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Commutative Hopf algebras and affine group schemes

k = field of characteristic zero

H commutative algebra/k with unit

coproduct ∆ : H → H⊗k H, counit ε : H → k,
antipode S : H→ H

(∆⊗ id)∆ = (id⊗∆)∆ : H→ H⊗k H⊗k H,

(id⊗ ε)∆ = id = (ε⊗ id)∆ : H→ H,

m(id⊗ S)∆ = m(S ⊗ id)∆ = 1 ε : H→ H,

Covariant functor G from Ak (commutative k-

alg with 1) to G (groups)

G(A) = HomAk
(H, A)

affine group scheme
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Examples:

• Additive group G = Ga: Hopf algebra H = k[t] with
∆(t) = t⊗ 1 + 1⊗ t.

• Multiplicative group G = Gm: Hopf algebra H =
k[t, t−1] with ∆(t) = t⊗ t.

• Roots of unity µn: Hopf algebra H = k[t]/(tn − 1).

• G = GLn: Hopf algebra

H = k[xi,j, t]i,j=1,...,n/det(xi,j)t− 1,

with ∆(xi,j) =
∑

k xi,k ⊗ xk,j.

• H fin. gen. alg./k: G ⊂ GLn linear algebraic
group/k.

• H = ∪iHi, ∆(Hi) ⊂ Hi ⊗Hi, S(Hi) ⊂ Hi: projective
limit of linear algebraic groups

G = lim
←−

i

Gi
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Lie algebra: functor g from Ak to Lie

g(A) = {L : H→ A |L(X Y ) = L(X) ε(Y ) + ε(X)L(Y )}

Milnor-Moore: H = ⊕n≥0Hn, with H0 = k and

Hn fin dim/k. Dual H∨ with primitive elements

L:

H = U(L)∨

Reconstruct H from the Lie algebra L = g(k).

For H = ⊕n≥0Hn action of Gm

uY (X) = un X, ∀X ∈ Hn, u ∈ Gm

G∗ = G o Gm
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Connes–Kreimer theory

Perturbative QFT

T = scalar field theory in dimension D

S (φ) =

∫
L (φ) dDx = S0(φ) + Sint(φ)

with Lagrangian density

L (φ) =
1

2
(∂φ)2 −

m2

2
φ2 − Lint(φ)

Effective action (perturbative expansion):

Seff(φ) = S0(φ) +
∑

Γ∈1PI

Γ(φ)

#Aut(Γ)

Γ(φ) =
1

N !

∫
∑

pj=0

φ̂(p1) . . . φ̂(pN)U z
µ(Γ(p1, . . . , pN)) dp1 . . . dpN

U(Γ(p1, . . . , pN)) =

∫
dDk1 · · · d

DkL IΓ(k1, · · · kL, p1, · · · pN)

Uz
µ(Γ(p1, . . . , pN)): DimReg+MS

=

∫
µzL dD−zk1 · · · d

D−zkL IΓ(k1, · · · kL, p1, · · · pN)

Laurent series in z
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BPHZ renormalization scheme

Class of subgraphs V(Γ):

T renormalizable theory, Γ = 1PI Feynman graph: V(Γ)
(not necessarily connected) subgraphs γ ⊂ Γ with

1. Edges of γ are internal edges of Γ.

2. Let γ̃ be a graph obtained by adjoining to a con-
nected component of γ the edges of Γ that meet
the component. Then γ̃ is a Feynman graph of the
theory T .

3. The unrenormalized value U(γ̃) is divergent.

4. The graph Γ/γ is a Feynman graph of the theory.

5. The components of γ are 1PI graphs.

6. The graph Γ/γ is a 1PI graph.
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BPHZ procedure:

Preparation:

R(Γ) = U(Γ) +
∑

γ∈V(Γ)

C(γ)U(Γ/γ)

Coefficient of the pole part is given by a local term

Counterterms:

C(Γ) = −T(R(Γ))

= −T


U(Γ) +

∑

γ∈V(Γ)

C(γ)U(Γ/γ)




T = projection on the polar part of the Laurent series

Renormalized value:

R(Γ) = R(Γ) + C(Γ)

= U(Γ) + C(Γ) +
∑

γ∈V(Γ)

C(γ)U(Γ/γ)
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Connes-Kreimer Hopf algebra of Feynman graphs

Discrete version (over k = C, in fact k = Q)

H = H(T ) depends on the theory T

Generators: 1PI graphs Γ of the theory

Grading: deg(Γ1 · · ·Γr) =
∑

i deg(Γi)

and deg(1) = 0

Coproduct:

∆(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

γ∈V(Γ)

γ ⊗ Γ/γ

Antipode: inductively (lower deg)

S(X) = −X −
∑

S(X ′)X ′′

for ∆(X) = X ⊗ 1 + 1⊗X +
∑

X ′ ⊗X ′′
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Affine group scheme G(H(T )) = Difg(T )

“diffeographisms”

Difg(T )→ Diff

to formal diffeomorphisms of the coupling constants

geff = g +
∑

n
αngn, αn ∈ H

Lie algebra: (Milnor-Moore)

[Γ,Γ′] =
∑

v
Γ ◦v Γ′ −

∑

v′
Γ′ ◦v′ Γ

Γ ◦v Γ′ = inserting Γ′ in Γ at the vertes v

Continuous version On EΓ := {(pi)i=1,...,N ;
∑

pi = 0}

distributions

C−∞c (E) = ⊕ΓC−∞c (EΓ)

Hopf algebra

H̃(T ) = Sym(C−∞c (E))

∆(Γ, σ) = (Γ, σ)⊗1+1⊗(Γ, σ)+
∑

γ∈V(T ); i∈{0,1}

(γ(i), σi)⊗(Γ/γ(i), σ)
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Loops and Birkhoff factorization

∆ = (infinitesimal) disk around z = 0, C = ∂∆

C+ ∪ C− = P1(C) r C

G(C) = complex connected Lie group

loop γ : C → G(C)

Birkhoff factorization problem: is it possible to

factor

γ (z) = γ−(z)
−1 γ+(z)

∀z ∈ C, with γ± : C± → G(C) holomorphic, γ−(∞) = 1

In general no: for G(C) = GLn(C) only

γ(z) = γ−(z)
−1 λ(z) γ+(z)

λ(z) diagonal (zk1, zk2, . . . , zkn): nontrivial holomorphic
vector bundles on P1(C) with c1(Li) = ki and

E = L1 ⊕ . . .⊕ Ln
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H commutative Hopf algebra over C:

K = C({z}) = C{z}[z−1], O = C{z}, Q = z−1C[z−1],

Q̃ = C[z−1]

loop γ(z): element φ ∈ G(K) = HomAC
(H, K)

positive part γ+(z): element φ+ ∈ G(O)

negative part γ−(z): element φ− ∈ G(Q̃)

γ−(∞) = 1 ⇔ ε− ◦ φ− = ε

Birkhoff γ (z) = γ−(z)
−1 γ+(z) becomes

φ = (φ− ◦ S) ∗ φ+

Product φ1 ∗ φ2 dual to coproduct

〈φ1 ∗ φ2, X〉 = 〈φ1 ⊗ φ2,∆(X)〉
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G = pro-unipotent affine group scheme of a commuta-

tive Hopf algebra H = ⊕n≥0Hn

Always have Birkhoff factorization: inductive

formula (CK)

φ−(X) = −T
(
φ(X) +

∑
φ−(X

′)φ(X ′′)
)

φ+(X) = φ(X) + φ−(X) +
∑

φ−(X
′)φ(X ′′)

for ∆(X) = X ⊗ 1 + 1⊗X +
∑

X ′ ⊗X ′′

BPHZ = Birkhoff Take G = D̃ifg(T ) (continu-

ous version)

Data U z(Γ(p1, . . . , pN)): homomorphism U : H̃(T )→ K

(Γ, σ) 7→ h(z) = 〈σ, Uz(Γ(p1, . . . , pN))〉

Laurent series

φ = U , φ− = C, φ+ = R: same as BPHZ!

11



Dependence on mass scale: γµ(z)

γµ(z) = γµ−(z)
−1γµ+(z)

Grading by loop number:

Y (X) = n X, ∀X ∈ H∨n(T )

θt ∈ Aut(Difg(T )),
d

dt
θt |t=0 = Y

Main properties of scale dependence:

(∗) =





γetµ(z) = θtz(γµ(z))

∂
∂µ γµ−(z) = 0.

Renormalization group:

Ft = lim
z→0

γ−(z) θtz(γ−(z)
−1)

action γetµ+(0) = Ft γµ+(0)

Beta function: β = d
dtFt|t=0 ∈ g

β := Y Res γ, Resz=0 γ := −

(
∂

∂u
γ−

(
1

u

))

u=0
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Connes-Kreimer theory in a nutshell:

G = pro-unipotent affine group scheme (= Difg(T ))

L(G(C), µ) = loops γµ(z) with (*) properties

Divergences (counterterms) γ−(z)

Renormalized values γµ+(0)

⇒ Understand data L(G(C), µ) and γ−(z)
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Renormalization and the Riemann-Hilbert

correspondence (AC–MM)

Tannakian formalism

Abelian category C:

• HomC(X, Y ) abelian groups
(∃0 ∈ Obj(C) with HomC(0,0) trivial group)

• There are products and coproducts: ∀X, X ′ ∈ Obj(C),
∃Y ∈ Obj(C) and

X
f1

→ Y
f2

← X ′ and X
h1
← Y

h2
→ X ′,

with h1f1 = 1X, h2f2 = 1X ′, h2f1 = 0 = h1f2,
f1h2 + f2h1 = 1Y .

• There are Kernels and Cokernels: ∀X, Y ∈ Obj(C),
∀f : X → Y can decompose j ◦ i = f ,

K
k
→ X

i
→ I

j
→ Y

c
→ K ′,

with K = Ker(f), K ′ = Coker(f), and I = Ker(k) =
Coker(c).
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k-linear category C: HomC(X, Y ) is a k-vector

space ∀X, Y ∈ Obj(C).

Tensor category C: k-linear with ⊗ : C × C → C

• ∃1 ∈ Obj(C) with End(1) ∼= k and functorial isomor-
phisms

aX,Y,Z : X ⊗ (Y ⊗ Z)→ (X ⊗ Y )⊗ Z

cX,Y : X ⊗ Y → Y ⊗X

lX : X ⊗ 1→ X and rX : 1⊗X → X.

• Commutativity: cY,X = c−1
X,Y

Rigid tensor category C: tensor with duality
∨ : C → Cop

• ∀X ∈ Obj(C) the functor − ⊗ X∨ is left adjoint to
− ⊗ X and the functor X∨ ⊗ − is right adjoint to
X ⊗−.

• Evaluation morphism ε : X ⊗X∨ → 1 and unit mor-
phism δ : 1→ X∨⊗X with (ε⊗1) ◦ (1⊗ δ) = 1X and
(1⊗ ε) ◦ (δ ⊗ 1) = 1X∨.
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Functors ω : C → C′

faithful: ω : HomC(X, Y )→ HomC′(ω(X), ω(Y )) injection

additive: ω : HomC(X, Y )→ HomC′(ω(X), ω(Y )) k-linear

exact: 0 → X → Y → Z → 0 exact ⇒ 0 → ω(X) →
ω(Y )→ ω(Z)→ 0 exact

tensor: functorial isomorphisms τ1 : ω(1)→ 1 and τX,Y :

ω(X ⊗ Y )→ ω(X)⊗ ω(Y )

Fiber functor, Tannakian categories C be a k-

linear rigid tensor category: fiber functor ω :

C → VectK exact faithful tensor functor, K

extension of k.

⇒ C Tannakian (=has fiber functor), neutral

Tannakian (K = k)

(Grothendieck, Savendra-Rivano, Deligne, . . . )

C neutral Tannakian ⇒ C ∼= RepG

G = Aut⊗(ω) affine group scheme Gal(C)
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Example: RepZ
∼= RepG affine group scheme G = Z̄

dual to H = C[e(q), t], for q ∈ C/Z, with relations e(q1 +

q2) = e(q1)e(q2) and coproduct ∆(e(q)) = e(q) ⊗ e(q)

and ∆(t) = t⊗ 1 + 1⊗ t.

Riemann–Hilbert correspondence

Tannakian formalism applied to categories of
differential systems (differential Galois theory)

(K, δ) = differential field
e.g. K = C{z}[z−1] or K = C((z))

Category DK of differential modules over K:
Objects (V,∇), vector space V ∈ Obj(VK) and
connection
C-linear map ∇ : V → V with ∇(fv) = δ(f)v + f∇(v),

for all f ∈ K and all v ∈ V

Morphisms Hom((V1,∇1), (V2,∇2)) K-linear maps
T : V1 → V2 with ∇2 ◦ T = T ◦ ∇1

(V1,∇1)⊗ (V2,∇2) = (V1⊗V2,∇1⊗1+1⊗∇2)

and dual (V,∇)∨
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Fiber functor ω(V,∇) = Ker∇. Neutral Tan-

nakian category DK
∼= RepG

For K = C((z)), affine group scheme G = T oZ̄ of Ramis

exponential torus T = Hom(B, C∗) with B = ∪ν∈NBν, for

Bν = z−1/νC[z−1/ν].

For K = C{z}[z−1] extra generators: Stokes phenomena

(resummation of divergent series in sectors)

Example: ODE δ(u) = Au, subcategory of

DK ⇒ differential Galois group (Aut of Picard-

Vessiot ring)

Example: ODE δ(u) = Au regular-singular iff

∃T invertible matrix coeff. in K = C((z)), with

T−1AT − T−1δ(T) = B/z, B coeff. in C[[z]].

Tannakian subcategory Drs
K of DK gen. by

regular-singular equations Drs
K
∼= RepZ̄ (mon-

odromy Z = π1(∆
∗))
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Claim: There is a Riemann-Hilbert correspon-

dence associated to the data of perturbative

renormalization

• Not just over the disk ∆ but a C∗-fibration B over
∆, so we exit from the category DK.

• Equivalence relation on connections by gauge trans-
formations regular at z = 0.

• Class of connections (equisingular connections) not
regular-singular: setting of “irregular” Riemann–
Hilbert correspondence with arbitrary degree of ir-
regularity, as for DK.

• The Galois group same in formal and non-formal
case (no Stokes phenomena).

19



Data of CK revisited

G = pro-unipotent affine group scheme (= Difg(T ))

L(G(C), µ) = loops γµ(z) with

(∗) =





γetµ(z) = θtz(γµ(z))

∂
∂µ γµ−(z) = 0.

Divergences (counterterms) γ−(z)

First step (CK):

γ−(z)
−1 = 1 +

∞∑

n=1

dn

zn

coefficients dn ∈ H∨

Y dn+1 = dn β ∀n ≥ 1, and Y d1 = β

⇒ Can write as iterated integrals
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Time ordered exponential

g(C)-valued smooth α(t), t ∈ [a, b] ⊂ R

Te

∫ b

a
α(t) dt

:= 1+

∞∑

1

∫

a≤s1≤···≤sn≤b

α(s1) · · · α(sn) ds1 · · · dsn

product in H∨, with 1 ∈ H∨ counit ε of H

• Paired with X ∈ H the sum is finite.

• Defines an element of G(C).

• Value g(b) of unique solution g(t) ∈ G(C) with g(a) =
1 of

dg(t) = g(t)α(t) dt

• Multiplicative over sum of paths:

Te

∫ c

a
α(t) dt

= Te

∫ b

a
α(t) dt

Te

∫ c

b
α(t) dt
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• γµ(z) ∈ L(G(C), µ), then

γ−(z) = Te−
1
z

∫∞
0 θ−t(β) dt

by γ−(z)−1 = 1 +
∑∞

n=1
dn

zn with

dn =

∫

s1≥s2≥···≥sn≥0

θ−s1
(β) θ−s2

(β) . . . θ−sn(β) ds1 · · · dsn

• γµ(z) ∈ L(G(C), µ), then

γµ(z) = Te−
1
z

∫−z logµ
∞ θ−t(β) dt θz logµ(γreg(z))

for a unique β ∈ g(C) (with γreg(z) a loop regular at

z = 0)

The Birkhoff factorization

γµ+(z) = Te−
1
z

∫−z logµ
0 θ−t(β) dt θz logµ(γreg(z))

γ−(z) = Te−
1
z

∫∞
0 θ−t(β) dt

Conversely, given β ∈ g(C) and γreg(z) regular

⇒ γµ ∈ L(G(C), µ)
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$ = α(s, t)ds + η(s, t)dt flat g(C)-valued con-

nection

∂s η − ∂t α + [α, η] = 0

Te
∫ 1
0 γ∗$ depends on homotopy class of path

Differential field (K, δ) with Kerδ = C

log derivative on G(K)

D(f) := f−1 f ′ ∈ g(K)

f ′(X) = δ(f(X)), ∀X ∈ H

Differential equation D(f) = $

Existence of solutions: trivial monodromy

G = lim←−i
Gi, monodromy

Mi($)(γ) := Te
∫ 1
0 γ∗$

punctured disk ∆∗i of positive radius

M($) = 1

well defined on G
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(K, δ), d : K → Ω1, df = δ(f) dz

D : G(K)→ Ω1(g), Df = f−1 df

D(fh) = Dh + h−1 Df h

Two connections $ and $′ are equivalent iff

$′ = Dh + h−1$ h, with h ∈ G(O)

Equivalent ⇔ same negative part of Birkhoff:

D(f$) = $ and D(f$′) = $′ solutions in G(K)

$ ∼ $′ ⇐⇒ f$
− = f$′

−
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Flat equisingular connections: accounts for µ-dependence

Principal Gm(C) = C∗-bundle Gm → B
π
−→ ∆ over in-

finitesimal disk ∆.

P = B ×G, P ∗ = P |B∗, B∗ = B|∆∗

Action of Gm by b 7→ u(b), ∀u ∈ Gm(C) = C∗ and action

of Gm on G dual to graded Hopf algebra H = ⊕n≥0Hn

u(b, g) = (u(b), uY (g)), ∀u ∈ Gm

Flat connection $ on P ∗ is equisingular iff

• $ is Gm-invariant

$(z, u(v)) = uY ($(z, v)), ∀u ∈ Gm

v = (σ(z), g), for z ∈∆ and g ∈ G

• all the restrictions are equivalent

σ∗1($) ∼ σ∗2($)

σ1 and σ2 are two sections of B as above, with σ1(0) =

y0 = σ2(0)

The connections σ∗1($) and σ∗2($) have the

same type of singularity at the origin z = 0
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Equivalence: $ and $′ on P ∗ equivalent iff

$′ = Dh + h−1$h,

with h a G-valued Gm-invariant map regular in

B.

Thm: Bijective correspondence between equiv-

alence classes of flat equisingular G-connections

$ on P ∗ and elements β ∈ g(C)

$ ∼ Dγ with

γ(z, v) = Te−
1
z

∫ v
0 uY (β) du

u

(integral on the path u = tv, t ∈ [0,1])

Correspondence independent of choice of sec-

tion σ : ∆→ B with σ(0) = y0.

Key step: vanishing of monodromies around

∆∗ and C∗
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Category of equivariant flat vector bundles

V = ⊕n∈ZVn fin dim Z-graded vector space; trivial vector
bundle E = B × V filtered by

W−n(V ) = ⊕m≥nVm

Gm action induced by grading.

W -connection on a filtered vector bundle (E, W) over
B:

W−n−1(E) ⊂W−n(E),

GrW
n (E) = W−n(E)/W−n−1(E)

Connection ∇ on E∗ = E|B∗, compatible with filtration:
restricts to W−n(E∗) and induces trivial connection on
GrW(E)

Two W -connections ∇i on E∗ are W -equivalent iff ∃T ∈
Aut(E), preserving filtration, inducing identity on GrW(E),
with T ◦ ∇1 = ∇2 ◦ T

A W -connection ∇ on E is equisingular if it is Gm-

invariant and all restrictions to sections σ : ∆→ B with

σ(0) = y0 are W -equivalent.
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Category E equisingular flat vector bundles

Obj(E) pairs Θ = (V, [∇])

V = fin dim Z-graded vector space, [∇] = W -equivalence

class of flat equisingular W -connection ∇ on E∗ = B∗×V

Morphisms: T ∈ HomE(Θ,Θ′) linear map T :
V → V ′

compatible with the grading and on (E′ ⊕ E)∗

∇1 =

(
∇′ 0
0 ∇

)

∇2 =

(
∇′ T ∇− ∇′ T
0 ∇

)

are W -equivalent on B

(Notice: category of filtered vector spaces, with mor-

phisms linear maps respecting filtration, is not an abelian

category)
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For G = Difg(T ), $ = flat equisingular connection on

P ∗ = B∗ × G, fin dim lin rep ξ : G → GL(V ) ⇒ Θ ∈

Obj(E). Equivalent $ give same Θ.

THM The category E is a neutral Tannakian

category (over C, over Q)

with fiber functor ω(Θ) = V

E ∼= RepU∗

U∗ = UoGm affine group scheme, U = prounipo-

tent dual to Hopf algebra

HU = U(LU)∨

LU = F(1,2,3, · · · )• denote the free graded Lie

algebra generated by elements e−n of degree n,

for each n > 0
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Renormalization group

e =
∞∑

1

e−n

determines rg : Ga → U

Universal singular frame

γU(z, v) = Te−
1
z

∫ v
0 uY (e) du

u

Universal source of counterterms

Coefficients:

γU(z, v) =
∑

n≥0

∑

kj>0

e−k1
e−k2
· · · e−kn

k1 (k1 + k2) · · · (k1 + k2 + · · ·+ kn)
v
∑

kj z−n

(local index formula Connes-Moscovici)
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Key step in proof of THM: for Θ = [V,∇] be

an object of E, there exists a unique represen-

tation ρ = ρΘ of U∗ in V , such that

Dρ(γU) ' ∇

universal singular frame γU

Note: Q(n) ∈ Obj(E) with V 1-dim over Q in deg n,
∇ trivial connection on assoc bundle E over B. Fiber
functor:

ωn(Θ) = Hom(Q(n),GrW
−n(Θ))
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For G = Difg(T ), canonical bijection: equiv-

alence classes of flat equisingular connections

on P ∗ and graded representations

ρ : U∗ → G∗ = G o Gm

Using the beta function:

β =
∞∑

1

βn

Y (βn) = nβn, representation U → G compati-

ble with Gm:

e−n 7→ βn

Action on physical constants through Difg→ Diff map:

U→ Difg(T )→ Diff
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Motives

Cohomologies for alg varieties:

de Rham H ·dR(X) = H·(X,Ω·X)

Betti H ·B(X, Q) (singular homology)

étale Hi
et(X̄, Q`) for ` 6= char k and X̄ over k̄.

Isomorphisms: period isomorphism

Hi
dR(X, k)⊗σ C ∼= Hi

B(X, Q)⊗Q C

and comparison isom

Hi
B(X, Q)⊗Q Q`

∼= Hi
et(X̄, Q`)

Universal cohomology theory? Motives

Linearization of the category of algebraic va-

rieties (adding morphisms; analog with Morita theory

for algebras)

X 7→ h(X) = ⊕ih
i(X)

if hj = 0, ∀j 6= i, pure of weight i

Pure motives “direct summands of algebraic

varieties”
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Pure Motives

Objects (X, p), p = p2 ∈ End(X), X smooth

projective

Morphisms Hom(X, Y ) correspondences: alg

cycles in X × Y , codim=dim X. Equivalences

(numerical, rational,...)

Hom((X, p), (Y, q)) = qHom(X, Y )p

Tate motives Q(1) inverse of h2(P1), Q(0) =

h(pt), Q(n + m) = Q(n)⊗Q(m)

(Grothendieck standard conjectures)

Jannsen: numerical equivalence⇒ neutral Tan-

nakian category (fiber functor Betti cohomology) ⇒

RepG affine group scheme G

Tate motives G = Gm.
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Mixed motives

Extend “universal cohomology theory” to X

not smooth projective: technically much more

complicated, via constructions of derived cat-

egory (Voevodsky, Levine, Hanamura)

Mixed Tate motives

(filtered: graded pieces Tate motives)

Full subcategory of Tate motives (over a field k

or a scheme S)MTmix(S) (Deligne–Goncharov)

Motivic Galois group of MTmix(k) extension

GoGm, G pro-unipotent, Lie (G) free one gen-

erator in each odd degree n ≤ −3

THM(CM) (non-canonical) isomorphism U∗ ∼

GMT
(O) with motivic Galois group of the scheme

S4 of 4-cyclotomic integers

O = Z[i][1/2]
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