^1	s^3	s^3	s^3	s^3	s^3
d_3	s^1	s^1	s^3	s^3	s^3	s^3	s^3
d_4	s^6	s^6	s^6	s^3	s^3	s^6	s^6

(An entry s^n means that there is an allowed coupling $\overline{d}_a d_b s^0_{i_1} \cdots s^0_{i_n}$)

Inote: high powers of s do not necessarily mean strong suppression
e.g. Cvetič, Everett, Wang (1998)

Decoupling of the extra states for `generic' SM singlet vevs

The $\overline{\ell}_a\ell_b$ mass matrix (@ order 8)

- rank of the mass matrix is maximal
- How to get a rank 4 mass matrix?
 ... see later

	$\overline{\ell}_1$	$\overline{\ell}_2$	$\overline{\ell}_3$	$\overline{\ell}_4$	$\overline{\ell}_5$
ℓ_1	s^3	s	s	s	s
ℓ_2	s^4	s^2	s^2	s^2	s^6
ℓ_3	s^4	s^2	s^2	s^2	s^6
ℓ_4	s	s^5	s^5	s^5	s^3
ℓ_5	s	s^5	s^5	s^5	s^3
ℓ_6	s	s^3	s^3	s^6	s^6
ℓ_7	s	s^3	s^3	s^3	s^3
ℓ_8	s	s^3	s^3	s^3	s^3

Decoupling of the extra states for `generic' SM singlet vevs

The $m_a m_b$ mass matrix (@ order 8)

- rank of the mass matrix is maximal
- recall: m_i are $SU(2)_L$ doublets with hypercharge 0

	m_1	m_2	m_3	m_4	m_5	m_{6}	m_7	m_8
^m 1	*	*	-	-	-	*	-	*
m_2	*	*	-	-	-	*	-	*
m_3	-	-	-	-	*	-	*	-
m_4	-	-	-	-	*	-	*	-
m_5	-	-	*	*	*	-	*	-
m_6	*	*	-	-	-	-	-	-
m_7	-	-	*	*	*	-	*	-
m8	*	*	-	-	-	-	-	_

* means `there is a coupling'

Decoupling of the extra states for `generic' SM singlet vevs

The $s_a^+ s_b^-$ mass matrix (@ order 8)

- rank of the mass matrix is maximal

	s_1^-	s_2^-	^s 3	s_4^-	^s 5	^s 6	s_7^-	s_8	s_9^-	^s 10	s	^s 12	s_13	^s 14	s_{15}^{-} 16
s_1^+	*	*	-	-	*	-	*	-	-	-	-	*	-	-	-
s_2^+	*	*	_	_	*	_	*	_	_	_	_	*	_	_	_
s ¹ / ₂	*	*	_	_	_	_	_	_	_	*	*	*	_	*	*
s_4^+	*	*	_	_	_	_	_	_	_	*	*	*	_	*	*
s_5^+	-	_	_	_	-	*	_	*	_	_	_	_	_	_	-
s+ 86	*	*	_	_	*	_	*	_	_	_	_	*	_	_	-
s_7^+	_	_	_	_	_	*	_	*	_	_	_	_	_	_	_
s+	*	*	_	_	*	_	*	_	_	_	_	*	_	_	_
s+	_	_	_	_	_	_	_	_	*	_	_	_	*	_	_
s+ 10	*	*	*	*	*	_	*	_	_	*	*	*	_	*	*
s+10 s+11	*	*	*	*	*	_	*	_	_	*	*	*	_	*	*
s+19	*	*	*	*	*	_	*	_	_	*	*	*	_	*	*
s ¹² 13	_	_	_	_	_	_	_	_	*	_	_	_	*	_	_
s ⁺ ₁₄	*	*	*	*	*	_	*	_	_	*	*	*	_	*	*
s+ 15	*	*	*	*	*	_	*	_	_	*	*	*	_	*	*
s ¹⁰ ₁₆	*	*	*	*	*	-	*	_	_	*	*	*	_	*	*

Flavor issues (using *d*-type quarks as an example)

Higher-order couplings giving rise to *d*-type Yukawa couplings

Promising: $h_d \simeq \ell_1 \curvearrowright$ search for $\ell_1 \bar{d}_j q_k (s^0)^n$ appears at order 7, e.g.

$$W ~ \supset ~ \ell_1 \, ar d_1 \, q_2 \, s^0_{55} \, s^0_{56} \, s^0_7 \, s^0_5 + \ldots$$
 (15 terms at order 7)

Proton decay in orbifold GUTs

Dimension 5 proton decay operators

see e.g. Hebecker, March-Russell '02

4D GUT m₃ H₃ H₃

 ${\mathscr{T}} \ \, {\mathsf{5D}} \ {\mathsf{GUT}} \colon {\mathbb{H}}_{{\boldsymbol{5}}} \oplus {\mathbb{H}}_{{\overline{{\boldsymbol{5}}}}} \xrightarrow{\operatorname{dimensional}} ({\mathbb{H}}_{{\boldsymbol{5}}}, {\mathbb{H}}_{{\boldsymbol{5}}}^C) \oplus ({\mathbb{H}}_{{\overline{{\boldsymbol{5}}}}}, {\mathbb{H}}_{{\overline{{\boldsymbol{5}}}}}^C) \text{ in 4D}$

→ 5D orbifold GUT: KK masses $\frac{1}{R} \mathbb{H}_3 \mathbb{H}_3^{\mathbb{C}}$ and $\frac{1}{R} \mathbb{H}_3 \mathbb{H}_3^{\mathbb{C}}$ in 4D

Dimension 5 proton decay operator absent in orbifold GUT

However: Constraints from dimension 6 operators!

Pillow construction (...using a Z3 orbifold as example)

Starting point is the torus

Pillow construction (...using a z₃ orbifold as example)

The fundamental region of the orbifold is 1/3 of the fundamental region of the torus

Pillow construction (...using a z₃ orbifold as example)

Rotating by $2\pi/3$ yields:

Pillow construction (...using a z₃ orbifold as example)

The rotated fundamental region covers a 'new' area

Pillow construction (... using a Z3 orbifold as example)

Further rotation yields:

Pillow construction (...using a z3 orbifold as example)

Now the fundamental region covers the remaining area

Pillow construction (...using a z3 orbifold as example)

The corners of the fundamental region are fixed under the \mathbb{Z}_3 rotation (on the torus)

Pillow construction (...using a z 3 orbifold as example)

The edges are pairwise identified

Pillow construction (...using a Z3 orbifold as example)

The geometry is that of a `pillow'

\mathbb{Z}_6 pillow

V_6 vs. V_6'

V_{6} =	$= rac{1}{6} \left(3, 3, 2, 0, 0, 0, 0, 0 ight) \left(2, - 1 ight)$	${\bf 0}, {\bf 0})$
$V_{6}' =$	$=$ $\frac{1}{6}(2, 2, 2, 0, 0, 0, 0, 0)(1, -1)$	${\bf 1}, {\bf 0}, {\bf 0}, {\bf 0}, {\bf 0}, {\bf 0}, {\bf 0})$
	V_6	V_6'
G	${ m SO(10)} imes { m SO(4)} imes { m U(1)}$	${ m SO(10)} imes { m SU(3)} imes { m U(1)}$
U_1 :	$(16,1,2)\oplus\ldots$	$(16, \overline{3})$
U_2 :	$({f 16},{f 2},{f 1})\oplus ({f 10},{f 1},{f 1})$	$(10,3)\oplus\ldots$
U_3 :	(10, 2, 2)	$(16,1)\oplus(\overline{16},1)$

cf. Katsuki, Kawamura, Kobayashi, Ohtsubo, Ono, Tanioka (1989)

 $<\!\!\!> U_3$ states always vector-like

observation For V_6 one can get Higgs pairs from U_3 (but not for V_a')

