
a brief introduction to cosmology

+

what a cosmologist wants from string theory

David Wands (KITP + Portsmouth)

the cosmological standard model

simple (+ special) initial state evolved (general relativity + particle physics) into observed distribution of matter

- e.g. abundances of light elements (BBN) - anisotropies in cosmic microwave

background sky (CMB)

- line-of-sight distribution of pre-galactic hydrogen (Ly-a clouds)
- abundance of galaxy clusters versus redshift
- luminosity vs. redshift of supernovae
- weak grav lensing by foreground dark matter
- 3D distribution of galaxies

standard model parameters

Rk spatial curvature	
<r<sup>2> scalar metric pertbos</r<sup>	
n-1 spectral tilt	
<t>> tensor metric pertbos</t>	
Mr tensor tilt	
Re baryon density	
Six radiation density	
Redm cold dark matter	
No neutrino density	
b bias light : mass	
T optical depth to lss	
H. present Hubble expan	sion
RA Vacuum energy densit	y
W. "vacuum" equation of st	ate

standard model parameters

particle . physics physics "elock"

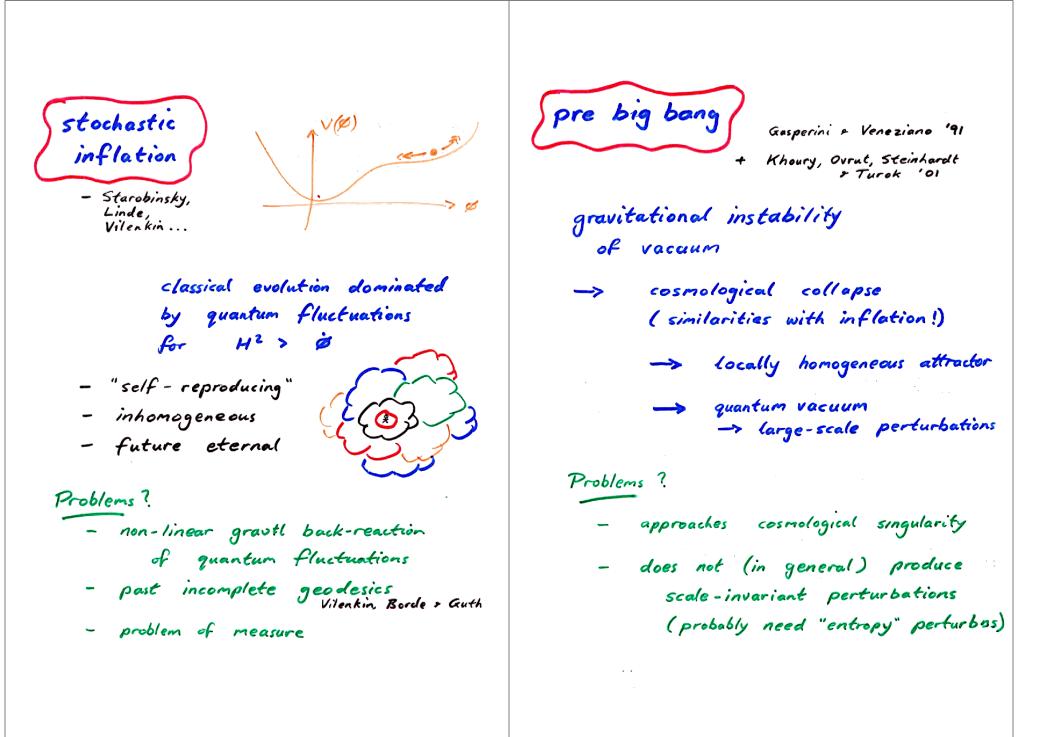
initial S_k spatial curvature conditions $\langle R^2 \rangle$ scalar metric pertons n-1 spectral tilt $\langle T^2 \rangle$ tensor metric pertons tensor tilt SR baryon density SR radiation density SR cold dark matter So neutrino derisity b bias light : mass T optical depth to liss H. present Hubble expansion vacuum { Sha vacuum energy density gravity { Wa "vacuum" equation of state

initial state

- (3+1) dimensional spacetime statistically - almost homogeneous & isotropic (perturbed FLRW spacetime)
- almost spatially flat ("Sc = 1")
- expanding (H>O)
- almost scale-invariant spectrum of Gaussian metric perturbations (δg ~ 10⁻⁵)

inflation in carly universe * constant vacuum energy de Sitter attractor (for H>O) - homogeneous & isotropic - St -> O as t -> 00 * slowly - rolling scalar fields almost constant vacuum energy - light fields (m² << H²) acquire scale-invariant spectrum of pertos - vacuum energy -> radiation at reheating after inflation - scalar field perturbations -> density perturbations

large-scale structure from scalar fields


small scale $(k \gg aH)$ \longrightarrow large scale quantum vacuum perturbations under - damped oscillator over - damped $\delta X \propto e^{-ik\pi} \langle \delta X^2 \rangle_{k=aH} \approx \left(\frac{H}{2\pi}\right)^2$

scalar metric perturbation during inflation after inflation $R = \frac{H \delta \beta}{\beta} \longrightarrow R = \frac{H \delta \beta}{\beta}$ Cinflaton, β Gensity, β

large-scale structure from scalar fields

small scale (K>> aH) large scale (kai perturbations quantum vacuum. under - damped oscillator over-damped < 5x2 > = (H) 5x or e-ikn

scalar metric perturbation after inflation during inflation $R = \frac{H \delta \beta}{\beta} \qquad R = \frac{H \delta \beta}{\beta}$ Cinflaton, β Gensity, β isocurvature field perturbations $S_{ij} = H\left(\frac{\delta \emptyset_i}{\emptyset_i} - \frac{\delta \emptyset_j}{\emptyset_i}\right) = \frac{\pi \partial \psi_i}{\pi \partial \psi_i}$ "entropy" perturbs.

what happens at a cosmological singularity?

big bang, big crunch, big rip...

- higher order string / loop corrections to avoid singularity?
- non-perturbative dual description that is non-singular?

does time begin ?

e.g. quantum cosmology + no boundary proposal? or eternal stochastic inflation? or pre big bang phase?. or eternal cyclic model? **Q** :

what is quantum vacuum for gravitational fields ?

- 2-point function for trans-Plankian fields in curved spacetime

- 3-point function for self-gravitating fields (non-Gaussianity of primordial perturbation spectra)

Q :

is there a future asymptotic vacuum state ?

- does $\Lambda \rightarrow 0$? (-> M_{4}) $\Lambda > 0$? (-> dS_{4}) $\Lambda < 0$? recollapse Kallosh, Linde, et al

- why does present vacuum weigh so little ? Dvali et al **Q** :

why are there (only?) 3 large spatial dimensions?

- are hidden dimensions compact / infinite ? universal / growitational ?

- what is the topology of space ?. and time ?.

summary :

cosmology

successful standard model seeks deep meaningful connection with string theory

five questions :

- O what happens at a cosmological singularity ?
- 3 does time begin ?.
- 3 what is the quantum vacuum for gravitational fields ?
- (4) is there a future asymptotic vacuum state ?.
- S why only 3 large / visible spatial dimensions ?