Effect of New Gauge Sectors on Tevatron and LHC Phenomenology

Matthew J. Strassler University of Washington

- hep-ph/0604261,0605193 w/ K. Zurek
- hep-ph/0607160
- in preparation

Prologue

What does string theory predict?

- Minimal models are elegant and attractive esp. to theorists
 Verlinde, Ovrut, Faraggi, Ratz, Raby...
- But string theory does not really suggest minimal models
- Many new sectors of SM-neutral particles are common
 - Schellekens...
- Standard Model + ... + ... + ... + ... + ... + ... + ...
- Is there any chance that some of this extra stuff is visible at the Tevatron or LHC?
- Have we considered carefully how it would appear?
- Are we sure we can find it if it is there?

Theoretical Motivation

- String theory easily accommodates, often predicts, new sectors;
- New sectors may decouple from our own at relatively low energy
- Decoupling could naturally occur at SUSY-breaking scale and/or TeV scale
- Such sectors could be responsible for, have influence on, or provide insight into SUSY-breaking and/or flavor
- Learning about these sectors, which may contain many particles, could open up an entirely new view of nature.

Theoretical Motivation

- Remnants of these sectors may be observable at Tevatron/LHC; may alter phenomenology of superpartners and/or Higgs bosons.
- But cross-sections may be low, and phenomena produced may be subtle.
- Missing these sectors experimentally at the Tevatron/LHC could set back our efforts to understand nature by a couple of decades.
- Therefore, we should make sure we understand their phenomenology.
- Also, the dynamics of these new sectors, and its manifestation in Tevatron/LHC phenomena, is theoretically interesting in its own right

Experimental Motivation

We are at a crucial moment for both the Tevatron and the LHC:

Tevatron:

- 2 years more at forefront
- Few 2σ deviations at 1 fb⁻¹; cannot expect 5σ at 8 fb⁻¹
- But many searches have not been carried out
- Large data set: What's hiding in it?
- Need to carry out high-stakes high-risk analyses
- "Hidden valley": an example of something likely to have evaded current Tevatron analyses

LHC:

- 1 year left to adjust basic systems, software tools
- Any last suggestions on how to optimize the detectors are needed NOW!
- Wise to consider many models with radical phenomenology to ensure all bases covered

LHC

- Hardware of the detectors is largely finished, but not the software.
 - Time-sensitive hard-to-change parts of the software are:
 - Trigger [partly hardware]
 - First-pass Reconstruction
 - Tracking Algorithms
- Detectors designed for high-energy isolated jets, moderate-energy isolated leptons and photons emerging from the interaction point
 - Works for standard SUSY, standard Higgs, standard little Higgs...
 - Experimentalists confident they can get the detectors ready for such physics
 - Any new model predicting similar signatures is not crucial right now

LHC

- But what if the new physics isn't of this form?!
 - Many moderate-energy non-isolated jets?
 - Low-energy non-isolated leptons?
 - Long-lived particles appearing in middle of the detector?
 - Monopoles?
- Need to ensure that non-standard physics makes it past the trigger, is spotted in the initial reconstruction
- Often this requires adjusting the tracking software at the trigger and reconstruction levels
- Important to investigate models that pose a severe but not impossible challenge
- Indeed, other than standard model backgrounds, most frequent request of theorists by experimentalists;
- We have only a few months left for this kind of work

New Non-Abelian Sectors

- Much work on Abelian gauge sectors coupled to the SM: Z' physics
- Little work on non-Abelian gauge sectors not coupling to SM particles.
 - The reason: traditionally assumed that such particles are invisible
 - However, this is not true: some new states may decay entirely or partly via SM particles
 - The likelihood of such a phenomenon is greatly enhanced by strong coupling, confinement, a mass gap, etc. in new sector
- We will see that such "hidden valleys" can have remarkable effects at Tevatron/LHC

The "v-sector"

"Hidden Valley" not hidden for much longer!

- Could be
 - a nearby throat
 - nearby D-branes
 - a nearby singularity
 - non-geometric in origin
- Separated from us by a "mountain": ultra-weak interaction(s)
- Valley floor allows for decays via tunneling, by the same interaction(s)
- Ultra-weak interaction between sectors could be induced by
 - a loop of new massive particles, or
 - any neutral particle: Higgs, Z', neutralinos, neutrinos
- Physics in the valley is poorly constrained
 - LEP: at best rare production, sometimes with backgrounds
 - Precision experiments: new sector contributes at two loops
 - Cosmology: few constraints
 - strong interactions → efficient mixing of v-hadron species
 - If one light v-hadron decays well before 1 sec, entire sector annihilates efficiently before BBN

Models

Standard Model

SU(3)xSU(2)xU(1)

Many Models to Consider

Communicator

Hidden Valley
G_v with v-matter

Simplest Class of Models

Easy model to understand:

Simplest Class of Models

Easiest model to understand and simulate:

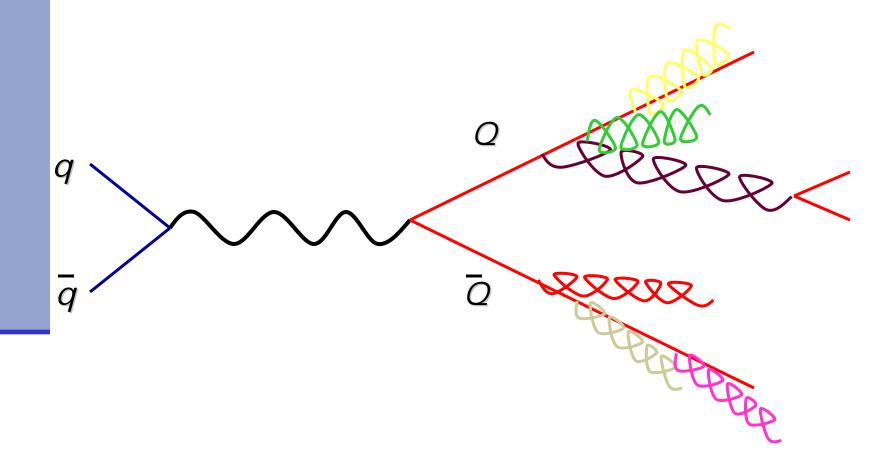
New Z' from U(1)'

Standard Model V-QCD with two light v-quarks

$$e^+e^- \rightarrow q \overline{q}$$

$$e^+e^- \rightarrow q \overline{q}$$

$$e^+e^- \rightarrow q \overline{q}$$


$e^+e^- \rightarrow q \overline{q}$

What does it look like?

v-pions

The Easiest Model

- With two light flavors, v-QCD is similar to real QCD
- The Z' can decay to a pair of v-quarks
- All v-hadrons decay immediately to v-pions and the lightest v-baryons
- Two of the three v-pions cannot decay via a Z'
- But the third one can!

$$\pi_{V}^{+} \sim Q_{1}\overline{Q}_{2} \sim stable$$

 $\pi_{V}^{-} \sim Q_{2}\overline{Q}_{1} \sim stable$

$$\pi_{V}^{0} \sim Q_{1}\overline{Q}_{1} - Q_{2}\overline{Q}_{2} \rightarrow (Z')^{*} \rightarrow f\overline{f}$$

The Easiest Model

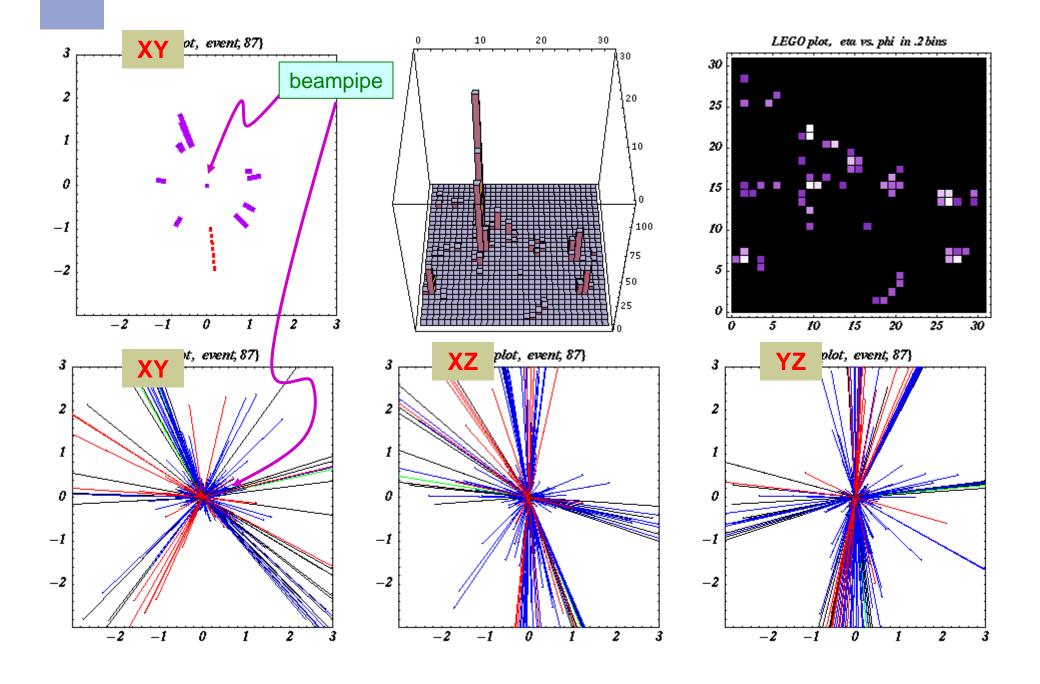
- With two light flavors, v-QCD is similar to real QCD
- The Z' can decay to a pair of v-quarks
- All v-hadrons decay immediately to v-pions and the lightest v-baryons
- Two of the three v-pions cannot decay via a Z'
- But the third one can!

$$\pi_{V}^{+} \sim Q_{1}\overline{Q}_{2} \sim stable$$

 $\pi_{V}^{-} \sim Q_{2}\overline{Q}_{1} \sim stable$

Pseudoscalars: their decays require a helicity flip; branching fractions proportional to fermion masses m_f^2

$$\pi_{V}^{0} \sim Q_{1}\overline{Q}_{1} - Q_{2}\overline{Q}_{2} \rightarrow (Z')^{*} \rightarrow f\overline{f}$$



3 TeV Z' \rightarrow many v-hadrons including 5 π_v^{0} 's (mass 42 GeV) \rightarrow 10 b quarks

3 TeV Z' \rightarrow many v-hadrons including 5 π_v^{0} 's (mass 42 GeV) \rightarrow 10 b quarks

3 TeV Z' → many v-har Energy Deposition on "Unwrapped Detector"

An Event!

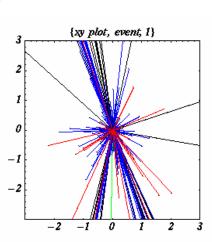
- An event with many jets, plus possibly large missing energy
 - A 10-b-plus-missing-energy event! no SM background in principle –
 - But:
 - The event is very complicated, a challenge for tracking and b-tagging
 - The jets tend to overlap, a challenge for jet algorithms
 - It is unlikely that the ten jets of hadrons will be reconstructed
 - It is unlikely that most of the jets will be identified as b-quark jets
 - So it is not clear what "bin" this event will be stored in and what the backgrounds in that bin will be

$Z' \rightarrow$ many v-hadrons including 5 π_v^{0} 's \rightarrow 10 b quarks

Many Events!

- But that's not the big problem...
- These Z' decays fluctuate wildly
 - The multiplicity of v-hadrons varies event to event
 - The momentum distribution of the v-hadrons varies
 - The number of $\pi_{V}^{\ \theta}$'s versus $\pi_{V}^{\ +}$ and $\pi_{V}^{\ -}$ varies
 - The decay angles of the $\pi_{V}^{\ \theta}$'s vary
 - The b-jets also vary in their QCD-pion multiplicity
 - Occasional τ pairs, c-jets
- So events will be stored in many different bins: hard to reassemble into a signal, remove background, interpret

Many Events!


- Let's see these fluctuations in action:
 - use a well-understood computer program (PYTHIA) to simulate e^+e^- hadrons
 - rescale the energies to simulate $q q \rightarrow v$ -hadrons
 - let the π_{v}^{0} 's decay to b quark pairs, and
 - let the b quark pairs form jets
- Remember: every event below is a Z' decay to v-quarks

Many Events!

- Let's see these fluctuations in action:
 - use a well-understood computer program (P)
 - rescale the energies to simulate $q \to r$
 - let the π_v^0 's decay to b quark pairs'
 - let the b quark pairs form jets
 - Remember: every every

QCD backgrounds

- Can this signal be identified?
 - If there were a hundred events of this form [lower energy than simulated] at the Tevatron, would we currently know it?
 - If there are a hundred events per year at the LHC, will we know it?
- Signal is complex, backgrounds are unknown
 - Few-jet backgrounds computable but signal is not straightforward
 - The many jets overlap; how many jets are actually reconstructed?
 - What is the correspondence between jets reconstructed and the bquarks produced?
 - How much do the answers depend on the algorithm used?
 - Multi-jet backgrounds not computable
 - Can we tell the difference on average between a QCD multi-jet event and a hidden-valley-type multi-jet event?
- What is the right approach to separating the signal from background?
- Ideas exist, but detailed study needed!

Lifetimes

- The v-hadrons decay to standard model particles by tunneling through the mountain
- More precisely, a heavy particle mediates their decays
- Therefore no surprise -- these particles have long lifetimes
- Since
 - There are many v-hadrons, with different lifetimes, in a generic model
 - Many v-hadrons are produced in each event

there is a significant probability of seeing one or more decays occurring away from the interaction vertex.

For example, in the two-flavor v-QCD case,

$$\Gamma_{\pi_v \to b\bar{b}} \sim 6 \times 10^9 \text{ sec}^{-1} \frac{f_{\pi_v}^2 m_{\pi_v}^5}{(20 \text{ GeV})^7} \left(\frac{10 \text{ TeV}}{m_{Z'}/g'}\right)^4$$

Displaced Decays

- Long-lived particles are hardly a new idea
 - B-tagging based on bottom quark lifetime (where decay occurs inside beampipe)
 - Gauge mediation often predicts long-lived neutralino two decays per event
- But the experimental situation is surprising
 - Very few searches have been done for the Tevatron experiments
 - Very few cases have been studied for LHC
 - No searches for displaced jet pairs have ever been carried out
- Long-lived particles have no standard model background so why so little study?

Why so few searches/studies?

- It hasn't been done because it is non-trivial
- Displaced isolated leptons easy, displaced jets much harder
 - Easy in beampipe,
 - Harder in inner tracker due to detector background
 - Further out requires reprocessing of all tracks months!! Which events to reprocess?
 - Could be very hard when the event is busy with many jets
- Need to suggest
 - Search strategies (what triggers, what detector regions) to apply to Tevatron data
 - Strategies to optimize triggering, tracking, reconstruction at the LHC
- Searches at CDF, D0 being undertaken
- General study of long-lived particle detection under discussion at ATLAS
- Interest from CMS
- Note: the LHCb experiment should not be underestimated!
 - Vertexing! Might find new physics before CMS, ATLAS!
 - Studies of long-lived particle detection now being undertaken

Other Models Suggest Other Issues

Two Other Very Simple Examples:

- One flavor v-QCD, couples to SM by Z';
 - η' , σ , ω metastable, decay to SM particles
 - Expect ω → leptons sometimes
 - Fewer v-hadrons, little missing transverse momentum
 - Precise decay modes unclear: depend on unknown v-hadron spectrum, v-hadronic matrix elements, etc.
- Pure v-Yang-Mills, couples to SM by loop of heavy particles;
 - Many glueball resonances with varying lifetimes.
 - Production of heavy particles may be accompanied by glueballs, decaying to b pairs or ordinary jets
 - High-energy jets, stable charged particles, isolated photons, etc. may coexist with v-hadron jet-pairs/triplets
 - Different choices (heavy-particle charges, any light v-quarks) can produce unusual and radically different signals
- Need to classify models by their experimental signatures
- Often requires educated guesswork or new theoretical developments

Summary of signals:

- Most models show at least a few common features
 - Multi-particle production -- robust
 - Missing energy signal possible
 - Long-lived particles possible
 - Many and possibly overlapping jet-pairs -- robust
 - Bottom-quark pairs likely
 - Lepton-pairs possible
 - Top-quark pairs, W,Z pairs possible
 - (Meta)stable charged particles possible
 - Large variability event to event -- robust
 - Unusual kinematic structure to the events robust
- This is enough info to provide experimentalists with some guidance
- But more theoretical work, more general simulation package [work w/ P. Skands] needed to make searches possible

Other important possibilities

- In addition to many v-models, there are many possible channels for sector-to-sector communication
- We have seen how a Z' can be a direct communicator.
- Loops of new particles that bridge the two sectors will induce operators that involve both sectors
- The **Higgs boson** might decay to two or more v-hadrons
 - If v-hadrons long-lived, could actually be a discovery channel for the Higgs boson
- The lightest supersymmetric particle in our sector might decay to the v-sector LSP plus either SM particles or v-hadrons
 - Could be the dominant signature of new physics at the LHC!
 - This can reduce or eliminate the usual missing-energy signals of SUSY
- Neutrinos may be messengers rare W/Z decays, W/Z-mediated production

Conclusions

- New sectors are a generic feature of string models of particle physics
- In lucky but not unreasonable circumstances, these sectors may show up at the Tevatron or LHC
- This physics may
 - coexist with classic Higgs and/or supersymmetric and/or little-Higgs phenomenology
 - drastically alter Higgs and/or supersymmetric and/or little-Higgs phenomenology
- Strong dynamics in these sectors can greatly enhance the visibility and complexity of the resulting signals
- Typically several new neutral resonances are present
- Some may have a long lifetime
- Challenges:
 - Extracting the new resonances inside high-multiplicity events with exceptional variability
 - Long-lived particles, even several per event: possibly hard to find, fantastic signal if seen
 - Triggering, tracking and reconstruction optimization to allow events to be saved, selected
- Efforts to engage the experimental community appear very promising
- Need to study signals, develop search-strategies in well-understood models
- But many v-models have unknown strong dynamics, hadron spectra, decay channels: an obstruction to Tevatron/LHC predictions
- Much theoretical and experimental work lies ahead