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Prime Numbers

m(n) = number of prime numbersp <n
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Riemann Conjecture :

R(z) = O(Vz log(z))
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Zeta Function
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Explicit Formula (Riemann)

7' (x) = Li(z) — ) _ Li(z”)
0

+/OO du l0g 2
z u(u?—1)logu J

1roN 1 1 1 1
m(x) = w(x) + §7r(:v2)—|— §W($3) + ...

Explicit Formula (Weil)
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Quantum Chaos — Riemann Flow ?
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N(E) = (N(E)) + Nosc(E)

(N(B)) = 5 (log 7~ 1) + L + o(1)



Sign Problem :

sin(m E log p)
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Nosc(E) ~ —Z Z ( _— ) sin(m E T7)
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ADbsorption Spectrum

NN L L

Absorption Emission

The two kinds of Spectra



Q-Lattices (ac + mm)

A Q-lattice in R™ is a pair (A,¢), with A a
lattice in R™, and
¢ Q" /2" — QA/A

a homomorphism of abelian groups.

Two Q-lattices (A1,¢1) and (Ao, ¢>) are com-
mensurable if the lattices are commensurable
(i.e. QA1 = QA») and the maps agree modulo
the sum of the lattices,

$1 = ¢2 mod A + No.

XQ — space of 1-dimensional Q-lattices mod-
ulo commensurability.



Spectral realization

Idele class group Z* x IR{_I_ acts on LQ(XQ) and
zeros of L-functions dgive the absorption
spectrum with non-critical zeros appearing as
resonances.

Trace (RAU(R)) = 2h(1) log’ A+

h(u~™ 1)
Z/* 1w d*u + o(1)

" is the pairing with the distribution on ky,
which agrees with |1_ | for w 2 1 and whose
Fourier transform relative to a, vanishes at 1.

Global Trace Formula & RH
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(N(FE)) as symplectic volume |h| < E

h(q,p) = 2mqp

— 2 = q

_
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Global field of positive characteristic

k is the field of I, valued functions on C.

Ge(s) = J[ (1 — g /W)L

2 j
f(v) is the degree of the place v € X ;..

Functional Equation
gD ¢ (1 - 5) = 9D ¢(s)

where g is the genus of C.
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Cohomology and Frobenius

P(q%)

W)= T A

where P is the caracteristic polynomial of the
action of the Frobenius Fr* in HL (C,Qy).

The analogue of the Riemann conjecture for
global fields of characteristic p means that the
eigenvalues of the action of Fr* in H! j.e. the
complex numbers A; of the factorization

P(Ty=]]Q-X)T)

are of modulus |\;| = ¢%/2.

Proved by Weil (1942) (case g = 1 by Hasse)
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Frobenius in characteristic zero

(ac 4+ cc +mm)

e T hermodynamics of nhoncommutative
spaces

e Category of A-modules = abelian cat-
egory (/A = cyclic category)

e Endomotives
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The KMS condition

o(x*z) >0 Vee A, o(1) =1.

ot € AUt(A)
Imz= :
iB F(t+iB) = ¢(oy(b)a)
. F(t) = ¢ (aoy(b))
Imz=0

Fry(t) = p(xot(y))

Fry(t+i8) = p(o(y)z), VteR
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Cooling :

&g extremal KMSg states, for g > 1
prAXR— S(EgxRY) @ Ll

Distillation :

A-module D(A, p) given by the Cokernel of the

cyclic morphism given by the composition of p

with the trace Tr: 2! — C

Dual action :

Spectrum of the canonical action of Rj_ on the
cyclic homology

HCo(D(A,))
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Endomotives

A is an inductive limit of reduced finite dimen-
sional commutative algebras over the field K
and S is a semigroup of algebra endomorphisms

p.A— A

AK: AxS

Prototype Example :

Endomorphisms of an algebraic variety (group),
Xs={yeY: s(y) = x}.
Xsr DY r(y) € Xs.

s

Esulps(z)) = &ulx)
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Explicit Formula = Trace Formula (ac +
rm 4+ cc +mm)

h(u™1)
11— u
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Trace,;1(h) = h(0)+h(1) — Z/ *
( v
were the last term Y, [ h(“—_l)d* is the in-
v K 1) U
tersection number

Z(h) e A

Tracey1(h) = h(0) + h(1) — A e A h(1)

h(u™1)
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Unramified extensions K — K ®p, Fq

Analogue for Q of K — K ®p,_ Fq

Global field K Factor M
k %k
I\/IodKCIRi_I_ I\/IodMCR_I_

K—> K®]Fq Fqn

M — MNO'TZ

K — K @, Fq

M_>M><]0'R

Points C(F,)

rCXQ
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The subspace N'g C Xg\Cg

I'@ = UZQ C@ [v] C XQ

[U]w:]-) V’UJ#’U, [U]U:O

...... LogP............. Log7, Logs5, Log3, Log2.
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Weil’s proof

The proof of RH rests on two results

e (A) Positivity : Trace(Z xZ") > 0 unless Z
IS a trivial class.

e (B) Explicit Formula

#{C(F, N} =Y (-1 Tr(Frv|HE(C,Qp))
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The role of the positivity condition (A) in Weil's
proof is contained in the following :

The following two conditions are equiva-
lent :

e All L functions with Grossencharakter
on K satisfy the Riemann Hypothesis.

o Trace1(f x f#) > 0 for all f € S(Ck).

fF—=rt A9 =lg 7™
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Weil’s proof : Correspondences

Z . C—C,P— Z(P)
UnVeaU-V=(§)
Z= Z1xZs, Z1xZ:(P)= Z1(Za(P))
7' = o(2)
dZ)= Z e (PxC), d(Z)= Z e (Cx P)

Weil defines the Trace of a correspondence as
follows

Trace(2) = d(Z)+ d (Z) — Ze A

where A is the identity correspondence and e
IS the intersection number.
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Proof of positivity (A)

In any (correspondence class)/(trivial ones) one
finds a representative Z such that

Z>0, dlZ)=yg

Writing Z(P) = Q1 + -+ Qg, ZxZ'(P) is the
locus of > Q; X @,

Zx7' = d(Z2)A + Y
YeA< (4g—4)d (2),
K(P) = det{fi(Q;)}?
AeA=2-2g
Trace(ZxZ') = 2gd (Z)+ (2g—2)d (Z)—YeA

> (49—2)d (Z2)— (4g—4)d (Z2) = 2d'(Z) > O

because d’(Z) > 0 since Z is effective.

24



Virtual correspondences bivariant class

Degree of correspondence Pointwise index d(IM)

deg D(P) > g =~ effective | d(I"') >0 = 3K, I + K onto

Adjusting the degree Fubini step
by trivial correspondences on the test functions
Frobenius correspondence bivariant element IM'(h)
efschetz formula bivariant Chern of M'(h)

(localization on graph Z(h))
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