Generalized Hodge structures and Mirror Symmetry

The Hodge theory of *D***-branes**

Tony Pantev

University of Pennsylvania

Generalized Hodge structures and Mirror Symmetry - p.1/24

Overview

Joint work with L.Katzarkov and M.Kontsevich.

Overview

Joint work with L.Katzarkov and M.Kontsevich.

Will describe (following Kontsevich) how to extract Hodge theoretic invariants from *D*-brane categories.

 $H^{\bullet}_{dR}(D^b_{\mathrm{sing}}(\boldsymbol{Y}, \mathbf{f}))$

 $H^{ullet}_{dR}(D^b_{\mathrm{sing}}(\boldsymbol{Y}, \mathbf{f}))$

$H^{\bullet}_{dR}(D^b_{\rm sing}(\boldsymbol{Y},\boldsymbol{\mathsf{f}}))$

Overview

- Joint work with L.Katzarkov and M.Kontsevich.
- Will describe (following Kontsevich) how to extract Hodge theoretic invariants from *D*-brane categories.
- Will explain how these invariants transform under mirror symmetry.

 $H^{ullet}_{dR}(D^b_{\mathrm{sing}}(\boldsymbol{Y}, \mathbf{f}))$

 $\begin{array}{c} H^{\bullet}_{dR}(D^{b}_{\mathrm{sing}}(\boldsymbol{Y},\boldsymbol{\mathsf{f}})) \\ || \\ ((\boldsymbol{\omega},\boldsymbol{Z}) \overline{A} \overline{U})^{\bullet-n} H \end{array} \end{array}$

Overview

- Joint work with L.Katzarkov and M.Kontsevich.
- Will describe (following Kontsevich) how to extract Hodge theoretic invariants from *D*-brane categories.
- Will explain how these invariants transform under mirror symmetry.
- Will discuss the structure of the invariants and methods for computation.

Recall:

Want:

generalized (**nc**) Kähler space X

Recall:

Want:

Recall:

Want:

Definition: (math) [Bondal'90] A nc space X/\mathbb{C} is a small triangulated \mathbb{C} -linear category C_X which is:

Definition: (math) [Bondal'90] A nc space X/\mathbb{C} is a small triangulated \mathbb{C} -linear category C_X which is:

● Karoubi closed (\Leftrightarrow \forall projector splits);

Definition: (math) [Bondal'90] A nc space X/\mathbb{C} is a small triangulated \mathbb{C} -linear category C_X which is:

- Karoubi closed ($\Leftrightarrow \forall$ projector splits);
- enriched over complexes of C-vector spaces.

Definition: (math) [Bondal'90] A nc space X/\mathbb{C} is a small triangulated \mathbb{C} -linear category C_X which is:

- Karoubi closed ($\Leftrightarrow \forall$ projector splits);
- enriched over complexes of C-vector spaces.

 $\forall E, F \in C_X \rightsquigarrow \underline{\operatorname{Hom}}_{C_X}(E, F) \in (\operatorname{Compl}/\mathbb{C})$ so that $\operatorname{Hom}_{C_X}(E, F[i]) = H^i(\underline{\operatorname{Hom}}_{C_X}(E, F))$

Definition: (math) [Bondal'90] A nc space X/\mathbb{C} is a small triangulated \mathbb{C} -linear category C_X which is:

- Karoubi closed ($\Leftrightarrow \forall$ projector splits);
- enriched over complexes of C-vector spaces.

Definition: (physics) A nc space X/\mathbb{C} is a 2d TQFT with N = 2 susy.

Definition: (math) [Bondal'90] A nc space X/\mathbb{C} is a small triangulated \mathbb{C} -linear category C_X which is:

- Karoubi closed ($\Leftrightarrow \forall$ projector splits);
- enriched over complexes of C-vector spaces.

Definition: (physics) A nc space X/\mathbb{C} is a 2d TQFT with N = 2 susy.

Intuition:

Definition: (math) [Bondal'90] A nc space X/\mathbb{C} is a small triangulated \mathbb{C} -linear category C_X which is:

- Karoubi closed ($\Leftrightarrow \forall$ projector splits);
- enriched over complexes of C-vector spaces.

Definition: (physics) A nc space X/\mathbb{C} is a 2d TQFT with N = 2 susy.

Intuition:

(math) C_X is the category of sheaves on X.

Definition: (math) [Bondal'90] A nc space X/\mathbb{C} is a small triangulated \mathbb{C} -linear category C_X which is:

- Karoubi closed ($\Leftrightarrow \forall$ projector splits);
- enriched over complexes of C-vector spaces.

Definition: (physics) A nc space X/\mathbb{C} is a 2d TQFT with N = 2 susy.

Intuition:

(math) C_X is the category of sheaves on X. (physics) C_X is the category of D-branes in the TQFT X.

(math) If X/\mathbb{C} is a scheme of finite type, then X/\mathbb{C} is also a **nc** space with $C_X := Perf(X)$ - perfect complexes of quasi-coherent sheaves on X.

• (math) If X/\mathbb{C} is a scheme of finite type, then X/\mathbb{C} is also a **nc** space with $C_X := \operatorname{Perf}(X)$ - perfect complexes of quasi-coherent sheaves on X. If X - smooth and quasi-projective, then C_X is quasi-equivalent to $D^b_{\operatorname{qcoh}}(X)$.

- (math) If X/\mathbb{C} is a scheme of finite type, then X/\mathbb{C} is also a **nc** space with $C_X := Perf(X)$ perfect complexes of quasi-coherent sheaves on X.
- (math) If X/\mathbb{C} is a compact complex manifold, then X/\mathbb{C} is also a **nc** space with $C_X := D^b_{qcoh}(X)$ the derived category of quasi-coherent sheaves on X.

- (math) If X/\mathbb{C} is a scheme of finite type, then X/\mathbb{C} is also a **nc** space with $C_X := Perf(X)$ perfect complexes of quasi-coherent sheaves on X.
- (math) If X/\mathbb{C} is a compact complex manifold, then X/\mathbb{C} is also a **nc** space with $C_X := D^b_{qcoh}(X)$ the derived category of quasi-coherent sheaves on X. Enhancement: The twisted complexes of Toledo-Tong and Bondal-Kapranov.

- (math) If X/\mathbb{C} is a scheme of finite type, then X/\mathbb{C} is also a **nc** space with $C_X := Perf(X)$ perfect complexes of quasi-coherent sheaves on X.
- (math) If X/\mathbb{C} is a compact complex manifold, then X/\mathbb{C} is also a **nc** space with $C_X := D^b_{qcoh}(X)$ the derived category of quasi-coherent sheaves on X.
- (physics) If X is a topological twist of a (2, 2) sigma model, then X is also a **nc** space.

- (math) If X/\mathbb{C} is a scheme of finite type, then X/\mathbb{C} is also a **nc** space with $C_X := Perf(X)$ perfect complexes of quasi-coherent sheaves on X.
- (math) If X/\mathbb{C} is a compact complex manifold, then X/\mathbb{C} is also a **nc** space with $C_X := D^b_{qcoh}(X)$ the derived category of quasi-coherent sheaves on X.
- (physics) If X is a topological twist of a (2,2) sigma model, then X is also a nc space.

 $X = (M, \mathscr{J})$ - gc manifold in the sense of Hitchin, which fits in a generalized Kähler structure $(X, \mathscr{J}_1 = \mathscr{J}, \mathscr{J}_2)$.

- (math) If X/\mathbb{C} is a scheme of finite type, then X/\mathbb{C} is also a **nc** space with $C_X := Perf(X)$ perfect complexes of quasi-coherent sheaves on X.
- (math) If X/\mathbb{C} is a compact complex manifold, then X/\mathbb{C} is also a **nc** space with $C_X := D^b_{qcoh}(X)$ the derived category of quasi-coherent sheaves on X.
- (physics) If X is a topological twist of a (2, 2) sigma model, then X is also a nc space. C_X the category of topological generalized complex branes of Kapustin-Li.

Any holomorphic Landau-Ginzburg model X := (Y, f) is also a nc space.

- Any holomorphic Landau-Ginzburg model X := (Y, f) is also a nc space.
- Here

- Any holomorphic Landau-Ginzburg model X := (Y, f) is also a **nc** space.
- Here
 - Y/\mathbb{C} is a quasi-projective manifold;

- Any holomorphic Landau-Ginzburg model X := (Y, f) is also a **nc** space.
- Here
 - Y/\mathbb{C} is a quasi-projective manifold;
 - $\mathbf{f}: \mathbf{Y} \to \mathbb{C}$ is a holomorphic map with a single critical value at $0 \in \mathbb{C}$.
- Any holomorphic Landau-Ginzburg model X := (Y, f) is also a **nc** space.
- Jere
 - Y/\mathbb{C} is a quasi-projective manifold;
 - $f: Y \to \mathbb{C}$ is a holomorphic map with a single critical value at $0 \in \mathbb{C}$.
- $C_{(\boldsymbol{Y},\boldsymbol{\mathsf{f}})} =$

- Any holomorphic Landau-Ginzburg model X := (Y, f) is also a **nc** space.
- Jere
 - Y/\mathbb{C} is a quasi-projective manifold;
 - $f: Y \to \mathbb{C}$ is a holomorphic map with a single critical value at $0 \in \mathbb{C}$.
- $C_{(\boldsymbol{Y},\boldsymbol{\mathsf{f}})} =$
 - Icourse (locally) Matrix factorizations (Kontsevich):

- Any holomorphic Landau-Ginzburg model X := (Y, f) is also a **nc** space.
- Here
 - Y/\mathbb{C} is a quasi-projective manifold;
 - $f: Y \to \mathbb{C}$ is a holomorphic map with a single critical value at $0 \in \mathbb{C}$.
- $C_{(\boldsymbol{Y},\boldsymbol{\mathsf{f}})} =$
 - Icoulty) Matrix factorizations (Kontsevich):
 - $(E = E^0 \oplus E^1, d_E \in \text{End}(E)^{\text{odd}}), d_E^2 = \mathbf{f} \cdot \text{id.}$

- Any holomorphic Landau-Ginzburg model X := (Y, f) is also a nc space.
- Here
 - Y/\mathbb{C} is a quasi-projective manifold;
 - $f: Y \to \mathbb{C}$ is a holomorphic map with a single critical value at $0 \in \mathbb{C}$.
- - Icourse (locally) Matrix factorizations (Kontsevich):
 - $(E = E^0 \oplus E^1, d_E \in \text{End}(E)^{\text{odd}}), d_E^2 = \mathbf{f} \cdot \text{id.}$
 - $\underline{\operatorname{Hom}}((E, d_E), (F, d_F)) := (\operatorname{Hom}(E, F), d),$ $d\varphi = \varphi \circ d_E - d_F \circ \varphi \text{ (Note: } d^2 = 0\text{).}$

- Any holomorphic Landau-Ginzburg model X := (Y, f) is also a nc space.
- Here
 - Y/\mathbb{C} is a quasi-projective manifold;
 - $f: Y \to \mathbb{C}$ is a holomorphic map with a single critical value at $0 \in \mathbb{C}$.
- $C_{(\boldsymbol{Y},\boldsymbol{\mathsf{f}})} =$
 - Icourse (locally) Matrix factorizations (Kontsevich):
 - $(E = E^0 \oplus E^1, d_E \in \text{End}(E)^{\text{odd}}), d_E^2 = \mathbf{f} \cdot \text{id.}$
 - $\underline{\operatorname{Hom}}((E, d_E), (F, d_F)) := (\operatorname{Hom}(E, F), d),$ $d\varphi = \varphi \circ d_E - d_F \circ \varphi$ (Note: $d^2 = 0$).
 - (globally) Categories of singularities (Orlov): $D^b(\mathbf{Y}_0)/\operatorname{Perf}(\mathbf{Y}_0)$.

- Any holomorphic Landau-Ginzburg model X := (Y, f) is also a nc space. Note: Z/2 graded nc space: [0] ≃ [2].
- Here
 - Y/\mathbb{C} is a quasi-projective manifold;
 - $f: Y \to \mathbb{C}$ is a holomorphic map with a single critical value at $0 \in \mathbb{C}$.
- $C_{(\boldsymbol{Y},\boldsymbol{\mathsf{f}})} =$
 - Icourse (locally) Matrix factorizations (Kontsevich):
 - $(E = E^0 \oplus E^1, d_E \in \text{End}(E)^{\text{odd}}), d_E^2 = \mathbf{f} \cdot \text{id.}$
 - $\underline{\operatorname{Hom}}((E, d_E), (F, d_F)) := (\operatorname{Hom}(E, F), d),$ $d\varphi = \varphi \circ d_E - d_F \circ \varphi \text{ (Note: } d^2 = 0\text{).}$
 - (globally) Categories of singularities (Orlov): $D^b(\mathbf{Y}_0)/\operatorname{Perf}(\mathbf{Y}_0).$

Definition: If X/\mathbb{C} is a **nc** space, then:

■ *X* is algebraic if \exists a dg algebra A/\mathbb{C} , so that $C_X \cong \operatorname{Perf}(A - \operatorname{mod})$.

Definition: If X/\mathbb{C} is a **nc** space, then:

- X is algebraic if \exists a dg algebra A/\mathbb{C} , so that $C_X \cong \operatorname{Perf}(A \operatorname{mod})$.
- X is proper if $\sum_{i \in \mathbb{Z}} \dim H^i(A, d) < \infty$.

Definition: If X/\mathbb{C} is a **nc** space, then:

- X is algebraic if \exists a dg algebra A/\mathbb{C} , so that $C_X \cong \operatorname{Perf}(A \operatorname{mod})$.
- X is proper if $\sum_{i \in \mathbb{Z}} \dim H^i(A, d) < \infty$.
- X is smooth if $A \in Perf(A \otimes A^{op} mod)$.

Definition: If X/\mathbb{C} is a **nc** space, then:

- X is algebraic if \exists a dg algebra A/\mathbb{C} , so that $C_X \cong \operatorname{Perf}(A \operatorname{mod})$.
- X is proper if $\sum_{i \in \mathbb{Z}} \dim H^i(A, d) < \infty$.
- X is smooth if $A \in Perf(A \otimes A^{op} mod)$.

Any scheme X/\mathbb{C} is algebraic when viewed as a **nc** space:

Definition: If X/\mathbb{C} is a **nc** space, then:

- X is algebraic if \exists a dg algebra A/\mathbb{C} , so that $C_X \cong \operatorname{Perf}(A \operatorname{mod})$.
- X is proper if $\sum_{i \in \mathbb{Z}} \dim H^i(A, d) < \infty$.
- X is smooth if $A \in Perf(A \otimes A^{op} mod)$.

Any scheme X/\mathbb{C} is algebraic when viewed as a **nc** space:

Theorem [Bondal-Van den Bergh'02] $C_X = Perf(X)$ has a strong split generator: $E \in C_X$, with $Perf(X) \cong Perf(RHom(E, E)^{op} - mod).$

Definition: If X/\mathbb{C} is a **nc** space, then:

- X is algebraic if \exists a dg algebra A/\mathbb{C} , so that $C_X \cong \operatorname{Perf}(A \operatorname{mod})$.
- X is proper if $\sum_{i \in \mathbb{Z}} \dim H^i(A, d) < \infty$.
- X is smooth if $A \in Perf(A \otimes A^{op} mod)$.

Theorem [Bondal-Van den Bergh'02] $C_X = Perf(X)$ has a strong split generator: $E \in C_X$, with $Perf(X) \cong Perf(RHom(E, E)^{op} - mod).$

Example: [Beilinson'78] $X = \mathbb{P}^n$, $A = \operatorname{End}(\mathcal{O} \oplus \ldots \oplus \mathcal{O}(n))^{\operatorname{op}}$.

If X is an algebraic nc space, then proper/smooth do not depend on the choice of A.

- If X is an algebraic nc space, then proper/smooth do not depend on the choice of A.
- For X/C a scheme of finite type, proper/smooth in the nc sense coincide with the usual notions of proper/smooth.

- If X is an algebraic nc space, then proper/smooth do not depend on the choice of A.
- For X/C a scheme of finite type, proper/smooth in the nc sense coincide with the usual notions of proper/smooth.
- If X/C is a proper/smooth nc space, then (Bondal-Kapranov): ∃! Serre functor

- If X is an algebraic nc space, then proper/smooth do not depend on the choice of A.
- For X/C a scheme of finite type, proper/smooth in the nc sense coincide with the usual notions of proper/smooth.
- If X/C is a proper/smooth nc space, then (Bondal-Kapranov): ∃! Serre functor

•
$$S_X: C_X \to C_X;$$

- If X is an algebraic nc space, then proper/smooth do not depend on the choice of A.
- For X/C a scheme of finite type, proper/smooth in the nc sense coincide with the usual notions of proper/smooth.
- If X/C is a proper/smooth nc space, then (Bondal-Kapranov): ∃! Serre functor

•
$$S_X: C_X \to C_X;$$

• $\operatorname{Hom}(E,F)^{\vee} \cong \operatorname{Hom}(F,S_XE)$

- If X is an algebraic nc space, then proper/smooth do not depend on the choice of A.
- For X/C a scheme of finite type, proper/smooth in the nc sense coincide with the usual notions of proper/smooth.
- If X/C is a proper/smooth nc space, then (Bondal-Kapranov): ∃! Serre functor
 - $S_X: C_X \to C_X;$
 - $\operatorname{Hom}(E,F)^{\vee} \cong \operatorname{Hom}(F,S_XE)$

If X - scheme, then $S_X(\bullet) = (\bullet) \otimes K_X[\dim X]$.

Any proper and smooth:

- Any proper and smooth:
 - scheme, algebraic space, Deligne-Mumford stack;

- Any proper and smooth:
 - scheme, algebraic space, Deligne-Mumford stack;
 - $X = (Y, \alpha)$, where Y/\mathbb{C} scheme, $\alpha \in Br(Y)$, $C_X = D^b(Y, \alpha)$.

- Any proper and smooth:
 - scheme, algebraic space, Deligne-Mumford stack;
 - $X = (Y, \alpha)$, where Y/\mathbb{C} scheme, $\alpha \in Br(Y)$, $C_X = D^b(Y, \alpha)$.
- A deformation quantization X_{γ} of a smooth projective X/\mathbb{C} (assuming $H^1(\mathcal{O}_X) = H^2(\mathcal{O}_X) = 0$).

- Any proper and smooth:
 - scheme, algebraic space, Deligne-Mumford stack;
 - $X = (Y, \alpha)$, where Y/\mathbb{C} scheme, $\alpha \in Br(Y)$, $C_X = D^b(Y, \alpha)$.
- A deformation quantization X_{γ} of a smooth projective X/\mathbb{C} (assuming $H^1(\mathcal{O}_X) = H^2(\mathcal{O}_X) = 0$).

[Kontsevich'01]: Fix $L \in \operatorname{Pic}(X)$ - ample, and $\gamma \in \Gamma(\operatorname{tot}(L^{\times}), \wedge^2 T)^{\mathbb{C}^{\times}}$ - Poisson structure. Get quantized space $X_{\gamma}/\mathbb{C}((\hbar))$ with a new homogeneous coordinate ring: $f \star g = fg + \hbar \langle \gamma, df \wedge dg \rangle + \dots$

- Any proper and smooth:
 - scheme, algebraic space, Deligne-Mumford stack;
 - $X = (Y, \alpha)$, where Y/\mathbb{C} scheme, $\alpha \in Br(Y)$, $C_X = D^b(Y, \alpha)$.
- A deformation quantization X_{γ} of a smooth projective X/\mathbb{C} (assuming $H^1(\mathcal{O}_X) = H^2(\mathcal{O}_X) = 0$). e.g.

- Any proper and smooth:
 - scheme, algebraic space, Deligne-Mumford stack;
 - $X = (Y, \alpha)$, where Y/\mathbb{C} scheme, $\alpha \in Br(Y)$, $C_X = D^b(Y, \alpha)$.
- A deformation quantization X_{γ} of a smooth projective X/\mathbb{C} (assuming $H^1(\mathcal{O}_X) = H^2(\mathcal{O}_X) = 0$). e.g.
 - the non-commutative \mathbb{P}^2 's of [Artin-Tate-Van den Bergh'90];

- Any proper and smooth:
 - scheme, algebraic space, Deligne-Mumford stack;
 - $X = (Y, \alpha)$, where Y/\mathbb{C} scheme, $\alpha \in Br(Y)$, $C_X = D^b(Y, \alpha)$.
- A deformation quantization X_{γ} of a smooth projective X/\mathbb{C} (assuming $H^1(\mathcal{O}_X) = H^2(\mathcal{O}_X) = 0$). e.g.
 - the non-commutative \mathbb{P}^2 's of [Artin-Tate-Van den Bergh'90];
 - the non-commutative projective schemes of [Artin-Zhang'94];

- Any proper and smooth:
 - scheme, algebraic space, Deligne-Mumford stack;
 - $X = (Y, \alpha)$, where Y/\mathbb{C} scheme, $\alpha \in Br(Y)$, $C_X = D^b(Y, \alpha)$.
- A deformation quantization X_{γ} of a smooth projective X/\mathbb{C} (assuming $H^1(\mathcal{O}_X) = H^2(\mathcal{O}_X) = 0$). e.g.
 - the non-commutative \mathbb{P}^2 's of [Artin-Tate-Van den Bergh'90];
 - the non-commutative projective schemes of [Artin-Zhang'94];
 - the elliptic projective spaces of [Odesskij-Feigin'98];

- Any proper and smooth:
 - scheme, algebraic space, Deligne-Mumford stack;
 - $X = (Y, \alpha)$, where Y/\mathbb{C} scheme, $\alpha \in Br(Y)$, $C_X = D^b(Y, \alpha)$.
- A deformation quantization X_{γ} of a smooth projective X/\mathbb{C} (assuming $H^1(\mathcal{O}_X) = H^2(\mathcal{O}_X) = 0$). e.g.
 - the non-commutative \mathbb{P}^2 's of [Artin-Tate-Van den Bergh'90];
 - the non-commutative projective schemes of [Artin-Zhang'94];
 - the elliptic projective spaces of [Odesskij-Feigin'98];
 - the quantized del Pezzo surfaces of [Artin'96]

Expect: If X/C is a topological twist of a (2,2) sigma model, corresponding to a compact gc manifold (M, J), then X is a proper and smooth nc space.

- Expect: If X/C is a topological twist of a (2,2) sigma model, corresponding to a compact gc manifold (M, J), then X is a proper and smooth nc space.
- The notions of algebraic/proper/smooth extend to $\mathbb{Z}/2$ -graded nc spaces

- Expect: If X/C is a topological twist of a (2, 2) sigma model, corresponding to a compact gc manifold (M, J), then X is a proper and smooth nc space.
- The notions of algebraic/proper/smooth extend to $\mathbb{Z}/2$ -graded nc spaces

Conjecture [Kontsevich'04] Suppose X = (Y, f) is a Landau-Ginzburg model with a proper critical locus. Then (Y, f) is a proper and smooth **nc** space.

Expect: If X/C is a topological twist of a (2,2) sigma model, corresponding to a compact gc manifold (M, J), then X is a proper and smooth nc space.

Conjecture [Kontsevich'04] Suppose X = (Y, f) is a Landau-Ginzburg model with a proper critical locus. Then (Y, f) is a proper and smooth **nc** space.

Known when

Expect: If X/C is a topological twist of a (2, 2) sigma model, corresponding to a compact gc manifold (M, J), then X is a proper and smooth nc space.

Conjecture [Kontsevich'04] Suppose X = (Y, f) is a Landau-Ginzburg model with a proper critical locus. Then (Y, f) is a proper and smooth **nc** space.

Known when

 (Y, f) is the germ of an isolated quasi-homogeneous hypersurface singularity [K.Saito'98].

Expect: If X/C is a topological twist of a (2,2) sigma model, corresponding to a compact gc manifold (M, J), then X is a proper and smooth nc space.

Conjecture [Kontsevich'04] Suppose X = (Y, f) is a Landau-Ginzburg model with a proper critical locus. Then (Y, f) is a proper and smooth **nc** space.

Known when

- (Y, f) is the germ of an isolated quasi-homogeneous hypersurface singularity [K.Saito'98].
- Y_0 has at most rational singularities [Orlov'04].

Expect: If X/C is a topological twist of a (2, 2) sigma model, corresponding to a compact gc manifold (M, J), then X is a proper and smooth nc space.

Conjecture [Kontsevich'04] Suppose X = (Y, f) is a Landau-Ginzburg model with a proper critical locus. Then (Y, f) is a proper and smooth **nc** space.

Known when

- (Y, f) is the germ of an isolated quasi-homogeneous hypersurface singularity [K.Saito'98].
- Y_0 has at most rational singularities [Orlov'04].
- (Y, f) is the Hori-Vafa mirror of a (quantized) del Pezzo surface or a weighted projective space [Auroux-Katzarkov-Orlov'04].

Cohomology (I)

Consider

• An algebraic **nc** space X/\mathbb{C} ;
- An algebraic **nc** space X/\mathbb{C} ;
- A a unital dg algebra computing X;

- An algebraic **nc** space X/\mathbb{C} ;
- A a unital dg algebra computing X;
- $(C_{\bullet}(A, A), \partial)$ the reduced homological Hochschild complex of A;

- An algebraic **nc** space X/\mathbb{C} ;
- A a unital dg algebra computing X;
- $(C_{\bullet}(A, A), \partial)$ the reduced homological Hochschild complex of A;
- $B: C_{\bullet}(A, A) \rightarrow C_{\bullet}(A, A)[-1]$ the Connes differential.

- An algebraic **nc** space X/\mathbb{C} ;
- A a unital dg algebra computing X;
- $(C_{\bullet}(A, A), \partial)$ the reduced homological Hochschild complex of A;
- $B: C_{\bullet}(A, A) \rightarrow C_{\bullet}(A, A)[-1]$ the Connes differential.
- $HH_k(A) = H^k((C_{\bullet}(A, A), \partial))$ the Hochschild homology of *A*.

- An algebraic **nc** space X/\mathbb{C} ;
- A a unital dg algebra computing X;
- $(C_{\bullet}(A, A), \partial)$ the reduced homological Hochschild complex of A;
- $B: C_{\bullet}(A, A) \rightarrow C_{\bullet}(A, A)[-1]$ the Connes differential.
- $HH_k(A) = H^k((C_{\bullet}(A, A), \partial))$ the Hochschild homology of *A*.
- $HP_k(A) = H^k((C_{\bullet}(A, A)((u)), \partial + u \cdot B))$ the periodic cyclic homology of *A*.

- An algebraic **nc** space X/\mathbb{C} ;
- A a unital dg algebra computing X;
- $(C_{\bullet}(A, A), \partial)$ the reduced homological Hochschild complex of A;
- $B: C_{\bullet}(A, A) \rightarrow C_{\bullet}(A, A)[-1]$ the Connes differential.
- $HH_k(A) = H^k((C_{\bullet}(A, A), \partial))$ the Hochschild homology of *A*.
- $HP_k(A) = H^k((C_{\bullet}(A, A)((u)), \partial + (u) \cdot B))$ the periodic cyclic homology of A. $\deg u = +2$

Consider

- An algebraic **nc** space X/\mathbb{C} ;
- A a unital dg algebra computing X;
- $(C_{\bullet}(A, A), \partial)$ the reduced homological Hochschild complex of A;
- $B: C_{\bullet}(A, A) \rightarrow C_{\bullet}(A, A)[-1]$ the Connes differential.
- $HH_k(A) = H^k((C_{\bullet}(A, A), \partial))$ the Hochschild homology of *A*.
- $HP_k(A) = H^k((C_{\bullet}(A, A)((u)), \partial + u \cdot B))$ the periodic cyclic homology of *A*.

 $\mathbb{C}((u))$ -module

- An algebraic **nc** space X/\mathbb{C} ;
- A a unital dg algebra computing X;
- $(C_{\bullet}(A, A), \partial)$ the reduced homological Hochschild complex of A;
- $B: C_{\bullet}(A, A) \rightarrow C_{\bullet}(A, A)[-1]$ the Connes differential.
- $HH_k(A) = H^k((C_{\bullet}(A, A), \partial))$ the Hochschild homology of *A*.
- $HP_k(A) = H^k((C_{\bullet}(A, A)((u)), \partial + u \cdot B))$ the periodic cyclic homology of *A*.

Facts:

• X/\mathbb{C} - smooth affine variety, $A = \Gamma(X, \mathcal{O})$, then $HH_{-k}(A) = \Gamma(X, \Omega_X^k)$. The differential *B* is the algebraic de Rham differential [Hochschild-Kostant-Rosenberg'62].

- X/\mathbb{C} smooth affine variety, $A = \Gamma(X, \mathcal{O})$, then $HH_{-k}(A) = \Gamma(X, \Omega_X^k)$. The differential *B* is the algebraic de Rham differential [Hochschild-Kostant-Rosenberg'62].
- X/\mathbb{C} smooth scheme, then $HH_k(A) = \bigoplus_{p-q=k} H^p(X, \Omega_X^q)$ [Weibel'96].

- X/\mathbb{C} smooth affine variety, $A = \Gamma(X, \mathcal{O})$, then $HH_{-k}(A) = \Gamma(X, \Omega_X^k)$. The differential *B* is the algebraic de Rham differential [Hochschild-Kostant-Rosenberg'62].
- X/\mathbb{C} smooth scheme, then $HH_k(A) = \bigoplus_{p-q=k} H^p(X, \Omega_X^q)$ [Weibel'96].

- X/\mathbb{C} smooth affine variety, $A = \Gamma(X, \mathcal{O})$, then $HH_{-k}(A) = \Gamma(X, \Omega_X^k)$. The differential *B* is the algebraic de Rham differential [Hochschild-Kostant-Rosenberg'62].
- X/\mathbb{C} smooth scheme, then $HH_k(A) = \bigoplus_{p-q=k} H^p(X, \Omega_X^q)$ [Weibel'96].
- - $HP_{\text{even}}(A) = \oplus H^{2i}_{dR}(X, \mathbb{C});$

- X/\mathbb{C} smooth affine variety, $A = \Gamma(X, \mathcal{O})$, then $HH_{-k}(A) = \Gamma(X, \Omega_X^k)$. The differential *B* is the algebraic de Rham differential [Hochschild-Kostant-Rosenberg'62].
- X/\mathbb{C} smooth scheme, then $HH_k(A) = \bigoplus_{p-q=k} H^p(X, \Omega_X^q)$ [Weibel'96].
- - $HP_{\text{even}}(A) = \oplus H^{2i}_{dR}(X, \mathbb{C});$
 - $HP_{\text{odd}}(A) = \oplus H^{2i+1}_{dR}(X, \mathbb{C})$

Facts:

- X/\mathbb{C} smooth affine variety, $A = \Gamma(X, \mathcal{O})$, then $HH_{-k}(A) = \Gamma(X, \Omega_X^k)$. The differential *B* is the algebraic de Rham differential [Hochschild-Kostant-Rosenberg'62].
- X/\mathbb{C} smooth scheme, then $HH_k(A) = \bigoplus_{p-q=k} H^p(X, \Omega_X^q)$ [Weibel'96].
- $HP_{k+2}(A) = HP_k(A)$ for all A. Get a super vector space $HP_{\text{even}}(A) \oplus HP_{\text{odd}}(A)$. [Weibel'96]:
 - $HP_{\text{even}}(A) = \oplus H^{2i}_{dR}(X, \mathbb{C});$
 - $HP_{\text{odd}}(A) = \oplus H^{2i+1}_{dR}(X, \mathbb{C})$

Facts:

- X/\mathbb{C} smooth affine variety, $A = \Gamma(X, \mathcal{O})$, then $HH_{-k}(A) = \Gamma(X, \Omega_X^k)$. The differential *B* is the algebraic de Rham differential [Hochschild-Kostant-Rosenberg'62].
- X/\mathbb{C} smooth scheme, then $HH_k(A) = \bigoplus_{p-q=k} H^p(X, \Omega_X^q)$ [Weibel'96].
- $HP_{k+2}(A) = HP_k(A)$ for all A. Get a super vector space $HP_{\text{even}}(A) \oplus HP_{\text{odd}}(A)$. [Weibel'96]:
 - $HP_{\text{even}}(A) = \oplus H^{2i}_{dR}(X, \mathbb{C});$
 - $HP_{\text{odd}}(A) = \oplus H^{2i+1}_{dR}(X, \mathbb{C})$

Facts:

- X/\mathbb{C} smooth affine variety, $A = \Gamma(X, \mathcal{O})$, then $HH_{-k}(A) = \Gamma(X, \Omega_X^k)$. The differential *B* is the algebraic de Rham differential [Hochschild-Kostant-Rosenberg'62].
- X/\mathbb{C} smooth scheme, then $HH_k(A) = \bigoplus_{p-q=k} H^p(X, \Omega_X^q)$ [Weibel'96].
- $HP_{k+2}(A) = HP_k(A)$ for all A. Get a super vector space $HP_{\text{even}}(A) \oplus HP_{\text{odd}}(A)$. [Weibel'96]:
 - $HP_{\text{even}}(A) = \oplus H^{2i}_{dR}(X, \mathbb{C});$
 - $HP_{\text{odd}}(A) = \oplus H^{2i+1}_{dR}(X, \mathbb{C})$

Facts:

- X/\mathbb{C} smooth affine variety, $A = \Gamma(X, \mathcal{O})$, then $HH_{-k}(A) = \Gamma(X, \Omega_X^k)$. The differential *B* is the algebraic de Rham differential [Hochschild-Kostant-Rosenberg'62].
- X/\mathbb{C} smooth scheme, then $HH_k(A) = \bigoplus_{p-q=k} H^p(X, \Omega_X^q)$ [Weibel'96].
- $HP_{k+2}(A) = HP_k(A)$ for all A. Get a super vector space $HP_{\text{even}}(A) \oplus HP_{\text{odd}}(A)$. [Weibel'96]:
 - $HP_{\text{even}}(A) = \oplus H^{2i}_{dR}(X, \mathbb{C});$
 - $HP_{\text{odd}}(A) = \oplus H^{2i+1}_{dR}(X, \mathbb{C})$

For an algebraic **nc** space X/\mathbb{C} :

• $H^{\bullet}_{Dol}(X) := HH_{\bullet}(A)$ is a **nc** analogue of Dolbeault cohomology;

For an algebraic **nc** space X/\mathbb{C} :

- $H^{\bullet}_{Dol}(X) := HH_{\bullet}(A)$ is a **nc** analogue of Dolbeault cohomology;
- $H^{\bullet}_{dR}(X) := HP_{\bullet}(A)$ is a **nc** analogue of de Rham cohomology.

For an algebraic **nc** space X/\mathbb{C} :

- $H^{\bullet}_{Dol}(X) := HH_{\bullet}(A)$ is a **nc** analogue of Dolbeault cohomology;
- $H^{\bullet}_{dR}(X) := HP_{\bullet}(A)$ is a **nc** analogue of de Rham cohomology.

Properties:

• $H^{\bullet}_{Dol}(X)$ and $H^{\bullet}_{dR}(X)$ are well defined [Keller'99].

For an algebraic **nc** space X/\mathbb{C} :

- $H^{\bullet}_{Dol}(X) := HH_{\bullet}(A)$ is a **nc** analogue of Dolbeault cohomology;
- $H^{\bullet}_{dR}(X) := HP_{\bullet}(A)$ is a **nc** analogue of de Rham cohomology.

- $H^{\bullet}_{Dol}(X)$ and $H^{\bullet}_{dR}(X)$ are well defined [Keller'99].
- For X/\mathbb{C} proper and smooth **nc** space

For an algebraic **nc** space X/\mathbb{C} :

- $H^{\bullet}_{Dol}(X) := HH_{\bullet}(A)$ is a **nc** analogue of Dolbeault cohomology;
- $H^{\bullet}_{dR}(X) := HP_{\bullet}(A)$ is a **nc** analogue of de Rham cohomology.

- $H^{\bullet}_{Dol}(X)$ and $H^{\bullet}_{dR}(X)$ are well defined [Keller'99].
- For X/\mathbb{C} proper and smooth **nc** space
 - $H^{\bullet}_{Dol}(X) = R^{\bullet} \operatorname{Hom}_{\operatorname{End}(C_X)}(I_X, S_X).$

For an algebraic **nc** space X/\mathbb{C} :

- $H^{\bullet}_{Dol}(X) := HH_{\bullet}(A)$ is a **nc** analogue of Dolbeault cohomology;
- $H^{\bullet}_{dR}(X) := HP_{\bullet}(A)$ is a **nc** analogue of de Rham cohomology.

- $H^{\bullet}_{Dol}(X)$ and $H^{\bullet}_{dR}(X)$ are well defined [Keller'99].
- For X/\mathbb{C} proper and smooth **nc** space
 - $H^{\bullet}_{Dol}(X) = R^{\bullet} \operatorname{Hom}_{\operatorname{End}(C_X)}(I_X, S_X).$
 - $\dim_{\mathbb{C}((u))} H^{\bullet}_{dR}(X) \le \dim_{\mathbb{C}} H^{\bullet}_{Dol}(X) < +\infty.$

For an algebraic **nc** space X/\mathbb{C} :

- $H^{\bullet}_{Dol}(X) := HH_{\bullet}(A)$ is a **nc** analogue of Dolbeault cohomology;
- $H^{\bullet}_{dR}(X) := HP_{\bullet}(A)$ is a **nc** analogue of de Rham cohomology.

- $H^{\bullet}_{Dol}(X)$ and $H^{\bullet}_{dR}(X)$ are well defined [Keller'99].
- For X/\mathbb{C} proper and smooth **nc** space
 - $H^{\bullet}_{Dol}(X) = R^{\bullet} \operatorname{Hom}_{\operatorname{End}(C_X)}(I_X, S_X).$
 - $\dim_{\mathbb{C}((u))} H^{\bullet}_{dR}(X) \le \dim_{\mathbb{C}} H^{\bullet}_{Dol}(X) < +\infty.$

For an algebraic **nc** space X/\mathbb{C} :

- $H^{\bullet}_{Dol}(X) := HH_{\bullet}(A)$ is a **nc** analogue of Dolbeault cohomology;
- $H^{\bullet}_{dR}(X) := HP_{\bullet}(A)$ is a **nc** analogue of de Rham cohomology.

- $H^{\bullet}_{Dol}(X)$ and $H^{\bullet}_{dR}(X)$ are well defined [Keller'99].
- For X/\mathbb{C} proper and smooth **nc** space
 - $H^{\bullet}_{Dol}(X) = R^{\bullet} \operatorname{Hom}_{\operatorname{End}(C_X)}(I_X, S_X).$
 - $\dim_{\mathbb{C}((u))} H^{\bullet}_{dR}(X) \le \dim_{\mathbb{C}} H^{\bullet}_{Dol}(X) < +\infty.$

Definition: For a proper and smooth **nc** space X/\mathbb{C} the Hodge-to-de Rham spectral sequence collapses at E_1 if $\dim_{\mathbb{C}((u))} (H_{dR}^{\text{even}}(X) \oplus H_{dR}^{\text{odd}}(X)) = \dim_{\mathbb{C}} (\oplus_k H_{Dol}^k(X)).$

Definition: For a proper and smooth **nc** space X/\mathbb{C} the Hodge-to-de Rham spectral sequence collapses at E_1 if $\dim_{\mathbb{C}((u))} (H_{dR}^{\text{even}}(X) \oplus H_{dR}^{\text{odd}}(X)) = \dim_{\mathbb{C}} (\oplus_k H_{Dol}^k(X)).$

A proper and smooth **nc** space X/\mathbb{C} with a collapsing Hodge-to-de Rham spectral sequence \leftrightarrow substitute for **nc** Kähler space.

Definition: For a proper and smooth **nc** space X/\mathbb{C} the Hodge-to-de Rham spectral sequence collapses at E_1 if $\dim_{\mathbb{C}((u))} (H_{dR}^{\text{even}}(X) \oplus H_{dR}^{\text{odd}}(X)) = \dim_{\mathbb{C}} (\oplus_k H_{Dol}^k(X)).$

Conjecture [Kontsevich'04]: Every proper and smooth **nc** space X/\mathbb{C} has a collapsing Hodge-to-de Rham spectral sequence.

Definition: For a proper and smooth **nc** space X/\mathbb{C} the Hodge-to-de Rham spectral sequence collapses at E_1 if $\dim_{\mathbb{C}((u))} (H_{dR}^{\text{even}}(X) \oplus H_{dR}^{\text{odd}}(X)) = \dim_{\mathbb{C}} (\oplus_k H_{Dol}^k(X)).$

Conjecture [Kontsevich'04]: Every proper and smooth **nc** space X/\mathbb{C} has a collapsing Hodge-to-de Rham spectral sequence. True for:

Definition: For a proper and smooth **nc** space X/\mathbb{C} the Hodge-to-de Rham spectral sequence collapses at E_1 if $\dim_{\mathbb{C}((u))} (H_{dR}^{\text{even}}(X) \oplus H_{dR}^{\text{odd}}(X)) = \dim_{\mathbb{C}} (\oplus_k H_{Dol}^k(X)).$

Conjecture [Kontsevich'04]: Every proper and smooth **nc** space X/\mathbb{C} has a collapsing Hodge-to-de Rham spectral sequence. True for:

schemes, DM stacks, \mathcal{O}^{\times} -gerbes, quantum defos;

Definition: For a proper and smooth **nc** space X/\mathbb{C} the Hodge-to-de Rham spectral sequence collapses at E_1 if $\dim_{\mathbb{C}((u))} (H_{dR}^{\text{even}}(X) \oplus H_{dR}^{\text{odd}}(X)) = \dim_{\mathbb{C}} (\oplus_k H_{Dol}^k(X)).$

Conjecture [Kontsevich'04]: Every proper and smooth **nc** space X/\mathbb{C} has a collapsing Hodge-to-de Rham spectral sequence.

True for:

- **schemes**, DM stacks, \mathcal{O}^{\times} -gerbes, quantum defos;
- LG models (Y, f) with crit(f) proper, [Barannikov-Kontsevich'97].

Definition: For a proper and smooth **nc** space X/\mathbb{C} the Hodge-to-de Rham spectral sequence collapses at E_1 if $\dim_{\mathbb{C}((u))} (H_{dR}^{\text{even}}(X) \oplus H_{dR}^{\text{odd}}(X)) = \dim_{\mathbb{C}} (\oplus_k H_{Dol}^k(X)).$

Conjecture [Kontsevich'04]: Every proper and smooth **nc** space X/\mathbb{C} has a collapsing Hodge-to-de Rham spectral sequence.

True for:

- **schemes**, DM stacks, \mathcal{O}^{\times} -gerbes, quantum defos;
- LG models (Y, f) with crit(f) proper, [Barannikov-Kontsevich'97].
- X for which C_X is computed by an associative algebra A, [Kaledin'05].

Suppose X/\mathbb{C} is proper, smooth wih degenerating Hodge-to-de Rham ss.

Suppose X/\mathbb{C} is proper, smooth wih degenerating Hodge-to-de Rham ss. The cohomology of X inherits [Barannikov-Kontsevich'00] extra structures which combine into:

Suppose X/\mathbb{C} is proper, smooth wih degenerating Hodge-to-de Rham ss. The cohomology of X inherits [Barannikov-Kontsevich'00] extra structures which combine into:

• a vector bundle *H* on the formal disc: sections = $H^{\bullet}((C_{\bullet}(A, A)[[u]], +u \cdot B))$.

Suppose X/\mathbb{C} is proper, smooth wih degenerating Hodge-to-de Rham ss. The cohomology of X inherits [Barannikov-Kontsevich'00] extra structures which combine into:

- a vector bundle *H* on the formal disc: sections = $H^{\bullet}((C_{\bullet}(A, A)[[u]], +u \cdot B))$.
- a canonical connection ∇ on H for $u \neq 0$.
Suppose X/\mathbb{C} is proper, smooth wih degenerating Hodge-to-de Rham ss. The cohomology of X inherits [Barannikov-Kontsevich'00] extra structures which combine into:

- ▲ a vector bundle *H* on the formal disc: sections = $H^{\bullet}((C_{\bullet}(A, A)[[u]], +u \cdot B)).$
- a canonical connection ∇ on H for $u \neq 0$.
- a ∇-horizontal pairing $\langle , \rangle : H_u \otimes H_{-u} \times \mathbb{C}$

Suppose X/\mathbb{C} is proper, smooth wih degenerating Hodge-to-de Rham ss. The cohomology of X inherits [Barannikov-Kontsevich'00] extra structures which combine into:

- a vector bundle *H* on the formal disc: sections = $H^{\bullet}((C_{\bullet}(A, A)[[u]], +u \cdot B)).$
- a canonical connection ∇ on H for $u \neq 0$.
- a ∇-horizontal pairing $\langle , \rangle : H_u \otimes H_{-u} \times \mathbb{C}$

Note: The connection ∇ has a quasi-unipotent monodromy and a regular singularity at 0, and

Suppose X/\mathbb{C} is proper, smooth wih degenerating Hodge-to-de Rham ss. The cohomology of X inherits [Barannikov-Kontsevich'00] extra structures which combine into:

- ▲ a vector bundle *H* on the formal disc: sections = $H^{\bullet}((C_{\bullet}(A, A)[[u]], +u \cdot B)).$
- a canonical connection ∇ on H for $u \neq 0$.
- a ∇-horizontal pairing $\langle , \rangle : H_u \otimes H_{-u} \times \mathbb{C}$

Note: The connection ∇ has a quasi-unipotent monodromy and a regular singularity at 0, and

• a pole of order ≤ 1 at zero in the \mathbb{Z} -graded case;

Suppose X/\mathbb{C} is proper, smooth wih degenerating Hodge-to-de Rham ss. The cohomology of X inherits [Barannikov-Kontsevich'00] extra structures which combine into:

- a vector bundle *H* on the formal disc: sections = $H^{\bullet}((C_{\bullet}(A, A)[[u]], +u \cdot B))$.
- a canonical connection ∇ on H for $u \neq 0$.
- a ∇-horizontal pairing $\langle , \rangle : H_u \otimes H_{-u} \times \mathbb{C}$

Note: The connection ∇ has a quasi-unipotent monodromy and a regular singularity at 0, and

- a pole of order ≤ 1 at zero in the \mathbb{Z} -graded case;
- a pole of order ≤ 2 at zero in the $\mathbb{Z}/2$ -graded case;

Definition: A pure generalized (nc) Hodge structure is a triple (H, ∇, K^{top}) , where:

Definition: A pure generalized (nc) Hodge structure is a triple (H, ∇, K^{top}) , where:

H is a holomorphic super vector bundle over
 ${u \in \mathbb{C} | |u| \ll 1}.$

Definition: A pure generalized (nc) Hodge structure is a triple (H, ∇, K^{top}) , where:

- H is a holomorphic super vector bundle over
 ${u \in \mathbb{C} | |u| \ll 1}.$

Definition: A pure generalized (nc) Hodge structure is a triple (H, ∇, K^{top}) , where:

- H is a holomorphic super vector bundle over
 ${u \in \mathbb{C} | |u| \ll 1}.$
- $K^{\text{top}} \subset H_{|\{u \neq 0\}}$ local subsystem of $\mathbb{Z}/2$ -graded abelian groups, with $K^{\text{top}} \otimes \mathbb{C} = H_{|\{u \neq 0\}}$.

Definition: A pure generalized (nc) Hodge structure is a triple (H, ∇, K^{top}) , where:

- H is a holomorphic super vector bundle over
 ${u \in \mathbb{C} | |u| \ll 1}.$
- $K^{\text{top}} \subset H_{|\{u \neq 0\}}$ local subsystem of $\mathbb{Z}/2$ -graded abelian groups, with $K^{\text{top}} \otimes \mathbb{C} = H_{|\{u \neq 0\}}$.

Problem: How can we define the lattice K^{top} ?

Definition: A pure generalized (nc) Hodge structure is a triple (H, ∇, K^{top}) , where:

- H is a holomorphic super vector bundle over
 ${u \in \mathbb{C} | |u| \ll 1}.$
- $K^{\text{top}} \subset H_{|\{u \neq 0\}}$ local subsystem of $\mathbb{Z}/2$ -graded abelian groups, with $K^{\text{top}} \otimes \mathbb{C} = H_{|\{u \neq 0\}}$.

Problem: How can we define the lattice K^{top} ? Answer is clear in the almost commutative examples, e.g. for schemes, stacks, gerbes, LG models.

Definition: A pure generalized (nc) Hodge structure is a triple (H, ∇, K^{top}) , where:

- H is a holomorphic super vector bundle over
 ${u \in \mathbb{C} | |u| \ll 1}.$
- $K^{\text{top}} \subset H_{|\{u \neq 0\}}$ local subsystem of $\mathbb{Z}/2$ -graded abelian groups, with $K^{\text{top}} \otimes \mathbb{C} = H_{|\{u \neq 0\}}$.

Problem: How can we define the lattice K^{top} ?

Can K^{top} be defined entirely in terms of the **nc** data?

nc Hodge conjecture

nc Hodge conjecture: If X/\mathbb{C} is a proper and smooth **nc** space, then

 $\operatorname{im}\left[K_0(C_X) \xrightarrow{\operatorname{ch}} \Gamma(K^{\operatorname{top}})\right] \otimes \mathbb{Q} = \operatorname{Hom}_{\operatorname{ncHS}}(\mathbf{1}, H^{\bullet}_{dR}(X)) \otimes \mathbb{Q}.$

Definition: A **polarization** on a **nc** Hodge structure $(H, \nabla, K^{\text{top}})$ at radius $r \in \mathbb{R}_{>0}$ is the data $(\mathcal{H}, \nabla, \mathbf{K}, \psi)$, where:

- \mathscr{H} is holomorphically trivial on \mathbb{P}^1 ;

- \mathscr{H} is holomorphically trivial on \mathbb{P}^1 ;
- ψ is a collection of bilinear pairings $\psi_u : \mathscr{H}_u \otimes \overline{\mathscr{H}}_{\sigma(u)} \to \mathbb{C}, \ \sigma(u) = -r^2/\bar{u}, \text{ satisfying:}$

- \mathscr{H} is holomorphically trivial on \mathbb{P}^1 ;
- ψ is a collection of bilinear pairings $\psi_u : \mathscr{H}_u \otimes \overline{\mathscr{H}}_{\sigma(u)} \to \mathbb{C}, \ \sigma(u) = -r^2/\bar{u}, \text{ satisfying:}$
 - ψ_u is non-degenerate and Hermitian symmetric;

- \mathscr{H} is holomorphically trivial on \mathbb{P}^1 ;
- ψ is a collection of bilinear pairings $\psi_u : \mathscr{H}_u \otimes \overline{\mathscr{H}}_{\sigma(u)} \to \mathbb{C}, \ \sigma(u) = -r^2/\bar{u}, \ \text{satisfying:}$
 - ψ_u is non-degenerate and Hermitian symmetric;
 - ψ_u depends holomorphically on u and is ∇ -horizontal;

- \mathscr{H} is holomorphically trivial on \mathbb{P}^1 ;
- ψ is a collection of bilinear pairings $\psi_u : \mathscr{H}_u \otimes \overline{\mathscr{H}}_{\sigma(u)} \to \mathbb{C}, \ \sigma(u) = -r^2/\bar{u}, \ \text{satisfying:}$
 - ψ_u is non-degenerate and Hermitian symmetric;
 - ψ_u depends holomorphically on u and is ∇ -horizontal;
 - ψ induces a positive definite Hermitian pairing on $\Gamma(\mathbb{P}^1, \mathscr{H})$.

- \mathscr{H} is holomorphically trivial on \mathbb{P}^1 ;
- ψ is a collection of bilinear pairings $\psi_u : \mathscr{H}_u \otimes \overline{\mathscr{H}}_{\sigma(u)} \to \mathbb{C}, \ \sigma(u) = -r^2/\bar{u}, \ \text{satisfying:}$
 - ψ_u is non-degenerate and Hermitian symmetric;
 - ψ_u depends holomorphically on u and is ∇ -horizontal;
 - ψ induces a positive definite Hermitian pairing on $\Gamma(\mathbb{P}^1, \mathscr{H})$.

- \mathscr{H} is holomorphically trivial on \mathbb{P}^1 ;
- ψ is a collection of bilinear pairings $\psi_u : \mathscr{H}_u \otimes \overline{\mathscr{H}}_{\sigma(u)} \to \mathbb{C}, \ \sigma(u) = -r^2/\bar{u}, \ \text{satisfying:}$
 - ψ_u is non-degenerate and Hermitian symmetric;
 - ψ_u depends holomorphically on u and is ∇ -horizontal;
 - ψ induces a positive definite Hermitian pairing on $\Gamma(\mathbb{P}^1, \mathscr{H})$.

Remark: If $(H, \nabla, K^{\text{top}})$ is a **nc** Hodge structure, then it suffices to specify ψ on $H_{|\{|u|<1\}}$.

Remark: If $(H, \nabla, K^{\text{top}})$ is a **nc** Hodge structure, then it suffices to specify ψ on $H_{|\{|u| < 1\}}$. The extension $(\mathcal{H}, \nabla, K, \psi)$ is completely determined.

Remark: If $(H, \nabla, K^{\text{top}})$ is a **nc** Hodge structure, then it suffices to specify ψ on $H_{|\{|u|<1\}}$. The extension $(\mathscr{H}, \nabla, K, \psi)$ is completely determined.

Remark: Polarizations appear under different names in the works of Hertling and Sabbah: trTERP structure [Hertling], integrable polarized twistor structure [Sabbah].

Remark: If $(H, \nabla, K^{\text{top}})$ is a **nc** Hodge structure, then it suffices to specify ψ on $H_{|\{|u|<1\}}$. The extension $(\mathcal{H}, \nabla, K, \psi)$ is completely determined.

Conjecture [Kontsevich'03] For any proper+smooth **nc** space X/\mathbb{C} the **nc** Hodge structure on $H^{\bullet}_{dR}(X)$ is polarizable.

Remark: If $(H, \nabla, K^{\text{top}})$ is a **nc** Hodge structure, then it suffices to specify ψ on $H_{|\{|u| < 1\}}$. The extension $(\mathcal{H}, \nabla, K, \psi)$ is completely determined.

Conjecture [Kontsevich'03] For any proper+smooth **nc** space X/\mathbb{C} the **nc** Hodge structure on $H^{\bullet}_{dR}(X)$ is polarizable.

True for:

Remark: If $(H, \nabla, K^{\text{top}})$ is a **nc** Hodge structure, then it suffices to specify ψ on $H_{|\{|u| < 1\}}$. The extension $(\mathcal{H}, \nabla, K, \psi)$ is completely determined.

Conjecture [Kontsevich'03] For any proper+smooth **nc** space X/\mathbb{C} the **nc** Hodge structure on $H^{\bullet}_{dR}(X)$ is polarizable.

True for:

schemes, DM stacks, quantizations [Barannikov'01];

Remark: If $(H, \nabla, K^{\text{top}})$ is a **nc** Hodge structure, then it suffices to specify ψ on $H_{|\{|u|<1\}}$. The extension $(\mathcal{H}, \nabla, K, \psi)$ is completely determined.

Conjecture [Kontsevich'03] For any proper+smooth **nc** space X/\mathbb{C} the **nc** Hodge structure on $H^{\bullet}_{dR}(X)$ is polarizable.

True for:

- schemes, DM stacks, quantizations [Barannikov'01];
- topological twists of (2, 2) sigma models [Katzarkov-Kontsevich-P'05];

Remark: If $(H, \nabla, K^{\text{top}})$ is a **nc** Hodge structure, then it suffices to specify ψ on $H_{|\{|u|<1\}}$. The extension $(\mathscr{H}, \nabla, K, \psi)$ is completely determined.

Conjecture [Kontsevich'03] For any proper+smooth **nc** space X/\mathbb{C} the **nc** Hodge structure on $H^{\bullet}_{dR}(X)$ is polarizable.

True for:

- schemes, DM stacks, quantizations [Barannikov'01];
- topological twists of (2, 2) sigma models [Katzarkov-Kontsevich-P'05];
- LG models [Sabbah'05].

Structure results

Theorem [Katzarkov-Kontsevich-P'05] The category of pure **nc** Hodge structures is semisimple (as a rigid \otimes category).

Structure results

Theorem [Katzarkov-Kontsevich-P'05] The category of pure *nc* Hodge structures is semisimple (as a rigid \otimes category).

Corollary [Katzarkov-Kontsevich-P'05] For Landau-Ginzburg models X = (Y, f) the topological lattice $K^{top} \subset H^{\bullet}_{dR}(X)$ is an invariant of the category C_X . In particular the **nc** Hodge structure on $H^{\bullet}_{dR}(X)$ depends only on X.

Structure results

Theorem [Katzarkov-Kontsevich-P'05] The category of pure *nc* Hodge structures is semisimple (as a rigid \otimes category).

Corollary [Katzarkov-Kontsevich-P'05] For Landau-Ginzburg models X = (Y, f) the topological lattice $K^{top} \subset H^{\bullet}_{dR}(X)$ is an invariant of the category C_X . In particular the **nc** Hodge structure on $H^{\bullet}_{dR}(X)$ depends only on X.

Theorem [Katzarkov-Kontsevich'05] For Landau-Ginzburg models X = (Y, f) the **nc** Hodge conjecture follows from the commutative Hodge conjecture.

Fix $X = (\mathbf{Y}, \mathbf{f})$ - LG with a proper $\operatorname{crit}(f)$, $C_X = D^b(\mathbf{Y}_0) / \operatorname{Perf}(\mathbf{Y}_0)$.

Fix $X = (\mathbf{Y}, \mathbf{f})$ - LG with a proper $\operatorname{crit}(f)$, $C_X = D^b(\mathbf{Y}_0) / \operatorname{Perf}(\mathbf{Y}_0)$. $X = (\mathbf{Y}, \mathbf{f})$ has geometrically defined Betti, de Rham and Dolbeault cohomologies:

Fix $X = (\mathbf{Y}, \mathbf{f})$ - LG with a proper $\operatorname{crit}(f)$, $C_X = \frac{D^b(\mathbf{Y}_0)}{\operatorname{Perf}(\mathbf{Y}_0)}$. $X = (\mathbf{Y}, \mathbf{f})$ has geometrically defined Betti, de Rham and Dolbeault cohomologies:

Betti	$H^{ullet}(oldsymbol{Y},oldsymbol{Y}_t;\mathbb{C})$
de Rham	$\mathbb{H}^{\bullet}((\Omega^{\bullet}_{\boldsymbol{Y}}, u \cdot d + d\mathbf{f} \wedge \bullet))$
Dolbeault	$\mathbb{H}^{\bullet}((\Omega^{\bullet}_{\boldsymbol{Y}}, d\mathbf{f} \wedge \bullet))$

Fix $X = (\mathbf{Y}, \mathbf{f})$ - LG with a proper $\operatorname{crit}(f)$, $C_X = \frac{D^b(\mathbf{Y}_0)}{\operatorname{Perf}(\mathbf{Y}_0)}$. $X = (\mathbf{Y}, \mathbf{f})$ has geometrically defined Betti, de Rham and Dolbeault cohomologies:

Betti	$H^{ullet}(oldsymbol{Y},oldsymbol{Y}_t;\mathbb{C})$
de Rham	$\mathbb{H}^{\bullet}((\Omega^{\bullet}_{\boldsymbol{Y}}, u \cdot d + d\mathbf{f} \wedge \bullet))$
Dolbeault	$\mathbb{H}^{\bullet}((\Omega^{\bullet}_{\boldsymbol{Y}}, d\mathbf{f} \wedge \bullet))$

Note:
Hodge invariants of LG models

Fix $X = (\mathbf{Y}, \mathbf{f})$ - LG with a proper $\operatorname{crit}(f)$, $C_X = D^b(\mathbf{Y}_0) / \operatorname{Perf}(\mathbf{Y}_0)$. $X = (\mathbf{Y}, \mathbf{f})$ has geometrically defined Betti, de Rham and Dolbeault cohomologies:

Betti	$H^{ullet}(oldsymbol{Y},oldsymbol{Y}_t;\mathbb{C})$
de Rham	$\mathbb{H}^{\bullet}((\Omega^{\bullet}_{\boldsymbol{Y}}, u \cdot d + d\mathbf{f} \wedge \bullet))$
Dolbeault	$\mathbb{H}^{\bullet}((\Omega^{\bullet}_{\boldsymbol{Y}}, d\mathbf{f} \wedge \bullet))$

Note:

The geometric de Rham and Dolbeault cohomology of (\mathbf{Y}, \mathbf{f}) coincide with the periodic cyclic and Hochschild homology of

 $C_{(\mathbf{Y},\mathbf{f})}$, [Katzarkov-Kontsevich-P'05].

Hodge invariants of LG models

Fix $X = (\mathbf{Y}, \mathbf{f})$ - LG with a proper $\operatorname{crit}(f)$, $C_X = D^b(\mathbf{Y}_0) / \operatorname{Perf}(\mathbf{Y}_0)$. $X = (\mathbf{Y}, \mathbf{f})$ has geometrically defined Betti, de Rham and Dolbeault cohomologies:

Betti	$H^{ullet}(oldsymbol{Y},oldsymbol{Y}_t;\mathbb{C})$
de Rham	$\mathbb{H}^{\bullet}((\Omega^{\bullet}_{\boldsymbol{Y}}, u \cdot d + d\mathbf{f} \wedge \bullet))$
Dolbeault	$\mathbb{H}^{\bullet}((\Omega^{\bullet}_{\boldsymbol{Y}}, d\mathbf{f} \wedge \bullet))$

Note:

The geometric definition can be used to show that the Hodge-to-de Rham spectrals sequence degenerates, [Barannikov-Kontsevich'97].

Question: How can we compute the **nc** Hodge structure on $H^{\bullet}_{dR}((\mathbf{Y}, \mathbf{f}))$?

Question: How can we compute the **nc** Hodge structure on $H^{\bullet}_{dR}((\mathbf{Y}, \mathbf{f}))$?

Idea: Relate to commutative Hodge theory.

Question: How can we compute the **nc** Hodge structure on $H^{\bullet}_{dR}((\mathbf{Y}, \mathbf{f}))$?

Y has the homotopy type of Y_0 :

Question: How can we compute the **nc** Hodge structure on $H^{\bullet}_{dR}((\mathbf{Y}, \mathbf{f}))$?

Y has the homotopy type of Y_0 : If $i_0 : Y_0 \hookrightarrow Y$, then $\exists r : Y \to Y_0$ - a strict deformation retraction $(r \circ i \cong id_{Y_0})$. Specialization to 0 map: $r_t := r_{|Y_t} : Y_t \to Y_0$.

Question: How can we compute the **nc** Hodge structure on $H^{\bullet}_{dR}((\mathbf{Y}, \mathbf{f}))$?

Y has the homotopy type of Y_0 : If $i_0 : Y_0 \hookrightarrow Y$, then $\exists r : Y \to Y_0$ - a strict deformation retraction $(r \circ i \cong id_{Y_0})$. Specialization to 0 map: $r_t := r_{|Y_t} : Y_t \to Y_0$. [Deligne'73] Nearby and vanishing cocycles functors: $\psi_{\mathbf{f}}, \phi_{\mathbf{f}} : D^-(Y, \mathbb{Z}) \to D^-(Y_0, \mathbb{Z})$

Question: How can we compute the **nc** Hodge structure on $H^{\bullet}_{dR}((\mathbf{Y}, \mathbf{f}))$?

Y has the homotopy type of Y_0 : If $i_0 : Y_0 \hookrightarrow Y$, then $\exists r : Y \to Y_0$ - a strict deformation retraction $(r \circ i \cong id_{Y_0})$. Specialization to 0 map: $r_t := r_{|Y_t} : Y_t \to Y_0$. [Deligne'73] Nearby and vanishing cocycles functors: $\psi_{\mathbf{f}}, \phi_{\mathbf{f}} : D^-(Y, \mathbb{Z}) \to D^-(Y_0, \mathbb{Z})$ $\psi_{\mathbf{f}}K^{\bullet} = Rr_{t*}i_t^*K^{\bullet}, \phi_{\mathbf{f}}K^{\bullet} = \operatorname{cone}(i^*K^{\bullet} \to \psi_{\mathbf{f}}K^{\bullet})$.

Question: How can we compute the **nc** Hodge structure on $H^{\bullet}_{dR}((\mathbf{Y}, \mathbf{f}))$?

Y has the homotopy type of Y_0 : If $i_0 : Y_0 \hookrightarrow Y$, then $\exists r : Y \to Y_0$ - a strict deformation retraction $(r \circ i \cong id_{Y_0})$. Specialization to 0 map: $r_t := r_{|Y_t} : Y_t \to Y_0$. [Deligne'73] Nearby and vanishing cocycles functors: $\psi_{\mathbf{f}}, \phi_{\mathbf{f}} : D^-(Y, \mathbb{Z}) \to D^-(Y_0, \mathbb{Z})$ Apply to \mathbb{C}_Y :

 $\dots \to H^i(\mathbf{Y}_0) \to H^i(\mathbf{Y}_t) \to H^i(\phi_{\mathbf{f}}\mathbb{C}) \to H^{i+1}(\mathbf{Y}_0) \to \dots$

Question: How can we compute the **nc** Hodge structure on $H^{\bullet}_{dR}((\mathbf{Y}, \mathbf{f}))$?

Y has the homotopy type of Y_0 : If $i_0 : Y_0 \hookrightarrow Y$, then $\exists r : Y \to Y_0$ - a strict deformation retraction $(r \circ i \cong id_{Y_0})$. Specialization to 0 map: $r_t := r_{|Y_t} : Y_t \to Y_0$. [Deligne'73] Nearby and vanishing cocycles functors: $\psi_f, \phi_f : D^-(Y, \mathbb{Z}) \to D^-(Y_0, \mathbb{Z})$ Apply to \mathbb{C}_Y :

 $\dots \to H^{i}(\boldsymbol{Y}_{0}) \to H^{i}(\boldsymbol{Y}_{t}) \to H^{i}(\phi_{\mathbf{f}}\mathbb{C}) \to H^{i+1}(\boldsymbol{Y}_{0}) \to \dots$ Hence $H^{i}_{B}((\boldsymbol{Y}, \mathbf{f}); \mathbb{C}) = H^{i-1}(\phi_{\mathbf{f}}\mathbb{C}).$

Question: How can we compute the **nc** Hodge structure on $H^{\bullet}_{dR}((\mathbf{Y}, \mathbf{f}))$?

Y has the homotopy type of \mathbf{Y}_0 : If $i_0 : \mathbf{Y}_0 \hookrightarrow \mathbf{Y}$, then $\exists r: \mathbf{Y} \to \mathbf{Y}_0$ - a strict deformation retraction $(r \circ i \cong \mathrm{id}_{\mathbf{Y}_0})$. Specialization to 0 map: $r_t := r_{|\mathbf{Y}_t} : \mathbf{Y}_t \to \mathbf{Y}_0$. [Deligne'73] Nearby and vanishing cocycles functors: $\psi_{\mathbf{f}}, \phi_{\mathbf{f}}: D^{-}(\mathbf{Y}, \mathbb{Z}) \to D^{-}(\mathbf{Y}_{0}, \mathbb{Z})$ Apply to \mathbb{C}_{Y} : $\dots \to H^i(\mathbf{Y}_0) \to H^i(\mathbf{Y}_t) \to H^i(\phi_{\mathbf{f}}\mathbb{C}) \to H^{i+1}(\mathbf{Y}_0) \to \dots$ Hence $H^i_B((\mathbf{Y}, \mathbf{f}); \mathbb{C}) = H^{i-1}(\phi_{\mathbf{f}}\mathbb{C}).$ In fact $H^i_{dB}((\mathbf{Y}, \mathbf{f}); \mathbb{C}) = H^{i-1}(\phi_{\mathbf{f}}(\Omega_{\mathbf{Y}}, d + d\mathbf{f} \wedge \bullet))$ and

 $H^{i}_{Dol}((\mathbf{Y},\mathbf{f});\mathbb{C}) = H^{i-1}(\phi_{\mathbf{f}}(\Omega_{\mathbf{Y}}, d\mathbf{f} \wedge \bullet)),$ [Sabbah'00].

Limiting Hodge structures

The family $V_{\tau} = H^{\bullet}_{dR}((\mathbf{Y}, \tau \cdot \mathbf{f})), \tau \in \mathbb{C}$ is a variation of **nc** pure Hodge structures and by the work of Sabbah induces a limiting mixed twistor structure on $H^{\bullet}_{dR}((\mathbf{Y}, \mathbf{f}))$ for $\tau \to \infty$.

Limiting Hodge structures

The family $V_{\tau} = H^{\bullet}_{dR}((\mathbf{Y}, \tau \cdot \mathbf{f})), \tau \in \mathbb{C}$ is a variation of **nc** pure Hodge structures and by the work of Sabbah induces a limiting mixed twistor structure on $H^{\bullet}_{dR}((\mathbf{Y}, \mathbf{f}))$ for $\tau \to \infty$.

[Sabbah'05, Szabo'05]: the limiting mixed twistor structure on $H^{\bullet}_{dR}((Y, \mathbf{f}))$ for $\tau \to \infty$ is an ordinary MHS which is isomorphic to Steenbrink's MHS on the vanishing cohomology $H^{\bullet-1}(\phi_{\mathbf{f}}\mathbb{C})$.

Limiting Hodge structures

The family $V_{\tau} = H^{\bullet}_{dR}((\mathbf{Y}, \tau \cdot \mathbf{f})), \tau \in \mathbb{C}$ is a variation of **nc** pure Hodge structures and by the work of Sabbah induces a limiting mixed twistor structure on $H^{\bullet}_{dR}((\mathbf{Y}, \mathbf{f}))$ for $\tau \to \infty$.

[Sabbah'05, Szabo'05]: the limiting mixed twistor structure on $H^{\bullet}_{dR}((\mathbf{Y}, \mathbf{f}))$ for $\tau \to \infty$ is an ordinary MHS which is isomorphic to Steenbrink's MHS on the vanishing cohomology $H^{\bullet-1}(\phi_{\mathbf{f}}\mathbb{C})$.

Corollary [Katzarkov-Kontsevich-P'05] For Landau-Ginzburg models X = (Y, f) the MHS on the vanishing cohomology is an invariant of the category C_X .

Mirror symmetry

Corollary [Katzarkov-Kontsevich-P'05] Suppose $(\mathbf{Z}, \boldsymbol{\omega})$ is a symplectic manifold and suppose $X = (\mathbf{Y}, \mathbf{f})$ is the Hori-Vafa mirror. Then the MHS on the vanishing cohomology of \mathbf{f} is a symplectic invariant of $(\mathbf{Z}, \boldsymbol{\omega})$.

Mirror symmetry

Corollary [Katzarkov-Kontsevich-P'05] Suppose $(\mathbf{Z}, \boldsymbol{\omega})$ is a symplectic manifold and suppose $X = (\mathbf{Y}, \mathbf{f})$ is the Hori-Vafa mirror. Then the MHS on the vanishing cohomology of \mathbf{f} is a symplectic invariant of $(\mathbf{Z}, \boldsymbol{\omega})$.

Expect: Mirror symmetry exchanges the **nc** Hodge structures on cohomology. In the case of varieties this can be tested since the **nc** pure Hodge structure can be reconstructed from the MHS on the vanishing cohomology.

Mirror symmetry

Corollary [Katzarkov-Kontsevich-P'05] Suppose $(\mathbf{Z}, \boldsymbol{\omega})$ is a symplectic manifold and suppose $X = (\mathbf{Y}, \mathbf{f})$ is the Hori-Vafa mirror. Then the MHS on the vanishing cohomology of \mathbf{f} is a symplectic invariant of $(\mathbf{Z}, \boldsymbol{\omega})$.

Theorem [Gross-Katzarkov'05] Suppose $(\mathbf{Z}, \boldsymbol{\omega})$ is a symplectic manifold underlying a c.i. variety M, dim $M \leq 3$ which is either Fano, CY or of general type. Suppose $X = (\mathbf{Y}, \mathbf{f})$ is the Hori-Vafa mirror. Then the 90° rotation of the MHS on the vanishing cohomology of \mathbf{f} reconstructs the pure Hodge structure on M.