
The S-Matrix Reloaded: Twistors, Unitarity,

Gauge Theories and Gravity

Z. Bern (UCLA)

KITP Mathematical Structures in String Theory, Sept 29, 2005

with I. Bena, N.E.J. Bjerrum-Bohr, V. Del Duca, L. Dixon, D. Dunbar,

D. Forde, H. Ita, D. Kosower, P. Mastrolia, R. Roiban, V. Smirnov
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• Motivation

(a) QCD and applications to colliders, especially the LHC

(b) Try to solve N = 4 maximally supersymmetric Yang-Mills theory

(c) Reexamine question of supergravity divergences.
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• N = 4 super-Yang-Mills loop amplitudes

(a) Unitarity method

(c) Twistor space structure

(c) Higher loops resummation

• Supergravity.

• Summary and Outlook.
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CERN LHC
The issues of perturbation theory in quantum field theory are central to

particle physics. Entire month of the 2004 KITP collider physics

workshop was devoted to the issues of pushing QCD perturbative

calculations to higher order.

Enormous resources devoted to these experiments

Very rapid recent progress in perturbation theory: unitarity method,

twistors, on-shell recursion.
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Helicity

Consider the five-gluon tree-level amplitude of QCD. Enters in

calculation of multi-jet production at hadron colliders.

Described by following Feynman diagrams:

+ + + · · ·

If you follow the textbooks you discover a disgusting mess.
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Result of a brute force calculation:

k1 · k4 ε2 · k1 ε1 · ε3 ε4 · ε5
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Helicity
Xu, Zhang and Chang

F.A.Berends, R.Kleiss, P.De Causmaecker

R. Gastmans and T. T. Wu

J.F. Gunion and Z. Kunszt

& many others

Vector polarizations

ε+µ (k; q) =

〈
q−

∣∣ γµ
∣∣k−

〉
√

2 〈q k〉
, ε−µ (k, q) =

〈
q+

∣∣ γµ
∣∣k+

〉
√

2 [k q]

More sophisticated version of circular polarization: ε±µ = (0, 1,±i, 0)
All required properties of polarization vectors satisfied:

ε2i = 0 , k · ε(k, q) = 0 , ε+ · ε− = −1

Notation εabλjaλlb←→ 〈j l〉 = 〈kj−|kl+〉 =
√

2kj · kl eiφ

εȧḃλ̃
ȧ
j λ̃

ḃ
l ←→ [j l] = 〈kj+|kl−〉 = −

√
2kj · kl e−iφ

Changes in reference momentum q are equivalent to gauge

transformations.

Graviton polarization tensors are the squares of these!

ε++
µν = ε+µ ε

+
ν , 2 = 1 + 1
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Five Gluon Results with Helicity

Following contains the physical content of the messy formula:

A5(1
±, 2+, 3+, 4+, 5+) = 0

A5(1
−, 2−, 3+, 4+, 5+) = i

〈1 2〉4
〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉

These are color stripped amplitudes.

A5(1, 2, 3, 4, 5) =
∑

perms

Tr(T a1T a2T a3T a4T a5)A5(1
−, 2−, 3+, 4+, 5+)

Motivated by the Chan-Paton factors of open string theory. Mangano and Parke

Feynman diagrams scramble

together kinematics and color.
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Twistor Space and Topological String Theory

In a beautiful paper Ed Witten demonstrated that “twistor space” can

reveal hidden structures of scattering amplitudes. Precursor from Nair

Link to string theory is for N = 4 super-Yang-Mills theory, but at tree

level it might as well be QCD.

Twistor space given by Fourier transform with respect to plus helicity

spinors.

Ã(λi, µi) =

∫ ∏

i

d2λ̃i

(2π)2
exp

(
∑

j

µ
ȧ
j λ̃jȧ

)
A(λi, λ̃i)

Tree-level QCD scattering amplitudes ↔ ‘Twistor-space’ ↔ Topological String Theory

E. Witten; Roiban, Spradlin, and Volovich

Witten observed that in twistor space external points lie on certain

curves. Very constraining. Non-trivial Duality
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N = 4 non-MHV Amplitudes

Ed Witten conjectured that amplitudes should be supported on curves in

twistor space of degree

d = q − 1 + L, q = # negative helicities, L = # loops,

In twistor space external points of amplitudes have support on curves:
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Connected and disconnected pictures.

Witten
Roiban, Spradlin and Volovich
Georgiou, Glover and Khoze
Cachazo, Svrček and Witten

Gukov, Motl and Neitzke
Bena, Bern and Kosower

Bedford, Brandhuber, Spence and Travaglini
Britto, Cachazo and Feng

Bjerrum-Bohr, Dixon and Dunbar
Bena, Bern, Kosower, Roiban

and many others
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MHV Vertices

Motivated by twistor space structure Cachazo, Svrček and Witten define
an off-shell “MHV vertex” based on Parke-Taylor amplitudes

V (1−, 2−, 3+, . . . , n+, P+) =
〈1 2〉4

〈1 2〉 · · · 〈n− 1, n〉 〈nP 〉 〈P 1〉 P

1
2
3

n

..
.

Continue spinor off-shell (P 2 6= 0): 〈i P 〉 = η
∑n

j=1

〈
i−

∣∣ /kj
∣∣q−

〉

where P = k1 + k2 + · · · kn and q auxiliary, satisfying q2 = 0.

Non-MHV amplitudes obtained by sewing together MHV vertices.

PHolds generally for any massless gauge theory,

including QCD. Georgiou and Khoze; Wu and Zhu
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Cachazo, Svrček and Witten

5+

4+

6+

3−
2− 1 −

+     − +     −
3−2−

1 − 4+

5+6+

4+
3−

2−
−      + −      +

2−

1 −

4+

3−

5+

2−
−      +

1 −

3−2−

4+

1 −

5+5+

1 −

5+6+
6+

3−

4+5+

6+

6+

+     −

A6(1
−
, 2
−
, 3
−
, 4

+
, 5

+
, 6

+
) =

〈1 2〉3

〈5 6〉 〈6 1〉 〈2| 5 + 6 + 1 |q〉 〈5| 6 + 1 + 2 |q〉
×

1

s34
×

〈3| 4 |q〉3

〈3 4〉 〈4| 3 |q〉

+
〈1| 4 + 5 + 6 |q〉3

〈4 5〉 〈5 6〉 〈6 1〉 〈4| 5 + 6 + 1 |q〉
×

1

s23
×

〈2 3〉3

〈3| 2 |q〉 〈2| 3 |q〉

+
〈3| 4 + 5 + 6 |q〉3

〈3 4〉 〈4 5〉 〈5 6〉 〈6| 3 + 4 + 5 |q〉
×

1

s12
×

〈1 2〉3

〈2| 1 |q〉 〈1| 2 |q〉

+
〈2 3〉3

〈3 4〉 〈4 5〉 〈5| 2 + 3 + 4 |q〉 〈2| 3 + 4 + 5 |q〉
×

1

s61
×

〈1| 6 |q〉3

〈6 1〉 〈6| 1 |q〉

+
〈1| 5 + 6 |q〉3

〈5 6〉 〈6 1〉 〈5| 6 + 1 |q〉
×

1

s561
×

〈2 3〉3

〈3 4〉 〈4| 2 + 3 |q〉 〈2| 3 + 4 |q〉

+
〈1 2〉3

〈6 1〉 〈2| 6 + 1 |q〉 〈6| 1 + 2 |q〉
×

1

s612
×

〈3| 4 + 5 |q〉3

〈3 4〉 〈4 5〉 〈5| 3 + 4 |q〉
〈1| 2 + 3 |4〉 ≡

〈
1−
∣∣∣ /k2 + /k3

∣∣∣4−
〉

q arbitrary but null

Key message from twistors: For general helicities tree-level scattering amplitudes are
much much simpler than anyone anticipated.
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N = 4 Super-Yang-Mills

In 1974 ’t Hooft suggested that we could solve QCD in the planar limit.

This is too hard. We should look instead at a simpler theory.

N = 4 super-Yang-Mills is by far the simplest D = 4 gauge theory.

N = 4 theory is a cousin of QCD, but with specially arranged matter.

1 gluon, 4 real fermions and 6 scalars.

• N = 4 super-Yang-Mills is a conformal field theory (CFT). UV finite.

• It is the CFT appearing in Maldacena’s AdS/CFT correspondence.

• Maldacena conjecture suggests a magical simplicity, especially in the

planar limit with strong coupling – dual to weakly coupled gravity.

Can we solve N = 4 super-Yang-Mills theory?

This is an important question not just in string theory community.
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An AdS/CFT puzzle

For large ’t Hooft coupling get weakly coupled gravity on AdS side.

Weakly coupled gravity on AdS side is relatively simple.

Quantities protected by susy are generally simple on the CFT side.

What about unprotected quantities?

Heuristically, to match the simplicity of the AdS side, the perturbation

series should be resummable. Expect an iterative structure to allow for a

resummation.

How can we identify the iterative structure?

Our approach is to look at scattering amplitudes. Well defined (in dim.

reg.), gauge invariant, and independent of field variable choices.
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Loop Amplitudes
Bern, Dixon, Dunbar, Kosower

hep-ph/9403226,9409265

Bern and Morgan, hep-ph/9511336

Summary of results from our early papers on the subject:

• Key Theorem: Any amplitude in any massless theory is fully

determined from D-dimensional tree amplitudes to all loop orders.

Off-shell formulations unnecessary. Unitarity is all that is necessary.

• Four-dimensional cut constructibility: At one-loop, any amplitude in a

massless susy gauge theory is fully constructible from

four-dimensional tree amplitudes (even in the presence of IR and UV

singularities).

• Simplicity: One-loop N = 4 amplitudes are much much simpler than

they ought to be. Twistor space and topological string theory finally

points to the origin of this simplicity.

Textbook field theory ideas not needed: Green functions, Feynman rules,

counterterms, Faddeev-Popov ghosts, BRST, superspace, etc.
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Generalized Cuts Bern, Dixon and Kosower, hep-ph/9708239

Bern, Dixon and Kosower, hep-ph/0404293

Britto, Cachazo and Feng, hep-th/0412103

Two-particle cuts:
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Three-particle cuts:
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Generalized triple cut:
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It should be interpreted as demanding that cut propagators do not

cancel.

The unitarity method is a potent tool for state-of-the-art calculations. It

very effectively combines with twistor methods.
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Arbitrary Number of Legs at One Loop

Consider cuts of maximally helicity violating one-loop amplitudes.
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m 1

m 2

l1

m 2 +1

−1m 1

l2

Bern, Dixon
Dunbar and Kosower

The tree-level Parke-Taylor amplitudes for n gluons have a remarkable

property:
A

tree
(`

+
1 ,m

+
1 , · · · , k

−
, · · · , j

−
, · · · ,m

+
2 , `

+
2 ) =

〈k j〉
4

〈`1m1〉 〈m1, m1 + 1〉 · · · 〈m2 − 1, m2〉 〈m2 `2〉 〈`2 `1〉

Only 2 denominators in each tree have non-trivial dependence on loop

momentum.

Together with 2 cut propagators the 4 denominators from the trees give

at worst a hexagon integral (which simplifies in susy cases).
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Bern, Dixon, Dunbar and Kosower (1994)

At one loop in our earlier papers we obtained:

• All MHV amplitudes in maximal N = 4 super-Yang-Mills theory.

• All MHV amplitudes in N = 1 super-Yang-Mills

• All helicities for N = 4 super-Yang-Mills six-points amplitudes.

A
1-loop
5 = A

tree
5

[
−

1

ε2

5∑

i=1

(
µ2

−si,i+1

)ε

+

5∑

i=1

ln

(
−si,i+1

si−2,i−1

)
ln

(
−si+2,i+3

si−2,i−1

)
+

5π2

6

]

��� �
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These amplitudes are the one-loop analogs of the

Parke-Taylor tree-level amplitudes.

The amplitudes are much much simpler than

they ought to be.
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N = 4 next-to-MHV Amplitudes

To uncover the twistor space structure of loop amplitudes we computed

NMHV amplitudes using the unitarity method.

• 7 points, e.g. A7(1
−, 2−, 3+, 4−, 5+, 6+, 7+) — equivalent to 227,585

Feynman diagrams. Britto, Cachazo and Feng, hep-th/0410179

Bern, Del Duca, Dixon and Kosower, hep-th/0410224

• n-points – needed to fully expose the twistor structure Bern, Dixon and Kosower
hep-th/0412210

A1-loop
n =

∑
i ciBi

The Bi are known scalar box functions given in terms of polylogs.
Coefficients for all NMHV n-point amplitudes are listed in our paper
hep-th/0412210. Example: (1 + 2) ≡ /k1 + /k2

c136 =

(〈
7+
∣∣∣ (2 + 4)

∣∣∣3+
〉
〈5 4〉+

〈
7+
∣∣∣ 6
∣∣∣5+

〉
〈3 4〉

)4

〈2 3〉 〈3 4〉 〈4 5〉 〈5 6〉 [7 1]
〈
1+
∣∣ (2 + 3)

∣∣4+
〉 〈

7+
∣∣ (5 + 6)

∣∣4+
〉 〈

4−
∣∣ (5 + 6)(7 + 1)

∣∣2+
〉 〈

4−
∣∣ (2 + 3)(7 + 1)

∣∣6+
〉
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A key result: Beautiful twistor-space picture for terms in integral

function coefficients: Bern, Dixon and Kosower

General coplanarity of NMHV integral coefficients proven.

Bern, Del Duca, Dixon and Kosower; Britto, Cachazo and Feng

Complete determination of all one-loop next-to-MHV amplitudes.

Bern, Dixon and Kosower

Points to further twistor space marvels awaiting discovery and

exploitation.

A full understanding of the twistor space structure of loop amplitudes

should lead to new insights. Twistor string interpretation?
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N=4 Multi-Loop Amplitudes ZB, Rozowsky, Yan

Consider N = 4 super-Yang-Mills.
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The basic D-dimensional two-particle sewing equation:

∑

N=4 states

Atree
4 (−`1, 1, 2, `2)×Atree

4 (−`2, 3, 4, `1) = − stAtree
4 (1, 2, 3, 4)

(`1 − k1)2(`2 − k3)2

Applying this equation at one-loop we have

A1-loop
4 (1, 2, 3, 4) = −stAtree

4 I1-loop
4 (s, t)

This amplitude has the correct s and t channel cuts in all dimensions. It

agrees with the results of Green, Schwarz and Brink.

Since we get back Atree
4 we can recycle the two-particle cut algebra to all

loop orders!
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Exact Two-loop Expressions ZB, Rozowsky, Yan

The two-loop two-particle cut sewing algebra is identical to the one-loop

case.

We have also verified that the three particle cuts contain no other

functions than those found with two-particle cuts.

Combining all cuts into a single function gives

Aplanar
4 (1−, 2−, 3+, 4+)

= −stAtree
4 (1−, 2−, 3+, 4+)

(
s I2-loop

4 (s, t) + t I2-loop
4 (t, s)

)
� �

� ��� �� �
	 � � �


�
��

� �
�

�
�

This is the exact expression for planar contributions in terms of what are

now known scalar integrals. Non-planar is similar.
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The Structure of the L-loop Amplitude

Apply same cut construction to three loops:
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01 23 45 67 8 89

:
;<

=

Have verified 2 and 3 particle cuts.

For higher loops pattern appears to be to add extra line with given

factor. No triangle or bubble sub-diagrams allowed.

> ?
@A

B C
DE

FG H I JLK MN K O P O

Note: So far this is prior to carrying out loop integration.
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Loop Iteration of the Amplitude

The four-point one-loop D = 4, N = 4 amplitude:

A1-loop
4 (s, t) = −stAtree

4 I1-loop(s, t)

I1-loop(s, t) ∼ 1

st

[
2

ε2

(
(−s)−ε + (−t)−ε

)
− ln2

(
t

s

)
− π2

]
+O(ε)

To check for iteration we need to evaluate the loop integrals Smirnov

A2-loop
4 (1−, 2−, 3+, 4+) = −stAtree

4 (1−, 2−, 3+, 4+)
(
s I2-loop

4 (s, t) + t I2-loop
4 (t, s)

)
� �

� ��� �� �
	 � � �
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Near D = 4 the double box integral is a rather intricate object involving

up to 4th order polylogarithms.
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Nevertheless, the planar two-loop amplitude undergoes an amazing

simplification: Anastasiou, Bern, Dixon, Kosower

M2-loop
4 (s, t) =

1

2

(
M1-loop

4 (s, t)

)2

+ f(ε)M1-loop
4 (s, t)

∣∣∣∣
ε→2ε

− 1

2
ζ2
2

where

M loop
4 = Aloop

4 /Atree
4 , f(ε) = −ζ2 − ζ3 ε− ζ4 ε

2

f(ε) is a universal IR function given in terms of anomalous dimensions of

leading twist operators.

Thus, we have succeeded to express the two-loop amplitude as an

iteration of the one loop amplitude together with a universal IR function.

Non-trivial polylogarithm and Nielsen function identities needed to

demonstrate the above.
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Generalization to n-Points Anastasiou, Bern, Dixon, Kosower

Not yet feasible to explicitly evaluate n > 4 point two-loop integrals

But we have tools for obtaining results: Collinear behavior

b

a

a || b
b

a

a+b

Have calculated the two-loop splitting amplitudes which determine the

behavior of amplitudes as momenta become collinear.
Following ansatz satisfies all collinear constraints:

M2-loop
n (ε) =

1

2

(
M1-loop
n (ε)

)2

+ f(ε)M1-loop
n (2ε)− 1

2
ζ2
2

where M loop
n = Aloop

n /Atree
n , f(ε) = −ζ2 − ζ3 ε− ζ4 ε

2

Interesting quantity is finite remainder after subtracting IR divergences.

The conjecture is almost certainly true for MHV amplitudes.
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Multi-loop Generalization ZB, Dixon and Smirnov
hep-th/0505205

Does the above iteration hold to higher loop orders?

To check this we explicitly integrated the known three loop integrand.

used Smirnov’s techniques

Answer in terms of several pages of harmonic polylogarithms.

Remiddi and Vermaseren

After applying several hundred harmonic polylogarithm identities:

M
3-loop
4 (ε) = −

1

3

[
M

1-loop
4 (ε)

]3
+M

1-loop
4 (ε)M

2-loop
4 (ε) + f

3-loop
(ε)M

1-loop
4 (3 ε) + C

(3)
+O(ε)

where

f
3-loop

(ε) =
11

2
ζ4 + ε(6ζ5 + 5ζ2ζ3) + ε

2
(c1ζ6 + c2ζ

2
3) ,

and

C
(3)

=


341

216
+

2

9
c1


ζ6 +


−

17

9
+

2

9
c2


ζ2

3 .

Rational numbers c1 and c2 are undetermined since they actually cancel from the
expression. (A five-point calculation would determine these constants.)
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All-Leg Bootstrap

Repeat two-loop discussion, but at three loops.

b

a

a || b
b

a

a+b

Although we don’t have a three-loop calculation of the splitting

amplitude, it is clear by now it too should iterate.

Following exactly the same logic as at two loops gives us immediately an

n-point generalization for MHV amplitudes:

M
3-loop
n (ε) = −

1

3

[
M

1-loop
n (ε)

]3

+M
1-loop
n (ε)M

2-loop
n (ε) + f

3-loop
(ε)M

1-loop
n (3 ε) + C

(3)
+O(ε)

With this ansatz, three-loop MHV amplitudes have proper factorization

limits.
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All Loop Bootstrap

Key observation: through 3 loops the iteration is exactly the same as the

known iteration of IR singularites.

In any unbroken gauge theory the IR structure is understood to all loop

orders. Sterman and Magnea; Catani; Sterman and Tejeda-Yeomans

Cleaning up Sterman and Magnea IR formula for planar N = 4
super-Yang-Mills theory gives a beautiful formula for all loop orders:

Mn = exp



∞∑

l=1

a
l

(
f

(l)
(ε)M

(1)
n (lε) + h

(l)
n (ε)

)


where M
(1)
n is the one-loop amplitude and hn is an undetermined finite function.

a =
Ncαs
2π

(4πe−γ)ε f (l)(ε) = f
(l)
0 + εf

(l)
1 + ε2f

(l)
2

f
(l)
0 =

1

4
γ̂

(l)
K , f

(l)
1 =

l

2
Ĝ(l)

0 ,

γK has various names: cusp anomalous dimension, soft anomalous dimension, high spin
limit of the leading twist operators, high moment limit of Altarelli-Parisi kernel.
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γK = 4 a− 4ζ2 a
2 + 22ζ4 a

3 + · · · ,

γ(j) =
1

2
γK(ln(j) + γe)−B(αs) +O(ln(j)/j) ,

γ(j) is the anomalous dimension of leading twist operator at spin j.

• Our determination of the cusp anomalous dimension agrees with that

of Kotikov, Lipatov, Onishchenko and Velizhanin (KLOV) as extracted

from the QCD computation of Moch, Vermaseren and Vogt (MVV).

• Also agrees with the results of Bethe ansatz integrability results of

Staudacher. New ansatz for all orders γK!

• By assuming iteration of splitting amplitudes, it seems possible to

evaluate γK to all loop orders. Problem for the future.

• Some recent progress on constructing a proof for higher numbers of

legs from Cachazo.
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Key Formula for Finite Remainder

We can determine the finite remainder function through 3 loops by

comparison to our explicit computations.

Left over finite parts are constants in planar N = 4 theory! We will

assume this to be true to all loop orders.
Subtracting the known IR divergence (which cancels from any physical
quantity) gives (taking D = 4 or ε = 0 to recover conformal limit)

Fn = exp

[
1

4
γKF

(1)
n + C

]
.

where F
(1)
n are the known one-loop finite parts of scattering amplitudes.

γK = 4 a− 4ζ2 a
2

+ 22ζ4 a
3

+ · · · ,

C = −
1

2
ζ
2
2 a

2
+







341

216
+

2

9
c1


ζ6 +


−

17

9
+

2

9
c2


ζ

2
3


 a

3
+ · · · .

All loops are expressed in terms of 1-loop finite remainder!

This is almost certainly connected to integrability. Minahan and Zarembo; Beisert, Kristjansen

and Staudacher; Bena, Polchinski and Roiban; Lipatov; Faddeev and Korchemsky; Tseytlin; and many others
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Connection of Gravity and Gauge Theory Amplitudes

At tree-level, Kawai, Lewellen and Tye have given a complete description

of the relationship between closed string and open string amplitudes.
In the field theory limit (α′→ 0) sij = (ki + kj)

2

M tree
4 (1, 2, 3, 4) = s12A

tree
4 (1, 2, 3, 4)Atree

4 (1, 2, 4, 3) ,

M tree
5 (1, 2, 3, 4, 5) = s12s34A

tree
5 (1, 2, 3, 4, 5)Atree

5 (2, 1, 4, 3, 5)

+ s13s24A
tree
5 (1, 3, 2, 4, 5)Atree

5 (3, 1, 4, 2, 5)

where we have stripped all coupling constants. Mn is gravity amplitude

and An is color stripped gauge theory amplitude.
Atree

4 = g2
∑

non−cyclic Tr(T a1T a2T a3T a4)Atree
4 (1, 2, 3, 4)
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Holds for any external states.
See review: gr-qc/0206071
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Supergravity Loops

Divergences
      UV 

Amplitudes

N=8

Amplitudes
Loop 

SUGRA

Unitarity

    QCD Gluon

Super−Yang Mills
N=4

KLT

SUSY

• Serious flaw with all previous studies of divergences:

Rely on powercounting, taking into account

only supersymmetry.

Now have a much deeper understanding:

hidden symmetries and dualities, twistors, KLT.

• N = 8 supergravity is the most promising gravity

theory to investigate for finiteness.

• More susy −→ simpler calculations

(with the right formalism).
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Comments on Gravity Amplitudes

• N = 8 supergravity definitely is less divergent than previously thought

with the divergence delayed until at least 5 (instead of 3) loops.

Bern, Dixon, Dunbar, Perelstein, Rozowsky; Howe and Stelle

• Infinite sequences of one-loop MHV gravity amplitudes have been

obtained by exploiting relationship to gauge theory. Gravity

amplitudes inherit properties from gauge theory ones. Bern, Dixon, Rozowsky, Yan

• Twistor space structure of tree and one-loop

amplitudes in gravity inherited from gauge theory,

except derivative of delta-function support.

Witten; Bern, Bjerrum-Bohr, Dunbar; Bjerrum-Bohr, Dunbar, Ita; Bjerrum-Bohr, Dunbar, Ita, Perkins,Risager

• In one-loop n-graviton amplitudes a remarkable set of cancellations:

amplitudes have same UV behavior as N = 4 super-Yang-Mills theory.

Bern, Dixon, Perelstein, Rozowsky; Bern, Bjerrum-Bohr, Dunbar, Ita
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N = 8 Cancellations
Bern, Dixon, Perelstein, Rozowsky

Bern, Bjerrum-Bohr, Dunbar, Ita

hep-th/9811140; hep-th/0501137

Well known that all one loop supergravity amplitudes are finite. No

supersymmetric counterterm exists.

Closer examination of the scattering amplitudes reveals striking set of

cancellations, beyond what is needed for one-loop finiteness.

Compare N = 4 Yang-Mills with N = 8 supergravity:
pµ

sugra
N=8

YM

pµ

N=4

pν

Relative degree of divergence seems to gets worse.

However, all complete calculations to date find N = 8 sugra has exactly

the same degree of divergence as N = 4 Yang-Mills.

Unitarity method directly feeds lower loop amplitudes into higher loops.

Serious re-examination of the UV properties of multi-loop N = 8

supergravity using modern tools is needed.
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Summary

1. Motivation for studying amplitudes.

(a) LHC demands QCD loop calculations

(b) Can we solve N = 4 super-Yang-Mills theory?

(c) Is N = 8 supergravity finite, contrary to accepted wisdom?

2. Generalized unitarity method: Loop amplitudes from tree amplitudes.

3. Important new twistor space idea: Amplitudes are surprisingly simple,

even for general helicities.

4. Presented non-trivial evidence that planar N = 4 super-Yang-Mills

scattering amplitudes can be solved to all loop orders. Precise ansatz

for MHV amplitudes to all loop orders.

5. Standard arguments that supergravity diverges has a serious flaw. For

N = 8 some evidence to the contrary.

6. There are a variety of exciting avenues for further exploration in QCD,

super-Yang-Mills and supergravity.
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