Geometric Transitions, Black Rings and Black Hole Microstates Iosif Bena, IAS

with Per Kraus (UCLA) and Nick Warner (USC)
hep-th/0505166, 0504142, 0503053, 0408106, 0408186, 0402144

Summary

- Motivation and review
- D-brane physics of three charge supertubes and black rings.
- Geometric transitions and microstate geometries.
- Implications for black hole physics.

Many other groups working on these issues:
P. Berglund, E. G. Gimon, T. S. Levi hep-th/0505167
S.Giusto, S. D. Mathur, A. Saxena hep-th/0405017, hep-th/0406103, hep-th/0409067
V. Jejjala, O. Madden, S. F. Ross, G. Titchener hep-th/0504181
H. Elvang, R. Emparan, D. Mateos, H. S. Reall hep-th/0407065, hep-th/0408120, hep-th/0504125
R. Emparan, D. Mateos hep-th/0506110
J. P. Gauntlett, J. B. Gutowski hep-th/0408122, hep-th/0408010
D. Gaiotto, A. Strominger, X. Yin hep-th/0503217, hep-th/0504126,
M. Cyrier, M. Guică, D. Mateos, A. Strominger hep-th/0411187
G. T. Horowitz, H. S. Reall hep-th/0411268
P. Kraus, F. Larsen hep-th/0503219, hep-th/0506176
N. Iizuka, M. Shigemori hep-th/0506215
K. Copsey, G. T. Horowitz hep-th/0505278
A. Saxena, G. Potvin, S. Giusto, A. W. Peet hep-th/0509214

Motivation and Review

Two charge supertube:
Mateos and Townsend
$\mathrm{D} 0+\mathrm{F} 1 \rightarrow \mathrm{D} 2$ dipole
8 supercharges
Shape any closed curve

D2 brane does not affect supersymmetry

$$
\mathrm{D} 4+\mathrm{F} 1 \rightarrow \mathrm{D} 6
$$

Different duality frames:
D0 + D4 \rightarrow NS5
D1 + D5 \rightarrow KKM
$\mathrm{D} 1+\mathrm{D} 5 \rightarrow \mathrm{KKM} \quad$ smooth solutions with no horizon

- Dual to microstates of the D1-D5 system Mathur, Lunin, Maldacena, Maoz
- Count \Rightarrow entropy of D1-D5 system $\left(2 \pi \sqrt{2 N_{1} N_{5}}\right)$ Matur, Lunin, Marol, cabrerar-Palmer
- D1-D5 system is not black hole
- D1-D5-P system is black hole ($\mathrm{S}=2 \pi \sqrt{N_{1} N_{5} N_{P}}$) (3 charges).

Big Question:

Can we construct 3-charge solutions dual to the microstates of the D1-D5-P system ?

If true
Thermodynamics \Rightarrow Statistical Mechanics
Resolve Information Paradox, derive Holography, etc.

Three-charge supertubes

$\mathrm{D} 0+\mathrm{F} 1 \rightarrow \mathrm{D} 2$
$\mathrm{D} 4+\mathrm{F} 1 \rightarrow \mathrm{D} 6 \quad \Rightarrow \quad \mathrm{D} 0+\mathrm{F} 1+\mathrm{D} 4 \rightarrow \mathrm{D} 2 \quad \mathrm{D} 6 \quad \mathrm{NS} 5$
D0 + D4 \rightarrow NS5

- Three charges and three dipole charges
- Born Infeld description for $\mathrm{D} 0+\mathrm{F} 1+\mathrm{D} 4 \rightarrow \mathrm{D} 2 \mathrm{D} 6$ Bena, kraus
- Arbitrary shape

- Huge number of configurations 7 functions

As gravity gets stronger, size of microstates and size of black hole increase at the same rate:

$$
\begin{aligned}
r_{\text {tube }}^{2} & \sim g_{s} \frac{J^{2}}{N^{2}} \\
r_{\text {Black Hole }}^{2} & \sim g_{s} \frac{N^{3}-J^{2}}{N^{2}}
\end{aligned}
$$

Three-Charge Supergravity Solutions

Maximal angular momentum of BPS 3-charge black hole:

$$
J_{12}=J_{34} \leq \sqrt{N_{1} N_{5} N_{p}}
$$

Very large families of solutions with $J>\sqrt{N_{1} N_{5} N_{p}}$
Conjectured existence of BPS black rings Bena, kaus
Theorems ...
$U(1) \times U(1)$ found Evvang, Emparan, Mateos, Reall; Bena, Wamer; Gauntett, Gutowski

- Want solutions for generic brane configuration
- Usual techniques do not work
- Drive to USC

Key Idea: dipole charges do not affect supersymmetries.
Use Killing spinors to find solutions.

Three-Charge Supergravity Solutions

Solution depends on $G^{1} G^{2} G^{3} Z_{1} Z_{2} Z_{3} \vec{k}$

The solution has 4 layers:

- Base \mathbb{R}^{4} (Hyper-Kähler 4D space)
- Dipole field strengths G^{1}, G^{2}, G^{3} - selfdual

$$
* G^{I}=G^{I}
$$

- Warp factors Z_{1}, Z_{2}, Z_{3}

$$
d * d Z_{1}=G^{2} \wedge G^{3}
$$

- Rotation vector \vec{k}

$$
d \vec{k}+* d \vec{k}=G^{1} Z_{1}+G^{2} Z_{2}+G^{3} Z_{3}
$$

System is linear when solved in this order! Bena, warner
Also found in 5D sugra work Gauntett, Gutowski, Hull, Pakis, Reall

Constructing Three-Charge Solutions

$$
\begin{aligned}
& * G^{I}=G^{I} \\
& d * d Z_{1}=G^{2} \wedge G^{3} \\
& d \vec{k}+* d \vec{k}=G^{1} Z_{1}+G^{2} Z_{2}+G^{3} Z_{3}
\end{aligned}
$$

- Choose M5 dipole profile:
- Find selfdual G^{I}

Constructing Three-Charge Solutions

$* G^{I}=G^{I}$
$d * d Z_{1}=G^{2} \wedge G^{3}$
$d \vec{k}+* d \vec{k}=G^{1} Z_{1}+G^{2} Z_{2}+G^{3} Z_{3}$

- Choose M5 dipole profile:
- Find selfdual G^{I}

- Sprinkle M2 brane charges. Find Z_{I}
- Find \vec{k}

Electromagnetism in $\mathbb{R}^{4} \quad$ Can write down implicitly any solution
$U(1) \times U(1)$ easiest to construct explicitly.

Black Rings and Three Charge Supertubes

M5 dipole charges n_{1}, n_{2}, n_{3}
M2 charges $\bar{N}_{1}, \bar{N}_{2}, \bar{N}_{3}$
Rotation in plane of ring J_{T}

$S=\pi \sqrt{2 n_{1} n_{2} \bar{N}_{1} \bar{N}_{2}+2 n_{1} n_{3} \bar{N}_{1} \bar{N}_{3}+2 n_{2} n_{3} \bar{N}_{2} \bar{N}_{3}-n_{1}^{2} \bar{N}_{1}^{2}-n_{2}^{2} \bar{N}_{2}^{2}-n_{3}^{2} \bar{N}_{3}^{2}-4 n_{1} n_{2} n_{3} J_{T}}$

$$
\begin{aligned}
N_{1} & =\bar{N}_{1}+n_{2} n_{3} \\
N_{2} & =\bar{N}_{2}+n_{1} n_{3} \\
N_{3} & =\bar{N}_{3}+n_{1} n_{1} \\
J_{\psi} & =J_{T}+J_{B} \\
J_{\phi} & =J_{B}
\end{aligned}
$$

Two Microscopic Descriptions:

- Take near-horizon limit. Solution asymptotically $\operatorname{AdS} S_{3} \times S^{3} \times T^{4}$. Ring described in D1-D5-P CFT. Bena and kraus
- Take near-ring limit. Black Ring \rightarrow Black String. 4D black hole CFT.

Two Microscopic Descriptions:

- Take near-horizon limit. Solution asymptotically $\operatorname{AdS} S_{3} \times S^{3} \times T^{4}$. Ring described in D1-D5-P CFT. Bena and kraus
- Take near-ring limit. Black Ring \rightarrow Black String. 4D black hole CFT.

4D Black Hole CFT

To establish this description put ring in Taub-NUT and change moduli
Elvang, Emparan, Mateos, Reall; Bena, Kraus, Warner; Gaiotto, Strominger, Yin
Ring in Taub - NUT

RING

4D Black Hole CFT

To establish this description put ring in Taub-NUT and change moduli Elvang, Emparan, Mateos, Reall; Bena, Kraus, Warner; Gaiotto, Strominger, Yin

Ring in Taub - NUT

- Microscopic description 4D black hole: $\bar{N}_{1} \bar{N}_{2} \bar{N}_{3} n_{1} n_{2} n_{3} J_{T}$

Bena, Kraus, Warner; Gaiotto, Strominger, Yin; Cyrier, Guică, Mateos, Strominger

- $E_{7(7)}$ quartic invariant
$s=\pi \sqrt{2 n_{1} n_{2} \bar{N}_{1} \bar{N}_{2}+2 n_{1} n_{3} \bar{N}_{1} \bar{N}_{3}+2 n_{2} n_{3} \bar{N}_{2} \bar{N}_{3}-n_{1}^{2} \bar{N}_{1}^{2}-n_{2}^{2} \bar{N}_{2}^{2}-n_{3}^{2} \bar{N}_{3}^{2}-4 n_{1} n_{2} n_{3} J_{T}}$
- Microscopic charges \neq charges measured at infinity. Similar to Klebanov - Tseytlin, Klebanov - Strassler.

Looking for Microstates

$S>0 \quad$ black ring
$S=0 \quad$ candidate for microstate
$S<0 \quad$ CTC's, unphysical

- Near-horizon metric is $\operatorname{Ad} S_{3} \times S^{2} \times T^{6}$
- Horizon curvature $\sim \frac{1}{\left(n_{1} n_{2} n_{3}\right)^{\frac{1}{3}}}$

Naive microstate solution $(S=0)$ is singular.
Compactified $A d S_{3}$, zero size S^{1}.

Resolve singularity:

What is a geometric transition?

Start with branes wrapping cycle
Dual cycle gives brane charge

Turn on gravity:

- Branes shrink cycle to zero size.
- The dual cycle becomes large.

Resulting solution has different topology and no brane sources.

The geometric transition of the supertube

M5 branes wrap S^{1} in the \mathbb{R}^{4} base Dual cycle S^{2}
$\int_{S^{2}} F_{12 i j}=n_{1} \quad \int_{S^{2}} F_{34 i j}=n_{2}$

The geometric transition of the supertube
M5 branes wrap S^{1} in the \mathbb{R}^{4} base
Dual cycle S^{2}
$\int_{S^{2}} F_{12 i j}=n_{1} \quad \int_{S^{2}} F_{34 i j}=n_{2}$

After the transition:
$S^{2} \rightarrow$ large $\quad S^{1} \rightarrow 0$
Fibered $S^{1} \rightarrow$ large S^{2}
NEW BASE with nontrivial S^{2}, S^{2} and no brane sources
Can we find this base?
Hyper-Kähler - For generic supertube not enough information

HyperKähler $+U(1) \times U(1) \Rightarrow$ Gibbons-Hawking Gibbons, Ruback

$$
\begin{aligned}
d s^{2} & =V\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)+V^{-1}(d \psi+\vec{A})^{2} \\
\nabla \times \vec{A} & =\nabla V \\
V & =\frac{1}{r} \quad \mathbb{R}^{4} \\
V & =1+\frac{1}{r} \quad \text { Taub-NUT }
\end{aligned}
$$

- Nontrivial $S^{2}, S^{2} \rightarrow V$ has 3 centers
- Asymptotically $\mathbb{R}^{4}+$ integer charges $\quad \Rightarrow$

$$
V=\frac{1}{r}-\frac{Q}{r_{a}}+\frac{Q}{r_{b}} \quad Q \in \mathbb{Z}
$$

$$
V=\frac{1}{r}-\frac{Q}{r_{a}}+\frac{Q}{r_{b}}
$$

Naive Solution
Resolved Solution

$N_{3}=n_{1} f_{2}+f_{1} n_{2} \quad$ M2 charge dissolved in fluxes

- Resembles naive solution away from $a-b$ bubble
- Small $a-b$ bubble \rightarrow brane description
- Similar to LLM Lin, Lunin, Maldacena

Comparison to $S=04 D$ black hole

Singularity of $S=0$ black ring resolved by nucleation of,+-GH pair Ring in Taub - NUT

Comparison to $S=04 D$ black hole

Singularity of $S=0$ black ring resolved by nucleation of,+-GH pair

Nucleation of GH pair \Longleftrightarrow splitting of 4D BH in two stacks of branes
D1-D5-KKM-P system is 4D BH. $S=0$ when $P \rightarrow 0$.
CFT analysis of D1-D5-KKM system:
$S=0$ 4D BH resolved by splitting D1-D5 from KKM
Resolution mechanism is the same!

The New Base

- Signature of base changes from $(+,+,+,+)$ to $(-,-,-,-)$
- Z_{i} blow up and change sign at interface:

$$
d * d Z_{1}=G^{2} \wedge G^{3} \quad \Rightarrow \quad Z_{i} \sim \frac{1}{V}(\ldots)
$$

- Full metric is smooth

N Supertubes - The Naive Configuration

N Supertubes - The Resolved Solution

- Each supertube resolved by nucleation of,+- GH pair

N Supertubes - Microstates with GH Base

- Each supertube resolved by nucleation of,+- GH pair
- GH centers can move
- Smooth solutions with Gibbons-Hawking base, and arbitrary distribution of + and - centers Bena, Wamer; Berglund, Gimon, Levi

- Novel extremal limit of 3-charge non-extremal 5D BH
- $V=\frac{Q+1}{r}-\frac{Q}{r_{a}}$
- Special case of bubbling solution

3 ways to get D1-D5-P microstates
Geometric transitions
S=0 4D black hole
Extremal limits of 5D BH
Very nontrivial agreement

More general solutions

Supertubes can have arbitrary shapes and M2 densities Bena, Kraus, Warner
$S=0$ configurations given by 6 functions:

$$
4 \text { : shape }
$$

3 : M2 densities
$-1: S=0$

Geometric transition \Rightarrow
New base: Hyper-Kähler (SUSY) + asymptotically \mathbb{R}^{4}
6 functions worth of Hyper-Kähler geometries

More general solutions - N supertubes

Geometric transition \Rightarrow
$6 N$ functions worth of asymptotically \mathbb{R}^{4} Hyper-Kähler geometries with $(-,-,-,-)$ signature

Huge number of geometries dual to D1-D5-P states
Might as well be enough to acount for entropy

1. D1-D5-P states dual to black hole do not have individual bulk duals. AdS-CFT only relates partition functions, not states.

- Some D1-D5-P states do have bulk duals. Distinction is unnatural.
- Other systems (LLM, Giant Gravitons, D1-D5, Polchinski-Strassler, D4 \rightarrow NS5) do have one bulk state for each boundary state.

2. Each boundary state has bulk dual. Generic bulk microstate very similar to BH.

- Each microstate has horizon, entropy.
- Microstates do not have unitary physics.

3. Each boundary state has bulk dual. Generic bulk microstate has no horizon, and is LARGE (horizon size) Mathur

- Hard to obtain using collapsing shells
- Nontrivial check: size of microstate solution grows with g_{s} like BH horizon

Which of the these versions of black hole physics is correct ?

Summary

- D-brane physics behind existence of black rings and supertubes
- Supergravity solutions for arbitrary shapes
- Geometric transitions \Rightarrow Microstates of D1-D5-P system correspond to asymptotically \mathbb{R}^{4} Hyper-Kähler geometries with patches of $(-,-,-,-)$ signature
- 6 N functions worth of geometries

A few things I would like to know

- Classification of Hyper-Kähler spaces with changing signature.
- Find CFT microstates dual to bubbling solutions. What are the features of generic microstates (long effective strings).
- Which of the three versions of black hole physics is correct ?

