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Setting and formulation of the problem



Setting

• IIA on Calabi-Yau X  4d N = 2 sugra + vect. mult.
• D6-D4-D2-D0 BPS bound st.  BPS black holes with magn.
(D-branes + gauge flux) and el. charges (p0, pA, qA, q0)



General problem

Count number of BPS states with given charge (pi , qi ), ≡ Ω(p, q),
and compare with gravity prediction (beyond Bekenstein-Hawking).
 Conjecture [Ooguri-Strominger-Vafa]:

Ω(p, q) =

∫
dφ eF(p,φ)+πqiφ

i
(+ exp. small)

where F(p, φ) ≡ Ftop(g , t
A) + c .c ., and Ftop = topological string

free energy:

Ftop =
1

g2
DABC tAtBtC + c2AtA +

∑
h,β

Nh
βe

2πiβAtA
g2h−2.

with following substitutions:

g → 4πi

p0 + iφ0
, tA → pA + iφA

p0 + iφ0

Motivation: leading order saddle point approximation reproduces
Bekenstein-Hawking-Wald entropy:∫

dφ eF(p,φ)+πqiφ
i ≈ eSBHW (p,q)



Specific problem

To test conjecture, we need to find Ω(p, q) beyond leading order.

Problem: difficult in general.

Known cases:

I D4-D2-D0 dual to pert. heterotic states  “small” black
holes [Dabholkar,Dabholkar-Denef-Moore-Pioline]

I some D4-D2-D0 in noncompact CY (BH interpret.?)
[Vafa,Aganagic-Ooguri-Saulina-Vafa]

I T 6, K3× T 2 [Dijkgraaf-Moore-Verlinde-Verlinde,Strominger-Shih-Yin]

This talk: arbitrary D4-D2-D0 system on arbitrary, compact
Calabi-Yau.

 Ω(p, q) in large q0 (D0-charge) expansion, computable using...
“landscape techniques” (flux vacua counting methods of
[Ashok-Douglas, Denef-Douglas])



Specific problem for D4-D2-D0

For general D4-D2-D0:

F(p, φ) =
π

φ0

(
−1

6
(DABCpApBpC + c2ApA) +

1

2
DABCpAφBφC

)
+O(

1

(φ0)2h
eβ·p/φ

0
)

Saddle point of OSV integral:

φ0 ∼ −

√
p3

q0
, φA ∼ DABqBφ

0

So q0 →∞ ⇔ φ0 → 0  instanton corrections exp. small.

Hence we need to compute

Z ≡
∑
q

Ω(p, q)eπφ·q

and show that this reduces to eF0(p,φ) at small φ0, where F0

corresponds to F above without the instanton corrections.



Black hole microstates and open string flux vacua



From flux to charge

Consider D4-brane wrapped on divisor P = pAJA, with N
D0-branes bound to it and U(1) flux F turned on.

I Total D0-brane charge:

−q0 = N − 1

2
F 2 − χ

24

where

χ = P3 + c2 · P = Euler characteristic of P

I Conserved D2-brane charges:

qA = −JA · F .

Here scalar product = intersection product on H2(P).

Note: typically dim H2(P) � dim H2(X ), so many different fluxes
F can give rise to equal charges! ⇒ need to count different flux
realizations of given charge.



Supersymmetric configurations

Supersymmetry requires [Marino-Minasian-Moore-Strominger]:

F (0,2) = F (2,0) = 0

I For generic fluxes F at generic points in the D4-brane
deformation moduli space, this will not be satisfied.

I Exceptions: fluxes F which are pulled back from
H2(X ) = H1,1(X ): for these, F (0,2) = 0 identically.

I But many F ∈ H2(P) not pulled back from H2(X ). Then
condition F 0,2 = 0 imposes h2,0 equations on the h2,0

geometric moduli of P.

 generically restricts moduli to set of isolated points: “open
string flux vacua”.



Divisor moduli

Divisor P has deformation moduli space M, parametrized locally
by coordinates z i , i = 1, . . . , n.

1-1 correspondence infinitesimal holomorphic deformations of P
(given by holomorphic normal vector fields δin on P) and H2,0(P):

ω2,0
i = Ω3,0 · δin

⇒ n = h2,0(P).



Special geometry structure

Moduli space M has “N = 1 special geometry”[Lerche-Mayr-Warner]:

I Choose basis Cα of H2(P), and corresponding 3-chains Γα
with ∂Γα|P = Cα (and possibly other, fixed, z-independent
boundary components).

I Define chain periods

Πα(z) ≡
∫

Γα(z)
Ω.

I Then

∂iΠα =

∫
δiΓα

Ω =

∫
Cα

δin · Ω =

∫
Cα

ω2,0
i



Special geometry structure

I Natural Kähler metric on M determined by periods:

gi j̄ ≡
∫

P
ωi ∧ ω̄j̄ = ∂iΠα Qαβ ∂̄j̄ Π̄β = ∂i ∂̄j̄(Πα Qαβ Π̄β)

where Qαβ ≡ (Qαβ)
−1 and

Qαβ ≡ Cα · Cβ ,

i.e. the intersection form on H2(P).

I ∂iΠ is period vector of (2, 0)-form, and by Griffiths
transversality:

∇i∂jΠ ∼ (1, 1).

By orthogonality of (2, 0) and (1, 1) forms, this implies e.g.

∇i∂jΠαQαβ∂kΠβ = 0.



Susy conditions from superpotential

Given flux F  Poincaré dual 2-cycle ΣF on P.

Expand ΣF = mαCα.

Define superpotential

WF (z) ≡ mαΠα(z).

Then

∂iW = mα

∫
Cα

ωi =

∫
ΣF

ωi =

∫
P

F ∧ ωi

so
∂iW (z) = 0 ⇔ F 0,2 = 0 ⇔ susy.



Closed string landscape

.



Open string landscape

Same form ⇒ same techniques applicable.



Counting BPS states (or open string flux vacua)



Counting critical points

At fixed F , number of isolated critical points of WF given by∫
M

d2nz δ2n(∂WF ) | det∇i∂jWF |2.

Determinant ensures each isolated zero of the delta function
contributes +1 to the integral.

At any such critical point, the divisor is frozen, so the only
remaining moduli are the positions of the N D0-branes bound to P.

Upon quantization  number (index) of susy ground states
corresponding to this critical point = Euler characteristic of Hilbert
scheme of N points on P. This is pχ(N), where∑

N

pχ(N)qN−χ/24 =
1

η(q)χ



Black hole partition sum

Using this, we get for the OSV partition sum

Z =
∑
q

Ω(p, q) e−πφ
0q0−πφAqA

=
∑
N,F

pχ(N) eπφ
0(N− 1

2
F 2− χ

24
)−πΦ·F

×
∫
M

d2nz δ2n(∂WF ) | det∇i∂jWF |2

=
1

ηχ(eπφ0)

∫
M

d2nz
∑
m

e−π
φ0

2
Qαβmαmβ−πΦαmα

×δ2n(mα∂iΠα) | det mα∇i∂jΠα|2



Gaussian form of Z

Both the delta-function and the determinant can be rewritten as
integrals of exponentials linear in mα:

δ2n(mα∂iΠα) =

∫
d2nλ e iπmα(λi∂iΠα+λ̄ī ∂̄ī Π̄α)

| det mα∇i∂jΠα|2 =
1

π2n

∫
dnθ dnψ dnθ̄ dnψ̄

×eπmα(∇i∂jΠα θiψj+∇̄ī ∂̄j̄ Π̄α θ̄ ī ψ̄ j̄ ).

Second integral is over fermionic variables.

 Gaussian ensemble with boson-fermion-fermion interactions.



Large q0 (small φ0) approximation

 large fluxes mα

 continuum approximation: replace
∑

m →
∫

db2m.

⇒ Integral over mα is straightforward Gaussian:

Z =
1

ηχ(eπφ0)

∫
d2nz d2nλ dnθ dnψ dnθ̄ dnψ̄

1

π2n

(
2

φ0

)b2/2

×e
π

2φ0 (Φα−iλi∂iΠα−∇i∂jΠαψiθj + c.c.) Qαβ (Φβ−iλi∂iΠβ−∇i∂jΠβψ
iθj + c.c.)

At first sight: 25 complicated cross terms in exponential → ???

But recall ∂iΠ ∼ (2, 0), ∇i∂jΠ ∼ (1, 1) and Φ ∼ (1, 1), and only
products of (1,1) with (1,1) or (2,0) with (0,2) can be nonzero.

⇒ Most cross terms are zero.



Geometrization

The only nontrivial intersection products contributing are:

∂iΠα Qαβ ∂̄j̄ Π̄β = gi j̄

∇i∂jΠα Qαβ ∇̄k̄ ∂̄l̄ Π̄β = Ri k̄ j l̄

with R the curvature of g .

Hence exponential becomes simply

e
π
φ0 ( 1

2
Φ2−gi j̄λ

i λ̄j̄+Ri k̄ j l̄ψ
i ψ̄kθj θ̄l )

.

Doing gaussian integrals over λ and ψ turns this in

πn e
π

2φ0 Φ2

(det gi j̄)
−1 det(Ri k̄ j l̄θ

j θ̄l)

Integrated over θ and combined with d2nz , this produces measure

πn e
π

2φ0 Φ2

det R

with Rk
i ≡

i
2Rk

ij l̄
dz j ∧ dz̄ l̄ the curvature 2-form on M.



Final result

After doing a modular transformation on η:

1

ηχ(eπφ0)
=

(
φ0

2

)χ/2
1

ηχ(e
4π
φ0 )

,

where χ = b2(P)− 2b1 + 2 = P3 + c2 · P, we get for small φ0,

Z ≈
(
φ0

2

)1−b1 e
π

2φ0 Φ2

ηχ(e
4π
φ0 )

∫
M

1

πn
det R

≈ χ̂(M)

(
φ0

2

)1−b1

exp

(
π

φ0

(
−1

6
(P3 + c2 · P) +

1

2
Φ2

))
.

where we defined the “Euler characteristic” χ̂(M) of divisor
moduli space as

χ̂(M) ≡
∫
M

1

πn
det R.



Comparison to OSV

• OSV prediction partition function derived from topological
string, dropping all instanton corrections:

ZOSV = exp

(
π

φ0

(
−1

6
(P3 + c2 · P) +

1

2
Φ2

))
.

• our microscopic partition function at small φ0:

Z = χ̂(M)

(
φ0

2

)1−b1

ZOSV

So essentially confirms conjecture in this regime, up to prefactor
refinement.

Recall that degeneracies are given as Laplace transform of Z , so
this encodes an infinite series of 1/N corrections to the
Bekenstein-Hawking entropy formula!



The χ̂ factor

Results agree with [Shih-Yin] for X = T 6 and X = T 2 × K3 in limit
φ0 → 0, provided

I For T 6: χ̂(p) = 1/(p)3 with (p)3 ≡ P3/6
so χ̂ = 1/p1p2p3 if P =

∑
i pi [zi = 0] on (T 2)3.

I For T 2 × K3: χ̂(pT 2 , pK3) = ((pK3)
2 + 4)/2pT 2

Shih-Yin result is totally independent derivation, so this gives
prediction for χ̂.

Nonintegral? = crazy? No!

χ̂(M) need not be integral, because M has singularities. Similar
for closed strings: χ̂(M) = 1/5 for mirror quintic.

Problem: because of singularities, not known how to compute χ̂
directly.

Are these values plausible?



The χ̂ factor

For T 6, relevant moduli space = deformations of P modulo T 6

translations (since translations never get frozen by flux and trivial
T 6 factor otherwise gives χ̂ = 0).

Divisors in class P = (p1, p2, p3) as above can be described as zero
locus of linear combination of theta functions:

P :

~p∑
~µ=1

a~µ Θ~µ,~p(~τ ,~z) = 0

Θ~µ,~p(~τ ,~z) ≡
3∏

i=1

Θµi ,pi (τi , zi ); Θµ,p(τ, z) ≡
∑

k∈µ+pZ
eπiτk2+2πikz .

Naive moduli space = {a~µ}/C∗ = CPp1p2p3−1, but there is residual
Z2

p1
× Z2

p2
× Z2

p3
translation symmetry group to mod out:

zi → zi + ni+miτi
pi

acts as permutations and phase shifts on the a~µ.

⇒ M = CPp1p2p3−1/Z2
p1
× Z2

p2
× Z2

p3
.



The χ̂ factor

Thus if χ̂(CPp1p2p3−1) = χ(CPp1p2p3−1), we get

χ̂(M) =
p1p2p3

(p1p2p3)2
=

1

p1p2p3

= exactly as required for compatibility with [Shih-Yin].

Similar for T 2 × K3, but now only residual translation symmetry
for T 2 factor:

χ̂(M) =
P3

6 + c2·P
12

p2
T 2

=
(pK3)

2 + 4

2pT 2

.

again exactly as required.

⇒ Conjecture: For M = CPd , χ̂(M) = d + 1.



Application to counting D7-D3 flux vacua

By letting D-branes fill noncompact part of spacetime, (i.e.
D0 → D3, D4 → D7), these computations can be adapted to
counting open string flux vacua of IIB orientifold compactifications
in weak string coupling limit.

Large q0 = large D3-tadpole L = χ(X4)/24.

Related subtleties: divisor P constrained to be compatible with
involution, and flux F must be odd.

Joint treatment open + closed flux vacua at arbitrary coupling:
F-theory on fourfold. OSV counts subsector (counting components
weighted by their Euler characteristics).

Main conclusion: working on black holes and the topological string
= working on landscape statistics!
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