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Understanding spacelike singularities is a major Challenge for

theoretical physics

Big Bang/Big Crunch, Black holes

A non-perturbative formulation of string theory should provide a

well-defined framework to address the problem.
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Schwarzschild black holes in AdS

Quantum gravity in an AdS5 × S5 black hole background can

be described by an N = 4 SU(N) Super Yang-Mills at finite

temperature on S3.
Witten, Maldacena,...
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AdS/CFT provides a full non-perturbative framework to

address the problem.
Horowitz and Ross, Maldacena, ...
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Understanding the black hole singularity from
thermal Yang-Mills ?

The problem is hard !

1. Classical gravity corresponds to a strongly coupled YM theory

R

lp
↔ N

R

ls
↔ λ = g2

ymN

Supergravity limit: N → ∞, λ → ∞

2. Black hole singularities are nasty.

There is, however, one possible way out ......
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It could be that the black hole singularity is so nasty that α′

effects are not enough to smooth it.

Then the resolution of the singularity will boil down to under-

standing the large N limit of Yang-Mills theory and may not

sensitively depend on the strongly coupled physics.



Information loss v.s. thermalization

An SYM theory on S3 is a bounded many-body quantum me-

chanical system (with discrete energy levels)

generic initial states ⇒ thermal equilibrium

In thermal equilibrium, details of initial states are essentially lost

(although in principle recoverable).

The thermalization process can be interpreted in the bulk as the

gravitational collapse.

This (in principle) solves the information loss problem for a black

hole. Strong coupling is not essential to the resolution.
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Singularities v.s. thermalization

The singularity problem is much more puzzling.

The existence of AdS/CFT does not automatically imply the

resolution of the singularity, since the singularities lie beyond the

horizons.

Given almost universal formation of singularities from gravita-

tional collapse, it seems plausible that the black hole singularity

simply reflects of some (possibly universal) dynamical aspect the

underlying many-body system at equilibrium.

We would like to search for an underlying principle which could

“in principle” solve the singularity problem.
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Understanding the black hole singularity from
thermal Yang-Mills ?

Find manifestations of the black hole singularity in the large N

and large ‘t Hooft coupling limit of the YM theory;

L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker

From these manifestations, understand whether (and how)

• finite N effects (gs), or

• finite ‘t Hooft coupling effects (α′)

resolve the singularity.
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Main Challenge

Describe the physics beyond the horizon in AdS/CFT:
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Balasubramanian, Ross; Louko, Marolf, Ross; Maldacena; Kraus, Ooguri, Shenker ...

L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker
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Outline

1. Establish a direct connection between boundary momentum

space correlators and the bulk geometry.

2. Find signals of the singularity in momentum space correla-

tors.

3. A curious property of strongly coupled SYM theory on S3

4. Discuss the resolution of the singularity at finite N.
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Thermal YM correlation functions

We are interested in finite temperature real-time correlation func-

tions, e.g.

G+(t, ~x) = Tr
(

e−βHO(t, ~x)O(0, ~0)
)

β: inverse temperature

H: Hamiltonian of Yang-Mills theory

~x: a point on S3.
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O is a typical gauge invariant operator in Yang-Mills theory, dual

to a bulk scalar field φ of mass m.

The conformal dimension ∆ of O given by

∆ = 2 + ν, ν =

√

m2 + 4

It is convenient to consider the Fourier transform G+(ω, l).

ω: frequency,

l: angular momentum on S3.



One can also consider (spatial coordinates suppressed)

O  (0)  

O 
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Note

G12(ω, l) = e−
βω
2 G+(ω, l)
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Boundary correlators from gravity

G+(ω, l) can be obtained via AdS/CFT by solving the Laplace

equation for the bulk scalar field φ, which in momentum space

becomes the Schrodinger equation

(

−∂2
z + Vl(z)

)

φωl(z) = ω2φωl(z)

z: tortoise coordinate.

φωl (z): Fourier component of φ.
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For l not too large,

2

0
z

V(z)

ω

boundary

horizon

We consider normalizable modes φωl

φωl(z) ≈ e−iωz−iδω + eiωz+iδω, z → +∞ .

This determines

φωl(z) ≈ C(ω, l)z
1
2+ν + · · · , z → 0 .

Then

G+(ω, l) =
(2ν)2

2ω

eβω

eβω − 1
C2(ω, l)
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For d ≥ 4, the bulk Laplace equation cannot be solved exactly.

Various methods can be used to find G+(ω, l) approximately.

Nunez and Starinets; Cardoso, Natario and Schiappa; Siopsis

Liu and Festuccia

Of special interests is the analytic behavior of G+(ω, l) in the

complex ω-plane for fixed l.



Analytic properties of G+

For l not too large,

Re ω

Ιm ω

pole spacing : δ ∼
1

B
, B = β̃ + iβ

e−
1
2βωG+(ω, l) ∼ e−

1
2β|ω|, ω → ∞ (near real axis)

e−
1
2βωG+(ω, l) ∼ e−

1
2β̃|ω|, ω → ∞ (near imaginary axis)
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Hard to extract information about the bulk geometry directly

from G+(ω, l), like a quantum inverse scattering problem.

We would like to know whether the presence of the bulk

singularity is reflected in G+(ω, l), and if yes, how.

We will be able to reduce the problem to a classical inverse

scattering problem.



Large operator dimension limit

To make connection with the bulk geometry, consider the limit

ω = νu, l = νk, ν ≫ 1, (ν =

√

m2 + 4)

Then G+ can be expanded in the large ν limit as

G+(νu, νk) ≈ 2ν eνZ(u,k) (1 + · · ·) + · · ·

Z(u, k) and higher order terms of the expansion can be worked

out explicitly from the Schrodinger equation.

In the large ν limit, the mass of the corresponding bulk particle

is large and its propagation should approximately follow

geodesics.
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Relation with bulk geodesics I

Since the bulk geometry has Killing vectors along t and S3

directions, a bulk geodesic can be characterized by integrals of

motion (E, q).

We find that Z(u, k) can be identified as the Legendre

transform of the geodesic distance of a bulk spacelike geodesic

with

u = iE, k = iq

Note: ω = νu, l = νk.
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For each complex pair (ω, l)

G+(ω, l) → Z(u, k) →

→ complex bulk geodesic with E = −iu, q = −ik

The geodesic starts and ends at the (complexified) boundary

and has a turning point rc(E, q).

Thus we have a mapping between the complexified momentum

space and complexified bulk geometry

(ω, l) → rc(ω, l)

We will now look at some examples with k = 0.



Relation with geodesics II

For real ω, the geodesic lies in the Euclidean section of the

complexified spacetime

i t

For real ω → ±∞, the geodesic approaches the boundary

rc ∝ |ω|

UV/IR connection
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For ω pure imaginary, the geodesic probes the region inside the

horizon.

i
ii

As |ω| → ∞, the geodesic approaches the singularity:

rc ∝
1

|ω|

Time inside the horizon is dynamically generated.
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Summary

We thus find

Re ω

Ιm ω

singularity

singularity

boundaryboundary
horizon

The lines of poles of G+(ω, l) “create” new asymptotic regions

in the complex-ω plane corresponding to the regions around the

singularity.
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Signals of the singularity

To probe the singularity, we consider ω → ±i∞

• G+(ω) decays exponentially (for any ν)

e−
1
2βωG+(ω, l) ∼ ω2νe−

1
2β̃|ω|

• In the large ν limit (ω = iνE, G+ ∼ eνZ)

lim
E→∞

d2nZ(iE, k)

dk2n

∣

∣

∣

∣

∣

k=0

∼ E2n−2 → ∞, n > 1

This leads to divergences when Fourier transformed (along

certain contours) to coordinate space correlation functions.
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Coordinate space correlation functions

G12(t) =
∫ ∞

−∞

dω

2π
e−iωt G12(ω)

∼
∫

du e−iνut−1
2νuβ eνZ(u,k)

• The Fourier integral can be evaluated using the saddle

point approximation in the large ν limit.

• Bulk geodesics with end point separation given by t appear

as saddle points of the Fourier integral.

• Fourier integrals give a precise prescription for summing

over geodesics.
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Contour plot of the imaginary part of the exponent of the
integrand.

The saddle on the imaginary axis corresponds to a geodesic
passing inside the horizon.

The geodesic which goes inside the horizon does not contribute
to the correlation function in the saddle point approximation.

L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker
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New gauge invariant observables and signals of the
singularity (II)

New observables:

H12(τ) =
∫

C2

dω

2π
e−iωτG12(ω)

Re ω

Ιm ω

C1

C2

The divergence of H12(τ) for τ → ±β̃
2 reflects the divergence of

a spacelike geodesic approaching the singularity.
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Signal amplification process

The geodesic which goes inside the horizon does not contribute

to coordinate space correlation function G+(t) in the saddle

point approximation.

However, through the process

G+(t) → G+(ω) → G12(ω) → H12(τ)

the signal of the singularity is amplified.

Recall G12(ω, l) = e−
βω
2 G+(ω, l).
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A curious property of YM theory on S3

For sufficiently large l > lc (lc ∼ T4 in large T limit),

u

u1
u

0

the boundary theory contains very long-lived quasi-particles

which almost never thermalize.

As T → ∞, the angular momenta of these quasi-particles go to

infinity much faster than T .
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In the large T limit, the sphere decompactifies and the theory

goes over to that of flat space.

Thus they are not present in the flat space limit of the

boundary theory.



A simple explanation from classical gravity

When l > lc, one finds that the potential becomes

V(u)

1u0 uu

When the angular momentum on S3 is large enough, there

exist stable classical time-like orbit which never falls into the

black hole.
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Yang-Mills theory at finite N ?

At finite N , the YM theory on S3 has a discrete spectrum, i.e.

finite number of states below any given energy.

This should be true even for coupling of order O(1).

In particular

G+(ω) = 2π
∑

m,n
e−βEmρmnδ(ω − En + Em)

m, n sum over the physical states of the theory.
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The bulk analysis shows that in the large N limit the boundary

YM theory has a continuous spectrum despite being on S3.

The appearance of a continuous spectrum is tied to the

presence of the horizon in the bulk.



Resolution of the singularity at finite N ?

N = infty

Re ω

Ιm ω

x   x   x   x    x   x   x   x   x   x x   x   x   x    x   x   x   x   x   x

finite N

Re ω

Ιm ω

singularity

singularity

boundaryboundary
horizon

The discrete spectrum at finite N appears to be in conflict with

the presence of the horizon.

This suggest the horizon and the singularity are approximate

concepts valid only in large N expansion.
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Future directions (I)

Understand whether the analytic behaviors we observed

following from supergravity analysis (i.e. corresponding to

strong coupling in SYM) exist at weak coupling.

If yes, this will provide strong evidence that singularity may

persist at finite α′.

It will also enable us to study the singularity at weak coupling

by focusing on the large N effect.
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Re ω

Ιm ω

e−
1
2βωG+(ω, l) ∼ e−

1
2β|ω|, ω → ∞ (near real axis)

e−
1
2βωG+(ω, l) ∼ e−

1
2β̃|ω|, ω → ∞ (near imaginary axis)



Future directions (II)

The fact that the geometry inside the horizon appears to be

encoded in Yang-Mills theories along the imaginary axis

suggests that there might exist an alternative description of

AdS black holes in which the regions inside the horizon are

manifestly represented.
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