Noncommutative motives,

Thermodynamics and the zeros of zeta

A. C. + C. Consani + M. Marcolli

Work in progress

Prime Numbers

 $\pi(n) = \text{number of prime numbers } p \leq n$

$$Li(x) = \int_0^x \frac{du}{\log(u)} \sim \sum (k-1)! \frac{x}{\log(x)^k}$$

$$\pi(x) = \int_0^x \frac{du}{\log(u)} + R(x)$$

Riemann Conjecture:

$$R(x) = O(\sqrt{x} \log(x))$$

$$(\pi(n) = 2 + \sum_{5}^{n} \frac{e^{2\pi i \Gamma(k)/k} - 1}{e^{-2\pi i/k} - 1}, \quad \Gamma(k) = (k-1)!)$$

Graphs of $\pi(x)$ and Li(x)

Graph of $\pi(x)$ – Li(x)

Zeta Function

$$\zeta(s) = \sum_{1}^{\infty} n^{-s} = \prod_{P} (1 - p^{-s})^{-1}$$

$$\zeta_{\mathbb{Q}}(s) = \pi^{-s/2} \Gamma(s/2) \zeta(s)$$
$$s \to 1 - s$$

Explicit Formula (Riemann)

$$\pi'(x) = Li(x) - \sum_{\rho} Li(x^{\rho})$$

$$+ \int_{x}^{\infty} \frac{du}{u(u^{2} - 1)\log u} - \log 2$$

$$\pi'(x) = \pi(x) + \frac{1}{2}\pi(x^{\frac{1}{2}}) + \frac{1}{3}\pi(x^{\frac{1}{3}}) + \cdots$$

Explicit Formula (Weil)

$$\hat{h}(0) + \hat{h}(1) - \sum_{\rho} \hat{h}(\rho) = \sum_{v} \int_{K_v^*} \frac{h(u^{-1})}{|1 - u|} d^*u$$

Quantum Chaos → **Riemann Flow ?**

$$N(E) = \langle N(E) \rangle + N_{\text{OSC}}(E)$$
$$\langle N(E) \rangle = \frac{E}{2\pi} (\log \frac{E}{2\pi} - 1) + \frac{7}{8} + o(1)$$

Sign Problem:

$$N_{\rm OSC}(E) \sim \frac{-1}{\pi} \sum_{p} \sum_{m=1}^{\infty} \frac{1}{m} \frac{1}{p^{m/2}} \sin\left(m E \log p\right)$$

$$N_{\rm OSC}(E) \sim rac{1}{\pi} \sum_{\gamma_p} \sum_{m=1}^{\infty} rac{1}{m} rac{1}{2{
m sh}\left(rac{m\lambda_p}{2}
ight)} {
m sin}(m\,E\,T_{\gamma}^{\#})$$

Absorption Spectrum

The two kinds of Spectra

$$\mathbb{Q}$$
-Lattices (ac + mm)

A \mathbb{Q} -lattice in \mathbb{R}^n is a pair (Λ, ϕ) , with Λ a lattice in \mathbb{R}^n , and

$$\phi: \mathbb{Q}^n/\mathbb{Z}^n \longrightarrow \mathbb{Q}\Lambda/\Lambda$$

a homomorphism of abelian groups.

Two \mathbb{Q} -lattices (Λ_1, ϕ_1) and (Λ_2, ϕ_2) are commensurable if the lattices are commensurable (i.e. $\mathbb{Q}\Lambda_1 = \mathbb{Q}\Lambda_2$) and the maps agree modulo the sum of the lattices,

$$\phi_1 \equiv \phi_2 \mod \Lambda_1 + \Lambda_2.$$

 $X_{\mathbb{Q}} = \text{space of 1-dimensional } \mathbb{Q}\text{-lattices modulo commensurability.}$

Spectral realization

Idele class group $\widehat{\mathbb{Z}}^* \times \mathbb{R}_+^*$ acts on $L^2(X_{\mathbb{Q}})$ and **zeros of** L-functions give the absorption **spectrum** with non-critical zeros appearing as resonances.

Trace
$$(R_{\Lambda} U(h)) = 2h(1) \log' \Lambda +$$

$$\sum_{v \in S} \int_{K_v^*}' \frac{h(u^{-1})}{|1 - u|} d^*u + o(1)$$

 \int' is the pairing with the distribution on k_v which agrees with $\frac{du}{|1-u|}$ for $u \neq 1$ and whose Fourier transform relative to α_v vanishes at 1.

Global Trace Formula ⇔ RH

$\langle N(E) \rangle$ as symplectic volume $|h| \leq E$

$$h(q,p) = 2\pi q \, p$$

$$Vol(B_{+}) = \frac{E}{2\pi} \times 2 \log \Lambda - \frac{E}{2\pi} \left(\log \frac{E}{2\pi} - 1 \right)$$

Global field of positive characteristic

k is the field of \mathbb{F}_q valued functions on C.

$$\zeta_k(s) = \prod_{\Sigma_k} (1 - q^{-f(v)s})^{-1}$$

f(v) is the degree of the place $v \in \Sigma_k$.

Functional Equation

$$q^{(g-1)(1-s)}\zeta_k(1-s) = q^{(g-1)s}\zeta_k(s)$$

where g is the genus of C.

Cohomology and Frobenius

$$\zeta_k(s) = \frac{P(q^{-s})}{(1 - q^{-s})(1 - q^{1-s})}$$

where P is the caracteristic polynomial of the action of the **Frobenius** Fr^* in $H^1_{\operatorname{et}}(\bar{C},\mathbb{Q}_\ell)$.

The analogue of the Riemann conjecture for global fields of characteristic p means that the eigenvalues of the action of Fr^* in H^1 i.e. the complex numbers λ_j of the factorization

$$P(T) = \prod (1 - \lambda_j T)$$

are of modulus $|\lambda_i| = q^{1/2}$.

Proved by Weil (1942) (case g = 1 by Hasse)

Frobenius in characteristic zero

$$(ac + cc + mm)$$

- Thermodynamics of noncommutative spaces
- Category of Λ -modules = abelian category (Λ = cyclic category)
- Endomotives

The KMS condition

$$\varphi(x^*x) \ge 0 \qquad \forall x \in \mathcal{A}, \ \varphi(1) = 1.$$

$$\sigma_t \in \operatorname{Aut}(\mathcal{A})$$

Im
$$z = \beta$$

$$i\beta \qquad F(t + i\beta) = \varphi(\sigma_t(b)a)$$

$$Im z = 0$$

$$0$$

$$F(t) = \varphi(a\sigma_t(b))$$

$$F_{x,y}(t) = \varphi(x\sigma_t(y))$$

$$F_{x,y}(t+i\beta) = \varphi(\sigma_t(y)x), \quad \forall t \in \mathbb{R}.$$

Cooling:

 \mathcal{E}_{eta} extremal KMS $_{eta}$ states, for eta>1

$$ho:\mathcal{A}
times_\sigma\mathbb{R} o\mathcal{S}(\mathcal{E}_eta imes\mathbb{R}_+^*)\otimes\mathcal{L}^1$$

Distillation:

Λ-module $D(\mathcal{A}, \varphi)$ given by the Cokernel of the cyclic morphism given by the composition of ρ with the trace $\operatorname{Tr}: \mathcal{L}^1 \to \mathbb{C}$

Dual action:

Spectrum of the canonical action of \mathbb{R}_+^* on the cyclic homology

$$HC_0(D(\mathcal{A},\varphi))$$

Endomotives

A is an inductive limit of reduced finite dimensional commutative algebras over the field $\mathbb K$ and S is a semigroup of algebra endomorphisms

$$\rho:A\to A$$

$$\mathcal{A}_{\mathbb{K}} = A \rtimes S$$

Prototype Example:

Endomorphisms of an algebraic variety (group),

$$X_s = \{ y \in Y : s(y) = * \}.$$

$$X_{sr} \ni y \mapsto r(y) \in X_s.$$

$$X = \varprojlim_s X_s$$

$$\xi_{su}(\rho_s(x)) = \xi_u(x)$$

Explicit Formula = Trace Formula (ac + rm + cc + mm)

Trace_{H¹}(h) =
$$\hat{h}(0) + \hat{h}(1) - \sum_{v} \int_{K_v^*} \frac{h(u^{-1})}{|1 - u|} d^*u$$

were the last term $\sum_v \int_{K_v^*} \frac{h(u^{-1})}{|1-u|} \, d^*u$ is the intersection number

$$Z(h) \bullet \Delta$$

$$\operatorname{Trace}_{H^1}(h) = \widehat{h}(0) + \widehat{h}(1) - \Delta \bullet \Delta h(1)$$
$$- \sum_{v} \int_{(K_v^*, e_{K_v})} \frac{h(u^{-1})}{|1 - u|} d^*u$$

Unramified extensions $K \to K \otimes_{\mathbb{F}_q} \overline{\mathbb{F}}_q$

Analogue for $\mathbb Q$ of $K \to K \otimes_{\mathbb F_q} \overline{\mathbb F}_q$

Global field K	Factor M
$Mod K \subset \mathbb{R}_+^*$	$Mod M \subset \mathbb{R}_+^*$
$K o K \otimes_{\mathbb{F}_q} \mathbb{F}_{q^n}$	$M \to M \rtimes_{\sigma_T} \mathbb{Z}$
$K o K \otimes_{\mathbb{F}_q} \overline{\mathbb{F}}_q$	$M \to M \rtimes_{\sigma} \mathbb{R}$
Points $C(\overline{\mathbb{F}}_q)$	$\Gamma \subset X_{\mathbb{Q}}$

The subspace $\Gamma_{\mathbb{Q}} \subset X_{\mathbb{Q}} \backslash C_{\mathbb{Q}}$

$$\Gamma_{\mathbb{Q}} = \cup_{\Sigma_{\mathbb{Q}}} C_{\mathbb{Q}} [v] \subset X_{\mathbb{Q}}$$
$$[v]_w = 1, \quad \forall w \neq v, \quad [v]_v = 0$$

 $..... \operatorname{Log} P \operatorname{Log7}, \operatorname{Log5}, \operatorname{Log3}, \operatorname{Log2}.$

Weil's proof

The proof of RH rests on two results

- (A) Positivity : Trace($Z \star Z'$) > 0 unless Z is a trivial class.
- (B) Explicit Formula

$$\#\{C(\mathbb{F}_{q^j})\} = \sum (-1)^k \operatorname{Tr}(\operatorname{Fr}^{*j}|H^k_{\operatorname{et}}(\bar{C},\mathbb{Q}_\ell))$$

The role of the positivity condition (A) in Weil's proof is contained in the following :

The following two conditions are equivalent:

- All L functions with Grössencharakter on K satisfy the Riemann Hypothesis.
- Trace $_{H^1}(f \star f^{\sharp}) \geq 0$ for all $f \in \mathcal{S}(C_K)$.

$$f \to f^{\sharp}, \quad f^{\sharp}(g) = |g|^{-1} \, \overline{f}(g^{-1})$$

Weil's proof : Correspondences

$$Z: C \to C, P \to Z(P)$$

$$U \sim V \Leftrightarrow U - V = (f)$$

$$Z = Z_1 * Z_2, \quad Z_1 * Z_2(P) = Z_1(Z_2(P))$$

$$Z' = \sigma(Z)$$

$$d(Z) = Z \bullet (P \times C), \quad d'(Z) = Z \bullet (C \times P)$$

Weil defines the *Trace* of a correspondence as follows

$$Trace(Z) = d(Z) + d'(Z) - Z \bullet \Delta$$

where Δ is the identity correspondence and \bullet is the intersection number.

Proof of positivity (A)

In any (correspondence class)/(trivial ones) one finds a representative Z such that

$$Z > 0$$
, $d(Z) = g$

Writing $Z(P) = Q_1 + \cdots + Q_g$, $Z \star Z'(P)$ is the locus of $\sum Q_i \times Q_j$,

$$Z \star Z' = d'(Z) \Delta + Y$$

$$Y \bullet \Delta \le (4g - 4) d'(Z),$$

$$K(P) = \det\{f_i(Q_j)\}^2$$

$$\Delta \bullet \Delta = 2 - 2g$$

Trace $(Z \star Z') = 2 g d'(Z) + (2 g - 2) d'(Z) - Y \bullet \Delta$ $\geq (4 g - 2) d'(Z) - (4 g - 4) d'(Z) = 2 d'(Z) \geq 0$ because $d'(Z) \geq 0$ since Z is effective.

Virtual correspondences	bivariant class Г
Degree of correspondence	Pointwise index $d(\Gamma)$
$\deg D(P) \geq g \Rightarrow \sim \text{ effective}$	$d(\Gamma) > 0 \Rightarrow \exists K, \Gamma + K \text{ onto}$
Adjusting the degree by trivial correspondences	Fubini step on the test functions
Frobenius correspondence	bivariant element $\Gamma(h)$
Lefschetz formula	bivariant Chern of $\Gamma(h)$ (localization on graph $Z(h)$)