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Commutative Hopf algebras and affine group scheme

k = field of characteristic zero

H commutative algebra/k with unit

coproduct A : ' H — H®i H, counit € : H — k,
antipode S: ' H — H

(A Qid)A = (id® A)A H — H ®p H & H,
(dQRe)A =id = (e ®id) A ' H — H,
m@d @ S)A =m(SRid)A =1 :H—H,

Covariant functor G from A; (commutative k-
alg with 1) to G (groups)

G(A) = Hom 4, (H, A)

affine group scheme



Examples:

e Additive group G = G,: Hopf algebra H = k[t] with
A)=t14+1xt¢t.

e Multiplicative group G = G,,: Hopf algebra H =
E[t,t=1] with A(t) =t t.

e Roots of unity u,: Hopf algebra H = k[t]/(t" — 1).

o G = GL,: Hopf algebra
H = k[:l?i,j, t]i,j:]_’“.,n/ det(:lji,j)t -1,
with A(CIZ@J) = Zk: Tk X Tk j-

e M fin. gen. alg./k: G C GL, linear algebraic
group/k.

o H=UH; A(H;) C H;®H;, S(H;) C H;: projective
limit of linear algebraic groups

—
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Lie algebra: functor g from A, to Lie
g(A) ={L:H— A|L(XY) = L(X)e(Y) + «(X) L(Y)}

Milnor-Moore: 'H = ©,>0Hn, With Hg = k and
Hy, fin dim/k. Dual HY with primitive elements
L:

H=U(L)Y
Reconstruct ‘H from the Lie algebra £ = g(k).

For H = &, >0Hn action of Gn,
w (X) = u" X, VX € Hn, u € Gm



Connes—Kreimer theory

Perturbative QFT

7 = scalar field theory in dimension D

S (¢) = / £(8) % = So(6) + Sim(®)

with Lagrangian density

7n2

L(9) = 5(06)° ~ "o ¢ — Lin(9)

Effective action (perturbative expansion):

(¢)
#Aut(lM)

Sers(d) = So(d) + )

e 1Pl

O =7 Ji.,_ B0 BN Ui pa)

U (pi,...,pN)) = /del .- dPky Ir(k1,- - kr,p1,- - DN)

Uil (p1,.-.,pNn)): DimReg+MS

:/MZLdD_Zk1-~-dD_ZkL Ir(k1, - kr,p1, - PN)

Laurent series in z



BPH/Z renormalization scheme

Class of subgraphs V(IN):

T renormalizable theory, ' = 1PI Feynman graph: V(IN)
(not necessarily connected) subgraphs v C " with

1. Edges of v are internal edges of I.

2. Let v be a graph obtained by adjoining to a con-
nected component of v the edges of ' that meet
the component. Then 7 is a Feynman graph of the
theory 7.

3. The unrenormalized value U(7) is divergent.
4. The graph '/~ is a Feynman graph of the theory.
5. The components of v are 1PI graphs.

6. The graph '/~ is a 1PI graph.



BPHZ procedure:

Preparation:

R(M=U0)+ > CMU/y)
yeV(IN)

Coefficient of the pole part is given by a local term

Counterterms:

C(M) = -T(R(I"))

=T(U(r)+ > C(W)U(r/’v))

yeV(I)

T = projection on the polar part of the Laurent series

Renormalized value:

R(I") = R(I") + ()

=UM)+Cc(M)+ Y COUT/v)
yeV(I)



Connes-Kreimer Hopf algebra of Feynman graphs

Discrete version (over k=C, in fact k = Q)

H = H(7) depends on the theory T
Generators: 1PI graphs [T of the theory

Grading: deg(ly---T) = Y, deg(T;)
and deg(1) =0

Coproduct:

AM=rel+1er4+ > ~y&I/y
yeV(IN)

Antipode: inductively (lower deg)
S(X)=-X-) SxHx"
for A(X)=X®14+193 X+ X' @ X"



Affine group scheme G(H(7)) = Difg(7)
“diffeographisms’

Difg(7T) — Diff

to formal diffeomorphisms of the coupling constants

Jeff — 9 + Zangn, an € 'H
n

Lie algebra: (Milnor-Moore)
[r, '] :Z [ oy I_/—Z I_’ov/l_
(% ’U/
Mo, "= inserting " in " at the vertes v

Continuous version On Er := {(p;)i=1
distributions

..... N >, pi=0}

C.™(E) = &rC, ™ (Er)
Hopf algebra
H(T) = Sym(C; > (E))

A(M,0) = (M o)R1+1(M o)+ Y (v, o) /v, o)
~eV(T);i€{0,1}



Loops and Birkhoff factorization

A = (infinitesimal) disk around z =0, C = 90A
CyuC_=P(C)\C

G(C) = complex connected Lie group

loop v: C — G(C)

Birkhoff factorization problem: is it possible to
factor

v(2) =v-(2) "ty (2)

Vz € C, with v¢ : C+ — G(C) holomorphic, v_(c0) =1

In general no: for G(C) = GL,(C) only

7(2) = 7-(2) TP A(2) 14+ (2)

X(z) diagonal (2F1,z% ... 2F): nontrivial holomorphic
vector bundles on P(C) with c¢1(L;) = k; and

E=1...6L,



H commutative Hopf algebra over C:
K = C({z}) = C{z}[z7'], O = C{z}, @ = =7'C[z71],
QO = Cl[z71]

loop v(z): element ¢ € G(K) = Hom 4.(H, K)

positive part v4(z): element ¢4 € G(O)

negative part v_(z): element ¢_ € G(Q)
Y—(0) =1 c_o¢p_=c¢

Birkhoff v (2) = v—(2) "t v4.(2) becomes

o= (p_08)* bt

Product ¢1 * ¢o dual to coproduct

(p1 % 92, X) = (1 ® ¢2, A(X))
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(G = pro-unipotent affine group scheme of a commuta-
tive Hopf algebra 'H = &,>0Hnx,

Always have Birkhoff factorization: inductive
formula (CK)

$(X) = -T (¢(X) + > ¢ (XNo(X")
b4(X) = (X)) + ¢ (X)+ > ¢ (X)p(X")

for A(X)=X®14+19X+Y X' @ X"

BPHZ = Birkhoff Take G = Difg(7) (continu-

ous version)
Data U*(I(p1,...,pn)): homomorphism U : H(T) — K

(r7 0) = h(Z) — <Ua Uz(r(p]_, e 7pN))>

Laurent series

¢ =U, - =C, ¢4 = R: same as BPHZ!
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Dependence on mass scale: ~,(z)

Yu(z) = 7,-(2) 1,4 (2)

Grading by loop number:
Y(X)=nX, VX € HY(T)

. d
0r € AUt(DIf(T)), = 6 limo =Y

Main properties of scale dependence:
{ Vet (2) = Orz(yu(2))

D=1 27 (=0

Renormalization group:

Fy = Z!'_"Q) v—(2) O (y—(2)71)

action e+ (0) = Fyv,+(0)
Beta function: g = %Ftlt:o cg

1
B:=YResy, Res,—gvy:=— (i,y_ (_))
ou u=0

u
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Connes-Kreimer theory in a nutshell:

G = pro-unipotent affine group scheme (= Difg(7))
L(G(C), n) = loops ~vu(z) with (*) properties
Divergences (counterterms) ~v_(z)
Renormalized values fymL(O)

= Understand data L(G(C),u) and v_(z)
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Renormalization and the Riemann-Hilbert
correspondence (AC—MM)

Tannakian formalism

Abelian category C:

e Hom¢(X,Y) abelian groups
(30 € Obj(C) with Hom¢(0,0) trivial group)

e There are products and coproducts: VX, X' € Obj(C),
Y € Obj(C) and
xLyv&Ex and xlyvhx
with hifi = 1x, hofo = 1x/, haofi = 0 = h1 f>,
fiho + foh1 = 1y.

e There are Kernels and Cokernels: VX,Y € Obj(C),
Vf: X —Y can decompose joi = f,

KExLrly Sk,

with K = Ker(f), K' = Coker(f), and I = Ker(k) =
Coker(c).
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k-linear category C: Homg(X,Y) is a k-vector
space VX,Y € Obj(C).

Tensor category C: k-linear with  :C xC — C

e J1 € Obj(C) with End(1) £ k and functorial isomor-
phisms

axyz XY R®2Z) - (XQY)® 7
cxy - XQY =Y ®X
Ix : X®1—-X and ry . 1®X — X.

1

e Commutativity: cy,x = cyy

Rigid tensor category C:. tensor with duality
V:C — CoP

e VX € Obj(C) the functor — ® XV is left adjoint to
— ® X and the functor XV ® — is right adjoint to
X® —.

e Evaluation morphism e¢: X ® XV — 1 and unit mor-
phisméd:1 —- XV®X with (e®1)0(1®6d) = 1x and
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Functors w:C — ¢’

faithful: w : Homg¢(X,Y) — Home(w(X),w(Y)) injection
additive: w: Hom¢(X,Y) — Home(w(X),w(Y)) k-linear
exact: 0 - X - Y - Z - 0 exact = 0 - w(X) —

w(Y) - w(Z) — 0 exact

tensor: functorial isomorphisms 71 : w(1) — 1 and TX)Y -
W(X®Y) - w(X)w()

Fiber functor, Tannakian categories C be a k-
linear rigid tensor category: fiber functor w :
C — Vecty exact faithful tensor functor, K
extension of k.

= C Tannakian (=has fiber functor), neutral
Tannakian (K = k)

(Grothendieck, Savendra-Rivano, Deligne, ...)
C neutral Tannakian = C = Repg
G = Aut®(w) affine group scheme Gal(C)
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Example: Rep; = Repg affine group scheme G = 7
dual to H = Cle(q),t], for ¢ € C/7Z, with relations e(q1 +

q2) = e(q1)e(q2) and coproduct A(e(q)) = e(q) ® e(q)
and A(t)) =t1+1xt.

Riemann—Hilbert correspondence

Tannakian formalism applied to categories of
differential systems (differential Galois theory)

(K,d) = differential field
e.g. K =C{z}[z71'] or K =C((2))

Category Dy of differential modules over K:
Objects (V, V), vector space V € Obj(Vg) and
connection

C-linear map V : V — V with V(fv) = §(f)v + fV(v),
forall fe K and allveV

Morphisms Hom((V1,V1), (Vo,V5)) K-linear maps
T :V73 — Vo with VooT' =T 0oV,

(V1, V1) ®@ (2, Vo) =(V1®Vo,V1®14+1QV>))
and dual (V,V)V
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Fiber functor w(V,V) = KerV. Neutral Tan-
nakian category Dy = Repg

For K = C((z)), affine group scheme G = 7 xZ of Ramis
exponential torus 7 = Hom(B,C*) with B = U,«nBr, for
B, = 2z~ 1/"C[z~1/"].

For K = C{z}[27!] extra generators: Stokes phenomena

(resummation of divergent series in sectors)

Example: ODE 6(u) = Au, subcategory of
Dy, = differential Galois group (Aut of Picard-
Vessiot ring)

Example: ODE §(u) = Au regular-singular iff
3T invertible matrix coeff. in K = C((z)), with
T—YAT — T716(T) = B/z, B coeff. in C[[z]].
Tannakian subcategory D%S of Dg gen. by
regular-singular equations Dgg’ = Repz (mon-
odromy Z = w1(A*))

18



Claim: There is a Riemann-Hilbert correspon-
dence associated to the data of perturbative
renormalization

e Not just over the disk A but a C*-fibration B over
A, so we exit from the category Dy.

e Equivalence relation on connections by gauge trans-
formations regular at z = 0.

e Class of connections (equisingular connections) not
regular-singular: setting of “irregular’ Riemann—
Hilbert correspondence with arbitrary degree of ir-
regularity, as for Dg.

e T he Galois group same in formal and non-formal
case (no Stokes phenomena).
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Data of CK revisited

G = pro-unipotent affine group scheme (= Difg(7))
L(G(C), n) = loops vu(z) with

o { Yot (2) = 01 (u(=))

2:7,~(2) = 0.

Divergences (counterterms) ~v_(z)

First step (CK):

coefficients d,, € HV

Ydyy1=dnB VYn>1, and Ydy =g

= Can write as iterated integrals
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Time ordered exponential

g(C)-valued smooth «a(t), t € [a,b] C R

oo

Tej; a®)dt . _ 1—|—Z a(sy) - a(sy) ds1---dsy

1 Ja<s:<--<s,<b

product in HY, with 1 € HY counit € of 'H
e Paired with X € 'H the sum is finite.
e Defines an element of G(C).

e Value g(b) of unique solution ¢(t) € G(C) with g(a) =
1 of

dg(t) = g(t) a(t) dt
e Multiplicative over sum of paths:

—I—ej: a(t) dt — —I—ej;b a(t) dt Te»/;c a(t) dt
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o v,(z) € L(G(C), ), then

’)/_(Z) — Te_% fC()>O 0_(53) dt

by v-(2) ' =143 | & with

dn = 0_s5,(8)0-5,(B)...0-5(B) ds1---dsy

812>822>+-2>58,20

e yu(2) € L(G(C), p), then

1 p—=zlogpu
yu(z) = Te =z Joow 0 0tBdl g (reg(2))

for a unique B € g(C) (with ~eq(z) a loop regular at
z=0)

The Birkhoff factorization

Jo 219" 0_y(B) dt 0

v,+(2) = Te > - 10g u(reg (2))

’)/_(Z) — Te_% fC())O 0-+(6) dt

Conversely, given g € g(C) and ~reg(z) regular
= Yu € L(G(C), 1)
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w = afs,t)ds + n(s,t)dt flat g(C)-valued con-
nection

8877_ 87505—'— [CE, 77] =0

1«
Tefo 7% depends on homotopy class of path

Differential field (K,6) with Ker§ = C
log derivative on G(K)

D(f) = f 1§ € g(K)
F(X) =6(f(X)), VXEH

Differential equation D(f) = w
Existence of solutions: trivial monodromy
G = lim.G;, monodromy

<1

1 _«
M;(w)(7) = Telo 7'
punctured disk A;F of positive radius
M(w)=1

well defined on G
23



(K,8), d: K — QL df =6(f)dz
D:G(K)— QY g), Df=f1df

D(fh) = Dh+h~tDfh

Two connections w and w’ are equivalent iff

o =Dh+h"lwh, with heGO)
Equivalent < same negative part of Birkhoff:
D(f®) = w and D(f®) = &’ solutions in G(K)

/
w~w = P = f%
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Flat equisingular connections: accounts for u-dependence
Principal G,,(C) = C*bundle G,, — B — A over in-
finitesimal disk A.

P =B x G, P* = P|g., B* = B|a.

Action of G,, by b — u(b), Vu € G,,(C) = C* and action

of G,, on G dual to graded Hopf algebra H = ®,>0Hn

u(b,9) = (u(d),u’ (9)), VueGn

Flat connection w on P* is equisingular iff
o w is Gy-invariant

w(z,u(@)) = u¥ (w(z,v)), VueGm
v=(o(z2),q9), forze A and ge G
e all the restrictions are equivalent
o1(w) ~ op(w)

o1 and o, are two sections of B as above, with ¢1(0) =

yo = 02(0)

The connections ¢](w) and o5(w) have the
same type of singularity at the origin z =20
25



Equivalence: w and =’ on P* equivalent iff

o = Dh+ h~lwh,

with h a G-valued Gy,-invariant map regular in
B.

T hm: Bijective correspondence between equiv-
alence classes of flat equisingular G-connections
w on P* and elements 3 € g(C)

w ~ D~ with

fy(z,fv) — Te_% f(;) uy(ﬁ)%

(integral on the path u =tv, t € [0, 1])
Correspondence independent of choice of sec-
tion o : A — B with ¢(0) = yg.

Key step: vanishing of monodromies around
A* and C*
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Category of equivariant flat vector bundles

V = &,ezVn fin dim Z-graded vector space; trivial vector
bundle E = B x V filtered by

Gy, action induced by grading.

W-connection on a filtered vector bundle (E,W) over
B:
WH(E) C WTH(E),
Gr)) (E) =W "™(E)/W " 1(E)

Connection V on E* = FE|p., compatible with filtration:
restricts to W—"(E*) and induces trivial connection on
Gr'(E)

Two W-connections V; on E* are W-equivalent iff 37T &
Aut(E), preserving filtration, inducing identity on Gr'" (E),
with TToV1 =Voo0T

A W-connection V on FE is equisingular if it is Gy,-
invariant and all restrictions to sections o : A — B with

o(0) = yo are W-equivalent.

27



Category & equisingular flat vector bundles

Obj(E) pairs © = (V, [V])
V = fin dim Z-graded vector space, [V] = W-equivalence
class of flat equisingular W-connection V on E* = B*xV

Morphisms: T € Homg(©,0") linear map T :

V-V
compatible with the grading and on (E' @ E)*

AN

V' TV - VT
= (5 ")

are W-equivalent on B

(Notice: category of filtered vector spaces, with mor-
phisms linear maps respecting filtration, is not an abelian

category)
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For G = Difg(7), w = flat equisingular connection on
P* = B*x @G, fin dim lin rep € : G — GL(V) = © ¢
Obj(€). Equivalent w give same ©.

THM The category £ is a neutral Tannakian
category (over C, over Q)
with fiber functor w(©®) =V

E = Repys«

U* = Ux@G,y, affine group scheme, U = prounipo-
tent dual to Hopf algebra

Hy = U(Ly)"

Ly=F(1,2,3,---)e denote the free graded Lie
algebra generated by elements e_,, of degree n,
for each n >0
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Renormalization group

©.@)
e = Ze_n
1

determinesrg : G, — U

Universal singular frame

1l rv Y du
Tu(z,v) = Te = Jo v (O

Universal source of counterterms

Coefficients:

. €k €k, "€k, > ki —n
WED =D TRy TRt R

(local index formula Connes-Moscovici)
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Key step in proof of THM: for © = [V, V] be
an object of &£, there exists a unique represen-
tation p = pg of U* in V, such that

Dp(yy) =V

universal singular frame ~y

Note: Q(n) € Obj(&E) with V 1-dim over Q in deg n,
V trivial connection on assoc bundle E over B. Fiber
functor:

wn(©) = Hom(Q(n), Gr%,(©))
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For G = Difg(7), canonical bijection: equiv-
alence classes of flat equisingular connections
on P* and graded representations

p U =G =G xGpy

Using the beta function:
¢

B = Z Bn
1

Y (Bn) = npBn, representation U — G compati-
ble with G,:

€_nt— Bn

Action on physical constants through Difg — Diff map:

U — Difg(7) — Diff
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Motives

Cohomologies for alg varieties:

de Rham H;,(X) = H (X, Qy)
Betti H5(X,Q) (singular homology)
étale Hzt(X Qy) for £ #= chark and X over k.

Isomorphisms: period isomorphism

Hip(X, k) ®: C = H5(X,Q) Rq C
and comparison isom

H5(X,Q) ®g Qp = HL (X, Qp)

Universal cohomology theory? Motives

Linearization of the category of algebraic va-
rieties (adding morphisms; analog with Morita theory
for algebras)

X — h(X) = ®;hH(X)

if h/ = 0, Vj % ¢, pure of weight 3
Pure motives “direct summands of algebraic
varieties”
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Pure Motives

Objects (X,p), p = p? € End(X), X smooth
projective

Morphisms Hom(X,Y) correspondences: alg
cycles in X x Y, codim=dim X. Equivalences

(numerical, rational,...)
Hom((X,p), (Y,q)) = qHom(X,Y)p

Tate motives Q(1) inverse of h2(P1), Q(0) =
h(pt), Q(n +m) = Q(n) ® Q(m)

(Grothendieck standard conjectures)

Jannsen: numerical equivalence = neutral Tan-
nakian category (fiber functor Betti cohomology) =
Repn affine group scheme G

Tate motives G = Gyy,.
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Mixed motives

Extend “universal cohomology theory” to X
not smooth projective: technically much more
complicated, via constructions of derived cat-
egory (Voevodsky, Levine, Hanamura)

Mixed Tate motives
(filtered: graded pieces Tate motives)

Full subcategory of Tate motives (over a field k
or a scheme S) M7,,,;.(S) (Deligne—Goncharov)

Motivic Galois group of MT7,,;.(k) extension
G x Gy, G pro-unipotent, Lie (G) free one gen-
erator in each odd degree n < —3

THM(CM) (non-canonical) isomorphism U* ~
GMT(O) with motivic Galois group of the scheme
Saq of 4-cyclotomic integers

O = 7[i][1/2]
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