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Overview

H•
dR(Db

sing(Y , f))

H•
dR(Db
sing(Y,f))

Joint work with L.Katzarkov
and M.Kontsevich.

Will describe (following
Kontsevich) how to extract
Hodge theoretic invariants
from D-brane categories.

Will explain how these
invariants transform under
mirror symmetry.

Will discuss the structure of
the invariants and methods
for computation.
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Kontsevich’s program

Recall:

Kähler
space
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Kontsevich’s program

Recall:

Kähler
space
X

=⇒ Hodge structure:
H•

B(X,C)∼=H•
dR(X,C)∼=H•

Dol(X,C)

de Rham’s theorem

Hodge’s theorem +
the Kähler condition
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H•
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OO

⊕Hp,q

Want:

generalized
(nc) Kähler
space X

=⇒? generalized (nc) Hodge structure
on the de Rham cohomology of
X
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nc spaces

Definition: (math) [Bondal’90] A nc space X/C is a small
triangulated C-linear category CX which is:

Definition: (physics) A nc space X/C is a 2d TQFT with
N = 2 susy.

Intuition:
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nc spaces

Definition: (math) [Bondal’90] A nc space X/C is a small
triangulated C-linear category CX which is:

Karoubi closed (⇔ ∀ projector splits);

enriched over complexes of C-vector spaces.

∀ E,F ∈ CX  HomCX
(E,F ) ∈ (Compl/C)

so that HomCX
(E,F [i]) = H i(HomCX

(E,F ))

Definition: (physics) A nc space X/C is a 2d TQFT with
N = 2 susy.

Intuition:
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nc spaces

Definition: (math) [Bondal’90] A nc space X/C is a small
triangulated C-linear category CX which is:

Karoubi closed (⇔ ∀ projector splits);

enriched over complexes of C-vector spaces.

Definition: (physics) A nc space X/C is a 2d TQFT with
N = 2 susy.

Intuition:

(math) CX is the category of sheaves on X.

(physics) CX is the category of D-branes in the TQFT X.

Generalized Hodge structures and Mirror Symmetry – p.4/24

http://www.math.upenn.edu/~tpantev/hodgemirror.pdf


Examples

(math) If X/C is a scheme of finite type, then X/C is
also a nc space with CX := Perf(X) - perfect complexes
of quasi-coherent sheaves on X.
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Examples

(math) If X/C is a scheme of finite type, then X/C is
also a nc space with CX := Perf(X) - perfect complexes
of quasi-coherent sheaves on X. If X - smooth and
quasi-projective, then CX is quasi-equivalent to
Db

qcoh(X).
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Examples

(math) If X/C is a scheme of finite type, then X/C is
also a nc space with CX := Perf(X) - perfect complexes
of quasi-coherent sheaves on X.

(math) If X/C is a compact complex manifold, then X/C
is also a nc space with CX := Db

qcoh(X) - the derived
category of quasi-coherent sheaves on X.
Enhancement: The twisted complexes of Toledo-Tong
and Bondal-Kapranov.
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Examples

(math) If X/C is a scheme of finite type, then X/C is
also a nc space with CX := Perf(X) - perfect complexes
of quasi-coherent sheaves on X.

(math) If X/C is a compact complex manifold, then X/C
is also a nc space with CX := Db

qcoh(X) - the derived
category of quasi-coherent sheaves on X.

(physics) If X is a topological twist of a (2, 2) sigma
model, then X is also a nc space.
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Examples

(math) If X/C is a scheme of finite type, then X/C is
also a nc space with CX := Perf(X) - perfect complexes
of quasi-coherent sheaves on X.

(math) If X/C is a compact complex manifold, then X/C
is also a nc space with CX := Db

qcoh(X) - the derived
category of quasi-coherent sheaves on X.

(physics) If X is a topological twist of a (2, 2) sigma
model, then X is also a nc space.

X = (M,J ) - gc manifold in the sense of
Hitchin, which fits in a generalized Kähler
structure (X,J1 = J ,J2).
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Examples

(math) If X/C is a scheme of finite type, then X/C is
also a nc space with CX := Perf(X) - perfect complexes
of quasi-coherent sheaves on X.

(math) If X/C is a compact complex manifold, then X/C
is also a nc space with CX := Db

qcoh(X) - the derived
category of quasi-coherent sheaves on X.

(physics) If X is a topological twist of a (2, 2) sigma
model, then X is also a nc space. CX - the category
of topological generalized complex branes of
Kapustin-Li.
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Landau-Ginzburg model

Any holomorphic Landau-Ginzburg model X := (Y , f) is
also a nc space.

Here
Y /C is a quasi-projective manifold;
f : Y → C is a holomorphic map with a single critical
value at 0 ∈ C.

C(Y ,f) =

(locally) Matrix factorizations (Kontsevich):
(E = E0 ⊕ E1, dE ∈ End(E)odd), d2

E = f · id.
Hom((E, dE), (F, dF )) := (Hom(E,F ), d),
dϕ = ϕ ◦ dE − dF ◦ ϕ (Note: d2 = 0).

(globally) Categories of singularities (Orlov):
Db(Y 0)/Perf(Y 0).
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Landau-Ginzburg model

Any holomorphic Landau-Ginzburg model X := (Y , f) is
also a nc space. Note: Z/2 graded nc space: [0] ∼= [2].

Here
Y /C is a quasi-projective manifold;
f : Y → C is a holomorphic map with a single critical
value at 0 ∈ C.

C(Y ,f) =

(locally) Matrix factorizations (Kontsevich):
(E = E0 ⊕ E1, dE ∈ End(E)odd), d2

E = f · id.
Hom((E, dE), (F, dF )) := (Hom(E,F ), d),
dϕ = ϕ ◦ dE − dF ◦ ϕ (Note: d2 = 0).

(globally) Categories of singularities (Orlov):
Db(Y 0)/Perf(Y 0).
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Algebraic, proper, smooth (I)

Definition: If X/C is a nc space, then:

X is algebraic if ∃ a dg algebra A/C, so that
CX

∼= Perf(A− mod).

X is proper if
∑

i∈Z dimHi(A, d) <∞.

X is smooth if A ∈ Perf(A⊗ Aop − mod).
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Algebraic, proper, smooth (I)

Definition: If X/C is a nc space, then:

X is algebraic if ∃ a dg algebra A/C, so that
CX

∼= Perf(A− mod).

X is proper if
∑

i∈Z dimHi(A, d) <∞.

X is smooth if A ∈ Perf(A⊗ Aop − mod).

Any scheme X/C is algebraic when viewed as a nc space:

Theorem [Bondal-Van den Bergh’02] CX = Perf(X)
has a strong split generator: E ∈ CX , with

Perf(X) ∼= Perf(RHom(E,E)op − mod).
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Algebraic, proper, smooth (I)

Definition: If X/C is a nc space, then:

X is algebraic if ∃ a dg algebra A/C, so that
CX

∼= Perf(A− mod).

X is proper if
∑

i∈Z dimHi(A, d) <∞.

X is smooth if A ∈ Perf(A⊗ Aop − mod).

Theorem [Bondal-Van den Bergh’02] CX = Perf(X)
has a strong split generator: E ∈ CX , with

Perf(X) ∼= Perf(RHom(E,E)op − mod).

Example: [Beilinson’78] X = Pn, A = End(O ⊕ . . .⊕O(n))op.
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Algebraic, proper, smooth (II)

If X is an algebraic nc space, then proper/smooth do
not depend on the choice of A.

For X/C a scheme of finite type, proper/smooth in the
nc sense coincide with the usual notions of
proper/smooth.

If X/C is a proper/smooth nc space, then
(Bondal-Kapranov): ∃ ! Serre functor

SX : CX → CX ;
Hom(E,F )∨ ∼= Hom(F, SXE)
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Algebraic, proper, smooth (II)

If X is an algebraic nc space, then proper/smooth do
not depend on the choice of A.

For X/C a scheme of finite type, proper/smooth in the
nc sense coincide with the usual notions of
proper/smooth.

If X/C is a proper/smooth nc space, then
(Bondal-Kapranov): ∃ ! Serre functor

SX : CX → CX ;
Hom(E,F )∨ ∼= Hom(F, SXE)

If X - scheme, then SX(•) = (•) ⊗KX [dimX].
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proper/smooth nc spaces (I)

Any proper and smooth:

scheme, algebraic space, Deligne-Mumford stack;
X = (Y, α), where Y/C - scheme, α ∈ Br(Y ),
CX = Db(Y, α).

A deformation quantization Xγ of a smooth projective
X/C (assuming H1(OX) = H2(OX) = 0).
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A deformation quantization Xγ of a smooth projective
X/C (assuming H1(OX) = H2(OX) = 0).

[Kontsevich’01]: Fix L ∈ Pic(X) - ample, and γ ∈

Γ(tot(L×),∧2T )C×

- Poisson structure. Get quantized
space Xγ/C((~)) with a new homogeneous coordi-
nate ring: f ? g = fg + ~〈γ, df ∧ dg〉 + . . ..
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the non-commutative P2’s of
[Artin-Tate-Van den Bergh’90];
the non-commutative projective schemes of
[Artin-Zhang’94];
the elliptic projective spaces of [Odesskij-Feigin’98];
the quantized del Pezzo surfaces of [Artin’96]
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proper/smooth nc spaces (II)

Expect: If X/C is a topological twist of a (2, 2) sigma
model, corresponding to a compact gc manifold
(M,J ), then X is a proper and smooth nc space.

The notions of algebraic/proper/smooth extend to
Z/2-graded nc spaces

Known when
(Y , f) is the germ of an isolated quasi-homogeneous
hypersurface singularity [K.Saito’98].
Y 0 has at most rational singularities [Orlov’04].
(Y , f) is the Hori-Vafa mirror of a (quantized) del
Pezzo surface or a weighted projective space
[Auroux-Katzarkov-Orlov’04].
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Cohomology (I)

Consider

An algebraic nc space X/C;

A - a unital dg algebra computing X ;

(C•(A,A),∂) - the reduced homological Hochschild
complex of A;

B : C•(A,A) → C•(A,A)[−1] - the Connes differential.

HHk(A) = Hk((C•(A,A),∂))
the Hochschild homology of A.
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HPk(A) = Hk((C•(A,A)((u)),∂ + u · B))

the periodic cyclic homology of A.

deg u = +2
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A - a unital dg algebra computing X ;

(C•(A,A),∂) - the reduced homological Hochschild
complex of A;
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the periodic cyclic homology of A.

C((u))-module
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Cohomology (II)

Facts:

X/C - smooth affine variety, A = Γ(X,O), then
HH−k(A) = Γ(X,Ωk

X). The differential B is the algebraic
de Rham differential
[Hochschild-Kostant-Rosenberg’62].

X/C - smooth scheme, then
HHk(A) = ⊕p−q=kH

p(X,Ωq
X) [Weibel’96].

HPk+2(A) = HPk(A) for all A. Get a super vector space
HPeven(A) ⊕HPodd(A). [Weibel’96]:

HPeven(A) = ⊕H2i
dR(X,C);

HPodd(A) = ⊕H2i+1
dR

(X,C)
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X). The differential B is the algebraic
de Rham differential
[Hochschild-Kostant-Rosenberg’62].

X/C - smooth scheme, then
HHk(A) = ⊕p−q=kH

p(X,Ωq
X) [Weibel’96].

HPk+2(A) = HPk(A) for all A. Get a super vector space
HPeven(A) ⊕HPodd(A). [Weibel’96]:

HPeven(A) = ⊕H2i
dR(X,C);

HPodd(A) = ⊕H2i+1
dR

(X,C)

for a smooth scheme X/C
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Cohomology (III)

For an algebraic nc space X/C:

H•
Dol(X) := HH•(A) is a nc analogue of Dolbeault

cohomology;

H•
dR(X) := HP•(A) is a nc analogue of de Rham

cohomology.

H•
Dol(X) and H•

dR(X) are well defined [Keller’99].
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Cohomology (III)

For an algebraic nc space X/C:

H•
Dol(X) := HH•(A) is a nc analogue of Dolbeault

cohomology;

H•
dR(X) := HP•(A) is a nc analogue of de Rham

cohomology.

Properties:

H•
Dol(X) and H•

dR(X) are well defined [Keller’99].
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Cohomology (III)

For an algebraic nc space X/C:

H•
Dol(X) := HH•(A) is a nc analogue of Dolbeault

cohomology;

H•
dR(X) := HP•(A) is a nc analogue of de Rham

cohomology.

Properties:

H•
Dol(X) and H•

dR(X) are well defined [Keller’99].

For X/C proper and smooth nc space
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Cohomology (III)

For an algebraic nc space X/C:

H•
Dol(X) := HH•(A) is a nc analogue of Dolbeault

cohomology;

H•
dR(X) := HP•(A) is a nc analogue of de Rham

cohomology.

Properties:

H•
Dol(X) and H•

dR(X) are well defined [Keller’99].

For X/C proper and smooth nc space
H•

Dol(X) = R• HomEnd(CX)(IX , SX).
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Cohomology (III)

For an algebraic nc space X/C:

H•
Dol(X) := HH•(A) is a nc analogue of Dolbeault

cohomology;

H•
dR(X) := HP•(A) is a nc analogue of de Rham

cohomology.

Properties:

H•
Dol(X) and H•

dR(X) are well defined [Keller’99].

For X/C proper and smooth nc space
H•

Dol(X) = R• HomEnd(CX)(IX , SX).

dimC((u))H
•
dR(X) ≤ dimCH

•
Dol(X) < +∞.
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For an algebraic nc space X/C:
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Dol(X) := HH•(A) is a nc analogue of Dolbeault

cohomology;

H•
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Cohomology (III)

For an algebraic nc space X/C:

H•
Dol(X) := HH•(A) is a nc analogue of Dolbeault

cohomology;

H•
dR(X) := HP•(A) is a nc analogue of de Rham

cohomology.

Properties:

H•
Dol(X) and H•

dR(X) are well defined [Keller’99].

For X/C proper and smooth nc space
H•

Dol(X) = R• HomEnd(CX)(IX , SX).

dimC((u))H
•
dR(X) ≤ dimCH

•
Dol(X) < +∞.
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nc Kähler spaces

Definition: For a proper and smooth nc space X/C the
Hodge-to-de Rham spectral sequence collapses at E1 if
dimC((u))

(

Heven
dR (X) ⊕Hodd

dR (X)
)

= dimC

(

⊕kH
k
Dol(X)

)

.
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nc Kähler spaces

Definition: For a proper and smooth nc space X/C the
Hodge-to-de Rham spectral sequence collapses at E1 if
dimC((u))

(

Heven
dR (X) ⊕Hodd

dR (X)
)

= dimC

(

⊕kH
k
Dol(X)

)

.

A proper and smooth nc space X/C with a collapsing
Hodge-to-de Rham spectral sequence ↔ substitute for nc
Kähler space .
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nc Kähler spaces

Definition: For a proper and smooth nc space X/C the
Hodge-to-de Rham spectral sequence collapses at E1 if
dimC((u))

(

Heven
dR (X) ⊕Hodd

dR (X)
)

= dimC

(

⊕kH
k
Dol(X)

)

.

Conjecture [Kontsevich’04]: Every proper and smooth nc
space X/C has a collapsing Hodge-to-de Rham spectral
sequence.
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nc Kähler spaces

Definition: For a proper and smooth nc space X/C the
Hodge-to-de Rham spectral sequence collapses at E1 if
dimC((u))

(

Heven
dR (X) ⊕Hodd

dR (X)
)

= dimC

(

⊕kH
k
Dol(X)

)

.

Conjecture [Kontsevich’04]: Every proper and smooth nc
space X/C has a collapsing Hodge-to-de Rham spectral
sequence.
True for:
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nc Kähler spaces

Definition: For a proper and smooth nc space X/C the
Hodge-to-de Rham spectral sequence collapses at E1 if
dimC((u))

(

Heven
dR (X) ⊕Hodd

dR (X)
)

= dimC

(

⊕kH
k
Dol(X)

)

.

Conjecture [Kontsevich’04]: Every proper and smooth nc
space X/C has a collapsing Hodge-to-de Rham spectral
sequence.
True for:

schemes, DM stacks, O×-gerbes, quantum defos;
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nc Kähler spaces

Definition: For a proper and smooth nc space X/C the
Hodge-to-de Rham spectral sequence collapses at E1 if
dimC((u))

(

Heven
dR (X) ⊕Hodd

dR (X)
)

= dimC

(

⊕kH
k
Dol(X)

)

.

Conjecture [Kontsevich’04]: Every proper and smooth nc
space X/C has a collapsing Hodge-to-de Rham spectral
sequence.
True for:

schemes, DM stacks, O×-gerbes, quantum defos;

LG models (Y , f) with crit(f) proper,
[Barannikov-Kontsevich’97].
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nc Kähler spaces

Definition: For a proper and smooth nc space X/C the
Hodge-to-de Rham spectral sequence collapses at E1 if
dimC((u))

(

Heven
dR (X) ⊕Hodd

dR (X)
)

= dimC

(

⊕kH
k
Dol(X)

)

.

Conjecture [Kontsevich’04]: Every proper and smooth nc
space X/C has a collapsing Hodge-to-de Rham spectral
sequence.
True for:

schemes, DM stacks, O×-gerbes, quantum defos;

LG models (Y , f) with crit(f) proper,
[Barannikov-Kontsevich’97].

X for which CX is computed by an associative algebra
A, [Kaledin’05].

Generalized Hodge structures and Mirror Symmetry – p.14/24

http://www.math.upenn.edu/~tpantev/hodgemirror.pdf


Residual structures

Suppose X/C is proper, smooth wih degenerating
Hodge-to-de Rham ss.
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Residual structures

Suppose X/C is proper, smooth wih degenerating
Hodge-to-de Rham ss. The cohomology of X inherits
[Barannikov-Kontsevich’00] extra structures which combine
into:
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Residual structures

Suppose X/C is proper, smooth wih degenerating
Hodge-to-de Rham ss. The cohomology of X inherits
[Barannikov-Kontsevich’00] extra structures which combine
into:

a vector bundle H on the formal disc:
sections = H•((C•(A,A)[[u]],+u · B)).
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Residual structures

Suppose X/C is proper, smooth wih degenerating
Hodge-to-de Rham ss. The cohomology of X inherits
[Barannikov-Kontsevich’00] extra structures which combine
into:

a vector bundle H on the formal disc:
sections = H•((C•(A,A)[[u]],+u · B)).

a canonical connection ∇ on H for u 6= 0.
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Residual structures

Suppose X/C is proper, smooth wih degenerating
Hodge-to-de Rham ss. The cohomology of X inherits
[Barannikov-Kontsevich’00] extra structures which combine
into:

a vector bundle H on the formal disc:
sections = H•((C•(A,A)[[u]],+u · B)).

a canonical connection ∇ on H for u 6= 0.

a ∇-horizontal pairing 〈 , 〉 : Hu ⊗H−u × C

Generalized Hodge structures and Mirror Symmetry – p.15/24

http://www.math.upenn.edu/~tpantev/hodgemirror.pdf


Residual structures

Suppose X/C is proper, smooth wih degenerating
Hodge-to-de Rham ss. The cohomology of X inherits
[Barannikov-Kontsevich’00] extra structures which combine
into:

a vector bundle H on the formal disc:
sections = H•((C•(A,A)[[u]],+u · B)).

a canonical connection ∇ on H for u 6= 0.

a ∇-horizontal pairing 〈 , 〉 : Hu ⊗H−u × C

Note: The connection ∇ has a quasi-unipotent monodromy
and a regular singularity at 0, and
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Residual structures

Suppose X/C is proper, smooth wih degenerating
Hodge-to-de Rham ss. The cohomology of X inherits
[Barannikov-Kontsevich’00] extra structures which combine
into:

a vector bundle H on the formal disc:
sections = H•((C•(A,A)[[u]],+u · B)).

a canonical connection ∇ on H for u 6= 0.

a ∇-horizontal pairing 〈 , 〉 : Hu ⊗H−u × C

Note: The connection ∇ has a quasi-unipotent monodromy
and a regular singularity at 0, and

a pole of order ≤ 1 at zero in the Z-graded case;
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Residual structures

Suppose X/C is proper, smooth wih degenerating
Hodge-to-de Rham ss. The cohomology of X inherits
[Barannikov-Kontsevich’00] extra structures which combine
into:

a vector bundle H on the formal disc:
sections = H•((C•(A,A)[[u]],+u · B)).

a canonical connection ∇ on H for u 6= 0.

a ∇-horizontal pairing 〈 , 〉 : Hu ⊗H−u × C

Note: The connection ∇ has a quasi-unipotent monodromy
and a regular singularity at 0, and

a pole of order ≤ 1 at zero in the Z-graded case;

a pole of order ≤ 2 at zero in the Z/2-graded case;
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Generalized Hodge structures

Definition: A pure generalized (nc) Hodge structure is a
triple (H,∇,Ktop), where:
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Generalized Hodge structures

Definition: A pure generalized (nc) Hodge structure is a
triple (H,∇,Ktop), where:

H is a holomorphic super vector bundle over
{u ∈ C| |u| � 1}.
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Generalized Hodge structures

Definition: A pure generalized (nc) Hodge structure is a
triple (H,∇,Ktop), where:

H is a holomorphic super vector bundle over
{u ∈ C| |u| � 1}.

∇ is a flat connection on H, defined for u 6= 0, with a
regular singularity, quasi-unipotent monodromy and a
2nd order pole at 0.
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Generalized Hodge structures

Definition: A pure generalized (nc) Hodge structure is a
triple (H,∇,Ktop), where:

H is a holomorphic super vector bundle over
{u ∈ C| |u| � 1}.

∇ is a flat connection on H, defined for u 6= 0, with a
regular singularity, quasi-unipotent monodromy and a
2nd order pole at 0.

Ktop ⊂ H|{u6=0} - local subsystem of Z/2-graded abelian
groups, with Ktop ⊗ C = H|{u6=0}.
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Generalized Hodge structures

Definition: A pure generalized (nc) Hodge structure is a
triple (H,∇,Ktop), where:

H is a holomorphic super vector bundle over
{u ∈ C| |u| � 1}.

∇ is a flat connection on H, defined for u 6= 0, with a
regular singularity, quasi-unipotent monodromy and a
2nd order pole at 0.

Ktop ⊂ H|{u6=0} - local subsystem of Z/2-graded abelian
groups, with Ktop ⊗ C = H|{u6=0}.

Problem: How can we define the lattice Ktop?
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Generalized Hodge structures

Definition: A pure generalized (nc) Hodge structure is a
triple (H,∇,Ktop), where:

H is a holomorphic super vector bundle over
{u ∈ C| |u| � 1}.

∇ is a flat connection on H, defined for u 6= 0, with a
regular singularity, quasi-unipotent monodromy and a
2nd order pole at 0.

Ktop ⊂ H|{u6=0} - local subsystem of Z/2-graded abelian
groups, with Ktop ⊗ C = H|{u6=0}.

Problem: How can we define the lattice Ktop?
Answer is clear in the almost commutative examples, e.g.
for schemes, stacks, gerbes, LG models.

Generalized Hodge structures and Mirror Symmetry – p.16/24

http://www.math.upenn.edu/~tpantev/hodgemirror.pdf


Generalized Hodge structures

Definition: A pure generalized (nc) Hodge structure is a
triple (H,∇,Ktop), where:

H is a holomorphic super vector bundle over
{u ∈ C| |u| � 1}.

∇ is a flat connection on H, defined for u 6= 0, with a
regular singularity, quasi-unipotent monodromy and a
2nd order pole at 0.

Ktop ⊂ H|{u6=0} - local subsystem of Z/2-graded abelian
groups, with Ktop ⊗ C = H|{u6=0}.

Problem: How can we define the lattice Ktop?

Can Ktop be defined entirely in terms of the nc data?
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nc Hodge conjecture

nc Hodge conjecture: If X/C is a proper and smooth nc
space, then

im

[

K0(CX) ch
//Γ(Ktop)

]

⊗ Q = HomncHS(1, H•
dR(X)) ⊗ Q.
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Polarizations (I)

Definition: A polarization on a nc Hodge structure
(H,∇,Ktop) at radius r ∈ R>0 is the data (H ,∇,K, ψ),
where:
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Polarizations (I)

Definition: A polarization on a nc Hodge structure
(H,∇,Ktop) at radius r ∈ R>0 is the data (H ,∇,K, ψ),
where:

(H ,∇,K)|{|u|<r} = (H,∇,Ktop);
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Polarizations (I)

Definition: A polarization on a nc Hodge structure
(H,∇,Ktop) at radius r ∈ R>0 is the data (H ,∇,K, ψ),
where:

(H ,∇,K)|{|u|<r} = (H,∇,Ktop);

H is holomorphically trivial on P1;
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Polarizations (I)

Definition: A polarization on a nc Hodge structure
(H,∇,Ktop) at radius r ∈ R>0 is the data (H ,∇,K, ψ),
where:

(H ,∇,K)|{|u|<r} = (H,∇,Ktop);

H is holomorphically trivial on P1;

ψ is a collection of bilinear pairings
ψu : Hu ⊗ H σ(u) → C, σ(u) = −r2/ū, satisfying:
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Polarizations (I)

Definition: A polarization on a nc Hodge structure
(H,∇,Ktop) at radius r ∈ R>0 is the data (H ,∇,K, ψ),
where:

(H ,∇,K)|{|u|<r} = (H,∇,Ktop);

H is holomorphically trivial on P1;

ψ is a collection of bilinear pairings
ψu : Hu ⊗ H σ(u) → C, σ(u) = −r2/ū, satisfying:

ψu is non-degenerate and Hermitian symmetric;
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Polarizations (I)

Definition: A polarization on a nc Hodge structure
(H,∇,Ktop) at radius r ∈ R>0 is the data (H ,∇,K, ψ),
where:

(H ,∇,K)|{|u|<r} = (H,∇,Ktop);

H is holomorphically trivial on P1;

ψ is a collection of bilinear pairings
ψu : Hu ⊗ H σ(u) → C, σ(u) = −r2/ū, satisfying:

ψu is non-degenerate and Hermitian symmetric;
ψu depends holomorphically on u and is
∇-horizontal;
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Polarizations (I)

Definition: A polarization on a nc Hodge structure
(H,∇,Ktop) at radius r ∈ R>0 is the data (H ,∇,K, ψ),
where:

(H ,∇,K)|{|u|<r} = (H,∇,Ktop);

H is holomorphically trivial on P1;

ψ is a collection of bilinear pairings
ψu : Hu ⊗ H σ(u) → C, σ(u) = −r2/ū, satisfying:

ψu is non-degenerate and Hermitian symmetric;
ψu depends holomorphically on u and is
∇-horizontal;
ψ induces a positive definite Hermitian pairing on
Γ(P1,H ).
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Polarizations (I)

Definition: A polarization on a nc Hodge structure
(H,∇,Ktop) at radius r ∈ R>0 is the data (H ,∇,K, ψ),
where:

(H ,∇,K)|{|u|<r} = (H,∇,Ktop);

H is holomorphically trivial on P1;

ψ is a collection of bilinear pairings
ψu : Hu ⊗ H σ(u) → C, σ(u) = −r2/ū, satisfying:

ψu is non-degenerate and Hermitian symmetric;
ψu depends holomorphically on u and is
∇-horizontal;
ψ induces a positive definite Hermitian pairing on
Γ(P1,H ).
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Polarizations (I)

Definition: A polarization on a nc Hodge structure
(H,∇,Ktop) at radius r ∈ R>0 is the data (H ,∇,K, ψ),
where:

(H ,∇,K)|{|u|<r} = (H,∇,Ktop);

H is holomorphically trivial on P1;

ψ is a collection of bilinear pairings
ψu : Hu ⊗ H σ(u) → C, σ(u) = −r2/ū, satisfying:

ψu is non-degenerate and Hermitian symmetric;
ψu depends holomorphically on u and is
∇-horizontal;
ψ induces a positive definite Hermitian pairing on
Γ(P1,H ).
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Polarizations (II)

Remark: If (H,∇,Ktop) is a nc Hodge structure, then it
suffices to specify ψ on H|{|u|<1}.
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Polarizations (II)

Remark: If (H,∇,Ktop) is a nc Hodge structure, then it
suffices to specify ψ on H|{|u|<1}. The extension
(H ,∇,K, ψ) is completely determined.
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Polarizations (II)

Remark: If (H,∇,Ktop) is a nc Hodge structure, then it
suffices to specify ψ on H|{|u|<1}. The extension
(H ,∇,K, ψ) is completely determined.

Remark: Polarizations appear under different names in the
works of Hertling and Sabbah: trTERP structure [Hertling],
integrable polarized twistor structure [Sabbah].
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Polarizations (II)

Remark: If (H,∇,Ktop) is a nc Hodge structure, then it
suffices to specify ψ on H|{|u|<1}. The extension
(H ,∇,K, ψ) is completely determined.

Conjecture [Kontsevich’03] For any proper+smooth nc
space X/C the nc Hodge structure on H•

dR(X) is
polarizable.
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Polarizations (II)

Remark: If (H,∇,Ktop) is a nc Hodge structure, then it
suffices to specify ψ on H|{|u|<1}. The extension
(H ,∇,K, ψ) is completely determined.

Conjecture [Kontsevich’03] For any proper+smooth nc
space X/C the nc Hodge structure on H•

dR(X) is
polarizable.

True for:
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Polarizations (II)

Remark: If (H,∇,Ktop) is a nc Hodge structure, then it
suffices to specify ψ on H|{|u|<1}. The extension
(H ,∇,K, ψ) is completely determined.

Conjecture [Kontsevich’03] For any proper+smooth nc
space X/C the nc Hodge structure on H•

dR(X) is
polarizable.

True for:

schemes, DM stacks, quantizations [Barannikov’01];
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Polarizations (II)

Remark: If (H,∇,Ktop) is a nc Hodge structure, then it
suffices to specify ψ on H|{|u|<1}. The extension
(H ,∇,K, ψ) is completely determined.

Conjecture [Kontsevich’03] For any proper+smooth nc
space X/C the nc Hodge structure on H•

dR(X) is
polarizable.

True for:

schemes, DM stacks, quantizations [Barannikov’01];

topological twists of (2, 2) sigma models
[Katzarkov-Kontsevich-P’05];
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Polarizations (II)

Remark: If (H,∇,Ktop) is a nc Hodge structure, then it
suffices to specify ψ on H|{|u|<1}. The extension
(H ,∇,K, ψ) is completely determined.

Conjecture [Kontsevich’03] For any proper+smooth nc
space X/C the nc Hodge structure on H•

dR(X) is
polarizable.

True for:

schemes, DM stacks, quantizations [Barannikov’01];

topological twists of (2, 2) sigma models
[Katzarkov-Kontsevich-P’05];

LG models [Sabbah’05].
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Structure results

Theorem [Katzarkov-Kontsevich-P’05] The category
of pure nc Hodge structures is semisimple (as a rigid ⊗
category).
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Structure results

Theorem [Katzarkov-Kontsevich-P’05] The category
of pure nc Hodge structures is semisimple (as a rigid ⊗
category).

Corollary [Katzarkov-Kontsevich-P’05] For Landau-
Ginzburg models X = (Y , f) the topological lattice Ktop ⊂
H•

dR(X) is an invariant of the category CX . In particular
the nc Hodge structure on H•

dR(X) depends only on X.
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Structure results

Theorem [Katzarkov-Kontsevich-P’05] The category
of pure nc Hodge structures is semisimple (as a rigid ⊗
category).

Corollary [Katzarkov-Kontsevich-P’05] For Landau-
Ginzburg models X = (Y , f) the topological lattice Ktop ⊂
H•

dR(X) is an invariant of the category CX . In particular
the nc Hodge structure on H•

dR(X) depends only on X.

Theorem [Katzarkov-Kontsevich’05] For Landau-
Ginzburg models X = (Y , f) the nc Hodge conjecture
follows from the commutative Hodge conjecture.
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Hodge invariants of LG models

Fix X = (Y , f) - LG with a proper crit(f),
CX = Db(Y 0)/Perf(Y 0).
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Hodge invariants of LG models

Fix X = (Y , f) - LG with a proper crit(f),
CX = Db(Y 0)/Perf(Y 0). X = (Y , f) has geometrically
defined Betti, de Rham and Dolbeault cohomologies:
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Hodge invariants of LG models

Fix X = (Y , f) - LG with a proper crit(f),
CX = Db(Y 0)/Perf(Y 0). X = (Y , f) has geometrically
defined Betti, de Rham and Dolbeault cohomologies:

Betti H•(Y ,Y t; C)

de Rham H•((Ω•
Y , u · d+ df ∧ •))

Dolbeault H•((Ω•
Y , df ∧ •))
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Hodge invariants of LG models

Fix X = (Y , f) - LG with a proper crit(f),
CX = Db(Y 0)/Perf(Y 0). X = (Y , f) has geometrically
defined Betti, de Rham and Dolbeault cohomologies:

Betti H•(Y ,Y t; C)

de Rham H•((Ω•
Y , u · d+ df ∧ •))

Dolbeault H•((Ω•
Y , df ∧ •))

Note:
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Hodge invariants of LG models

Fix X = (Y , f) - LG with a proper crit(f),
CX = Db(Y 0)/Perf(Y 0). X = (Y , f) has geometrically
defined Betti, de Rham and Dolbeault cohomologies:

Betti H•(Y ,Y t; C)

de Rham H•((Ω•
Y , u · d+ df ∧ •))

Dolbeault H•((Ω•
Y , df ∧ •))

Note:

The geometric de Rham and Dolbeault cohomology of (Y , f)

coincide with the periodic cyclic and Hochschild homology of

C(Y ,f), [Katzarkov-Kontsevich-P’05].
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Hodge invariants of LG models

Fix X = (Y , f) - LG with a proper crit(f),
CX = Db(Y 0)/Perf(Y 0). X = (Y , f) has geometrically
defined Betti, de Rham and Dolbeault cohomologies:

Betti H•(Y ,Y t; C)

de Rham H•((Ω•
Y , u · d+ df ∧ •))

Dolbeault H•((Ω•
Y , df ∧ •))

Note:

The geometric definition can be used to show that

the Hodge-to-de Rham spectrals sequence degenerates,

[Barannikov-Kontsevich’97].
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Vanishing cocycles

Question: How can we compute the nc Hodge structure on
H•

dR((Y , f))?
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Vanishing cocycles

Question: How can we compute the nc Hodge structure on
H•

dR((Y , f))?

Idea: Relate to commutative Hodge theory.
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Vanishing cocycles

Question: How can we compute the nc Hodge structure on
H•

dR((Y , f))?

Y has the homotopy type of Y 0:

Generalized Hodge structures and Mirror Symmetry – p.22/24

http://www.math.upenn.edu/~tpantev/hodgemirror.pdf


Vanishing cocycles

Question: How can we compute the nc Hodge structure on
H•

dR((Y , f))?

Y has the homotopy type of Y 0: If i0 : Y 0 ↪→ Y , then
∃r : Y → Y 0 - a strict deformation retraction (r ◦ i ∼= idY 0

).
Specialization to 0 map: rt := r|Y t

: Y t → Y 0.
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Vanishing cocycles

Question: How can we compute the nc Hodge structure on
H•

dR((Y , f))?

Y has the homotopy type of Y 0: If i0 : Y 0 ↪→ Y , then
∃r : Y → Y 0 - a strict deformation retraction (r ◦ i ∼= idY 0

).
Specialization to 0 map: rt := r|Y t

: Y t → Y 0.
[Deligne’73] Nearby and vanishing cocycles functors:
ψf , φf : D−(Y ,Z) → D−(Y 0,Z)
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Vanishing cocycles

Question: How can we compute the nc Hodge structure on
H•

dR((Y , f))?

Y has the homotopy type of Y 0: If i0 : Y 0 ↪→ Y , then
∃r : Y → Y 0 - a strict deformation retraction (r ◦ i ∼= idY 0

).
Specialization to 0 map: rt := r|Y t

: Y t → Y 0.
[Deligne’73] Nearby and vanishing cocycles functors:
ψf , φf : D−(Y ,Z) → D−(Y 0,Z)
ψfK

• = Rrt∗i
∗
tK

•, φfK
• = cone (i∗K• → ψfK

•).
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Vanishing cocycles

Question: How can we compute the nc Hodge structure on
H•

dR((Y , f))?

Y has the homotopy type of Y 0: If i0 : Y 0 ↪→ Y , then
∃r : Y → Y 0 - a strict deformation retraction (r ◦ i ∼= idY 0

).
Specialization to 0 map: rt := r|Y t

: Y t → Y 0.
[Deligne’73] Nearby and vanishing cocycles functors:
ψf , φf : D−(Y ,Z) → D−(Y 0,Z)
Apply to CY :
. . .→ Hi(Y 0) → Hi(Y t) → Hi(φfC) → Hi+1(Y 0) → . . .
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Vanishing cocycles

Question: How can we compute the nc Hodge structure on
H•

dR((Y , f))?

Y has the homotopy type of Y 0: If i0 : Y 0 ↪→ Y , then
∃r : Y → Y 0 - a strict deformation retraction (r ◦ i ∼= idY 0

).
Specialization to 0 map: rt := r|Y t

: Y t → Y 0.
[Deligne’73] Nearby and vanishing cocycles functors:
ψf , φf : D−(Y ,Z) → D−(Y 0,Z)
Apply to CY :
. . .→ Hi(Y 0) → Hi(Y t) → Hi(φfC) → Hi+1(Y 0) → . . .

Hence Hi
B((Y , f); C) = H i−1(φfC).
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Vanishing cocycles

Question: How can we compute the nc Hodge structure on
H•

dR((Y , f))?

Y has the homotopy type of Y 0: If i0 : Y 0 ↪→ Y , then
∃r : Y → Y 0 - a strict deformation retraction (r ◦ i ∼= idY 0

).
Specialization to 0 map: rt := r|Y t

: Y t → Y 0.
[Deligne’73] Nearby and vanishing cocycles functors:
ψf , φf : D−(Y ,Z) → D−(Y 0,Z)
Apply to CY :
. . .→ Hi(Y 0) → Hi(Y t) → Hi(φfC) → Hi+1(Y 0) → . . .

Hence Hi
B((Y , f); C) = H i−1(φfC).

In fact Hi
dR((Y , f); C) = H i−1(φf(ΩY , d + df ∧ •)) and

Hi
Dol((Y , f); C) = H i−1(φf(ΩY , df ∧ •)), [Sabbah’00].
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Limiting Hodge structures

The family Vτ = H•
dR((Y , τ · f)), τ ∈ C is a variation of nc

pure Hodge structures and by the work of Sabbah induces
a limiting mixed twistor structure on H•

dR((Y , f)) for τ → ∞.
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Limiting Hodge structures

The family Vτ = H•
dR((Y , τ · f)), τ ∈ C is a variation of nc

pure Hodge structures and by the work of Sabbah induces
a limiting mixed twistor structure on H•

dR((Y , f)) for τ → ∞.

[Sabbah’05, Szabo’05]: the limiting mixed twistor structure
on H•

dR((Y , f)) for τ → ∞ is an ordinary MHS which is
isomorphic to Steenbrink’s MHS on the vanishing
cohomology H•−1(φfC).
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Limiting Hodge structures

The family Vτ = H•
dR((Y , τ · f)), τ ∈ C is a variation of nc

pure Hodge structures and by the work of Sabbah induces
a limiting mixed twistor structure on H•

dR((Y , f)) for τ → ∞.

[Sabbah’05, Szabo’05]: the limiting mixed twistor structure
on H•

dR((Y , f)) for τ → ∞ is an ordinary MHS which is
isomorphic to Steenbrink’s MHS on the vanishing
cohomology H•−1(φfC).

Corollary [Katzarkov-Kontsevich-P’05] For Landau-
Ginzburg models X = (Y , f) the MHS on the vanishing
cohomology is an invariant of the category CX .
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Mirror symmetry

Corollary [Katzarkov-Kontsevich-P’05] Suppose
(Z,ω) is a symplectic manifold and suppose X = (Y , f)
is the Hori-Vafa mirror. Then the MHS on the vanishing
cohomology of f is a symplectic invariant of (Z,ω).
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Mirror symmetry

Corollary [Katzarkov-Kontsevich-P’05] Suppose
(Z,ω) is a symplectic manifold and suppose X = (Y , f)
is the Hori-Vafa mirror. Then the MHS on the vanishing
cohomology of f is a symplectic invariant of (Z,ω).

Expect: Mirror symmetry exchanges the nc Hodge
structures on cohomology. In the case of varieties this can
be tested since the nc pure Hodge structure can be
reconstructed from the MHS on the vanishing cohomology.
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Mirror symmetry

Corollary [Katzarkov-Kontsevich-P’05] Suppose
(Z,ω) is a symplectic manifold and suppose X = (Y , f)
is the Hori-Vafa mirror. Then the MHS on the vanishing
cohomology of f is a symplectic invariant of (Z,ω).

Theorem [Gross-Katzarkov’05] Suppose (Z,ω) is a
symplectic manifold underlying a c.i. variety M , dimM ≤
3 which is either Fano, CY or of general type. Suppose
X = (Y , f) is the Hori-Vafa mirror. Then the 90o rotation of
the MHS on the vanishing cohomology of f reconstructs
the pure Hodge structure on M .
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