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The idea of T-duality

The simplest example is a free theory on a

torus Tn = Rn/Γ, where Γ is a lattice in Rn.

The partition function is a theta function,

ZΓ(β) =
∑

z∈Γ̂

e−2π2r|z|2

where Γ̂ is the dual lattice in the dual vector

space R̂n.

By the Poisson summation formula, this is

equivalent to the partition function Z
Γ̂

on the

dual torus T̂n = R̂n/Γ̂, and r ⇔ 1/r.

The situation however gets much more com-

plicated when a background flux H is turned

on, where [H] ∈ H3(Tn, Z), and [H] 6= 0, and

will be discussed later.



T-duality in the literature

Spacetime is M ×T, with trivial background

flux - then the T-dual is topologically the same

space M×T̂, and T-duality is realized by using

the correspondence

M × T × T̂

p
xxppppppppppppppppppppp

p̂
&&NNNNNNNNNNNNNNNNNNNNN

M × T M × T̂

(1)

Poincaré line bundle P: There is a canonical

line bundle P over the torus T × T̂, defined

as follows: Consider the free action of Z on

R × T̂ × C given by,

Z × (R × T̂ × C) → R × T̂ × C

(n, (r, ρ, z)) → (r + n, ρ, ρ(n)z)

The Poincaré line bundle is defined as P =

(R × T̂ × C)/Z, its curvature is F = dθ ∧ dθ̂.



In this case, T-dualizing on T, the Buscher

rules for the RR fields can be conveniently

encoded in the formula on M × T × T̂,

T∗G =

∫

T
eF G , (2)

G ∈ Ω•(M × T) is the total RR fieldstrength,

G ∈ Ωeven(M × T) for Type IIA;

G ∈ Ωodd(M × T) for Type IIB.

Here F = dθ∧dθ̂ is the curvature of the Poincaré

line bundle P on T × T̂, so that eF = ch(P) is

the Chern character of P.

Note that G is a closed form if and only if its

T-dual T∗G is a closed form. So the Buscher

rules (2) can be interpreted as an isomorphism

T∗ : H•(M × T)
∼=
−→ H•+1(M × T̂). (3)



Recently, it was argued by Minasian-Moore,

Horava and Moore-Witten that,

Type IIA string theory

RR fields are classified by K0(X);

Charges are classified by K1(X);

whereas,

Type IIB string theory

RR fields are classified by K1(X);

Charges are classified by K0(X).

Note the parity shift!



The T-duality discussion given earlier can also

be realized also in K-theory, and thus to the

classification of D-branes on M ×T and M × T̂,

by using the correspondence

M × T × T̂

p
xxppppppppppppppppppppp

p̂
&&NNNNNNNNNNNNNNNNNNNNN

M × T M × T̂

(4)

Induces a T-duality isomorphism of K-theories

T! : K•(M × T)
∼=
−→ K•+1(M × T̂) (5)

given by T! = p̂! (p!( · ) ⊗ P) .

That is, T-duality in the absence of a back-

ground field, gives an equivalence

Type IIA theory ⇐⇒ Type IIB theory

N.B. No change in topology!



T-duality in the absence of a background flux

can be summarized as the commutativity of

the following diagram,

K•(M × T)
T!−→
∼=

K•+1(M × T̂)

ch

y

ych

H•(M × T)
T∗−→
∼=

H•+1(M × T̂)

where the horizontal arrows are isomorphisms,

and ch is the Chern character. That is,

ch(T!(Q)) = T∗ch(Q)

for all Q ∈ K•(M × T).

The aim: to generalize this to the case when

there is a non-trivial background flux.



The case of circle bundles

In [BEM], we investigated the general case

where E is an oriented T-bundle over M

T −→ E

π

y
M

(6)

classified by its first Chern class

c1(E) ∈ H2(M, Z), with H-flux H ∈ H3(E, Z).

The T-dual of E is another oriented T-bundle

over M , denoted by Ê,

T̂ −→ Ê

π̂

y
M

(7)

which has first Chern class c1(Ê) = π∗H.



The Gysin sequence for E enables us to define

a T-dual H-flux Ĥ ∈ H3(Ê, Z), satisfying

c1(E) = π̂∗Ĥ , (8)

where π∗ : Hk(E, Z) → Hk−1(M, Z), and simi-

larly π̂∗, denote the pushforward maps.

N.B. Ĥ is not fixed by this data, since any

integer degree 3 cohomology class on M that

is pulled back to Ê also satisfies (8). How-

ever, Ĥ is determined uniquely upon choosing

connections A on E → M and Â on Ê → M .

Explicit formulae will be given later.



The surprising new phenomenon is that there

is a change in topology when the H-flux is

non-trivial. N.B. this can also happen when

spacetime is a product E = AdS7×T3 (a trivial

circle bundle over M = AdS7×T2) with H-flux

H = a ∪ b, where a = k.vol ∈ H2(T2, Z), b the

generator of H1(T, Z). Then the T-dual circle

bundle is Ê = AdS7×Heis(1, k) with trivial H-

flux, where Heis(1, k) denotes the Heisenberg

nilmanifold, with first Chern class equal to a.

Another example is AdS5 × S5 with trivial H-

flux, is T-dual to AdS5 × CP2 × T with H-flux

H = a ∪ b where a = vol ∈ H2(CP2, Z), b the

generator of H1(T, Z).

T-duality for circle bundles is the exchange,

background H-flux ⇐⇒ Chern class
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T-duality in a background flux

Choosing connection 1-forms A and Â, on the

T-bundles E and Ê, respectively, the rules for

transforming the RR fields can be encoded in

the formula

T∗G =
∫

T
eA∧Â G , (9)

G ∈ Ω•(E) is the total RR fieldstrength,

G ∈ Ωeven(E) for Type IIA;

G ∈ Ωodd(E) for Type IIB,

where the right hand side is a form on E×M Ê,

and the integration is along the T-fiber of E.

Recall that the twisted cohomology H•(E, H)

is defined as the cohomology of the complex

(Ω•(E), dH = d − H∧).



Let F = dA and F̂ = dÂ,

H = A ∧ F̂ − Ω , (10)

for some Ω ∈ Ω3(M), while the T-dual Ĥ is

given by

Ĥ = F ∧ Â − Ω . (11)

We note that

d(A ∧ Â) = −H + Ĥ , (12)

so that T∗ indeed maps dH-closed forms G to

dĤ-closed forms T∗G. Therefore T-duality T∗

induces a map

T∗ : H•(E, H) → H•+1(Ê, Ĥ).

The inverse is similarly defined, and using the

fact that locally, we have A = dθ + π̂∗B̂, Â =

dθ̂+π∗B, one shows after a small computation

that T-duality T∗ is indeed an isomorphism.



Proposal by Witten, Kapustin (torsion twist),

Bouwknegt-Mathai, Atiyah-Segal (general twist)

- that in the presence of a background H-flux,

Type IIA string theory

RR Fields are classified by K0(X, H)

Charges are classified by K1(X, H)

whereas,

Type IIB string theory

RR Fields are classified by K1(X, H)

Charges are classified by K0(X, H)

Note the parity shift!



Dixmier-Douady theory asserts that isomor-

phism classes of locally trivial algebra bundles

KP with fiber the algebra of compact oper-

ators K and structure group PU = U/T over

a manifold X are in bijective correspondence

with H3(X, Z). Moreover since K ⊗ K ∼= K,

such algebra bundles form a group called the

infinite Brauer group, Br(X), which is iso-

morphic to H3(X, Z).

This is proved by noticing that U is contactible

in the weak operator topology so PU is a BT =

K(Z,2) since T = K(Z,1). Therefore BPU =

K(Z,3). Therefore principal PU bundles P are

classified up to isomorphism by

[X, BPU ] = [X, K(Z,3)] = H3(X, Z).

Then KP = (P×K)/PU and DD(KP ) ∈ H3(X, Z)

is its Dixmier-Douady invariant.



Also relevant here is the theorem of Serre,

which says that a cohomology class H3(X, Z)

can be represented by a locally trivial algebra

bundle with fiber the algebra of finite dimen-

sional matrices if and only if the cohomology

class is torsion.

Decomposable nontorsion example. Let α ∈

H1(X, Z) and β ∈ H2(X, Z). Then α can be

thought of as a character χα : π1(X) → Z

with associated Z-covering space X̂. Simi-

larly, β can be thought of as a principal bundle

U(1) → P → X. π : P ×X X̂ → X is a princi-

pal U(1)×Z-bundle over X with DD invariant

α∪β. Now (γ′, n) ∈ U(1)×Z acts on L2(U(1)),

(σ(n)f)(γ) = γnf(γ), (σ(γ′)f)(γ) = f(γ′γ).

Since [σ(γ), σ(n)] = γnI, this is a projective

action, i.e. σ : U(1) × Z → PGL(L2(U(1))) is



a homomophism. Equivalently, σ is a repre-

sentation of the Heisenberg group H in this

context, i.e. the central extension,

1 → U(1) → H → U(1) × Z → 1.

So P ×X X̂ ×σ PGL(L2(U(1)) is a principal

PGL(L2(U(1))-bundle over X with DD invari-

ant α ∪ β.

Twisted K-theory. Twisted K-theory was de-

fined by J. Rosenberg as the K-theory of the

C∗-algebra of continuous sections, C(X,KP ) -

we will also denote this algebra by CT(X, H),

where H = DD(KP ). Twisted K-theory will

be denoted by K•(X, H). It is a module over

K0(X) and possesses many nice functorial prop-

erties.



Back to T-duality in an H-flux. The earlier

discussion in twisted cohomology can also be

realized in twisted K-theory and, in this more

general setting, T-duality gives an isomorphism

of the twisted K-theories of E and Ê,

T! : K•(E, H) → K•+1(Ê, Ĥ)

defined by

T! = p̂! (p!( · ) ⊗ L)

where L is the substitute for the Poincaré line

bundle. It is no longer necessarily a line bun-

dle on the correspondence space E ×M Ê, but

rather a line bundle on the total space of a

principal PU bundle Q over the correspon-

dence space E ×M Ê with Dixmier-Douady in-

variant Ĥ − H. The first Chern class of L is

c1(L) = A ∧ Â − B̂ + B determines L, , where

we recall that d(A ∧ Â) = Ĥ − H = d(B̂ − B).



Several of the constructions used in the def-

inition of T-duality on twisted K-theory are

adapted from different joint work of V.M. with

Melrose and Singer.

T-duality in the presence of a background flux

H can be summarized as the commutativity of

the following diagram,

K•(E, H)
T!−→ K•+1(Ê, Ĥ)

chH

y

ychĤ

H•(E, H)
T∗−→ H•+1(Ê, Ĥ)

(13)

That is,

chH(T!(Q)) = T∗chĤ(Q)



Sample calculations

Lens spaces L(1, p) = S3/Zp, which is the to-

tal space of the circle bundle over the 2-sphere

with Chern class equal to p times the genera-

tor of H2(S2, Z) ∼= Z.

Ki(L(1, j), H = k) ∼= Ki+1(L(1, k), H = j) .

In particular, since L(1,1) = S3 = SU(2) we

obtain an isomorphism

Ki(SU(2), H = k) ∼= Ki+1(L(1, k), H = 1).

In particular, since L(1,0) = S2×T, we obtain

an isomorphism

Ki(S2 × T, H = k) ∼= Ki+1(L(1, k)) (14)

which shows that it is a ring.



The case of principal T2-bundles

In [MR], we investigated the general case where

E is an oriented T2-bundle over M ,

T2 −→ E

π

y
M

(15)

which is classified by its first Chern class

c1(E) ∈ H2(M, Z2). We again assume that E

comes with an H-flux H ∈ H3(E, Z).

However, in this case, the T-dual of E is not

in general another oriented T2-bundle over M !



A famous example of a principal torus bundle

with non T-dualizable H-flux is provided by

T2 −→ T3

p

y
T

(16)

with H-flux H = kvol ∈ H3(T3, Z), k 6= 0.

Since p∗[H] = [
∫
T H] 6= 0, and there are no

non-trivial principal T2-bundles over T since

H2(T, Z2) = 0, it follows that there is no way

to get a T-dual that is another principal torus

bundle with H-flux over T. Upon doing T-

duality one circle at a time, the 2nd circle dis-

appears, as noticed by S. Kachru, M. Schulz,

P. Tripathy and S. Trivedi, [hep-th/0211182].

In [MR], we proposed that the T-dual in this

case is instead a continuous field of stabilized

noncommutative tori fibered over T. This

will be justified shortly.



Noncommutative torus

For each θ ∈ [0,1], the noncommutative torus

Aθ is defined abstractly as the C∗-algebra gen-

erated by two unitaries U and V in an infinite

dimensional separable Hilbert space satisfying

the Weyl commutation relation

UV = exp(2πiθ)V U.

Elements f in Aθ can be represented by infinite

power series, where a(n,m) ∈ C,

f =
∑

(m,n)∈Z2

a(n,m) UmV n. (17)

The stabilized noncommutative torus Aθ ⊗ K

is isomorphic to the foliation algebra of the

space of leaves of the Kronecker foliation on

T2 defined by the equation dx = θ dy on T2.



An important realization of Aθ in physics is as

the norm completion of the algebra of Schwartz

functions S(R2) on R2 with the Moyal product:

for all f, g ∈ S(R2),

(f ⋆ g)(z) =

(
e
πiθ ∂

∂x
∂
∂yf(x)g(y)

)

x=y=z

or equivalently,

(f ⋆ g)(z) = c
∫

dx dy e2πixyf(z + θx)g(z + y).

Upon taking the partial Fourier transform, there

is an isomorphism Aθ
∼= C(T) ⋊θ Z, where the

generator of Z acts on T by rotation by the

angle 2πθ. Because of this Aθ is also known

as the rotation algebra.

A couple of key properties:

When θ ∈ Q, Aθ is Morita equivalent to C(T2).

However, when θ 6∈ Q, Aθ is a simple algebra

(i.e. spectrum is a single point).



Theorem (Rank 2 bundles) Let π : E → M

be a principal T2-bundle and H ∈ H3(E, Z) an

H-flux on E. Let π∗H =

∫

T2
H ∈ H1(M, Z).

1. [BHM] If π∗H = 0 ∈ H1(M, Z), then there

is a uniquely determined classical T-dual to

(π, H), consisting of π# : E# → M , which is a

another principal T2-bundle over Z, and H# ∈

H3(E#, Z), the “T-dual H-flux” on E#. T-

dualizing a circle at a time works - the picture

is exactly as in the case of circle bundles.

E ×M E#

p∗(p#)

zzvvvvvvvvvvvvvvvvvvvvvvv

(p#)∗(p)

$$
JJJJJJJJJJJJJJJJJJJJJJ

E

p

$$
JJJJJJJJJJJJJJJJJJJJJJJJ E#

p#

yysssssssssssssssssssssss

M .



2. [MR] If π∗H 6= 0 ∈ H1(M, Z) = [M, T],

then a classical T-dual as above does not ex-

ist, i.e., T-dualizing a circle at a time does

not work. In this case however, there is a

“nonclassical” T-dual which is a continuous

field of noncommutative tori over M whose

fibre over m ∈ M is Af(m), where f : M → T

is a continuous function, [f ] = π∗H. Geomet-

rically, the T-dual can be viewed as a rank 2

bundle of (Kronecker) foliated tori over M .

X

Z
z

p

A
f(z)



The mathematical theorem proved in [MR] is

that for T2-torus bundles, the R2 action on

E lifts to a R2 action on CT(E, H), where

CT(E, H) is the algebra of sections of a bundle

of compact operators with Dixmier-Douady

invariant equal to H.

Then the T-dual of (E, H) is defined to be

the crossed product CT(E, H) ⋊ R2. It has an

action of the dual group R̂2 and Takai duality

asserts the Morita equivalence

CT(E, H) ⇐⇒ CT(E, H) ⋊ R2 ⋊ R̂2

The implication is that T-duality, when ap-

plied twice, returns us to a physically equiva-

lent algebra. This is the 1st justification of

the crossed product algebra as the T-dual.



Brief digression on crossed products Let A

be a C∗-algebra, and α an action of a locally

compact abelian group G on A. Then the

crossed product A ⋊α G is the norm comple-

tion of Cc(G, A) with product given by con-

volution multiplication on G and the formal

relation g.a.g−1 = αg(a), g ∈ G, a ∈ A.

Now on the crossed product A ⋊α G, there is

an action α̂ of Ĝ given by multiplication by Ĝ

on functions on G, with formal relations γ.a =

a.γ, γ.g.γ−1 = 〈γ, g〉g for all γ ∈ Ĝ, g ∈ G, a ∈ A.

Then Takai duality says that there is a canon-

ical isomorphism,

A ⋊α G ⋊α̂ Ĝ ∼= A ⊗K.



We have the isomorphism of K-theories

T! : K•(E, H)
∼=

−→ K•(CT(E, H) ⋊ R2)

which is Connes Thom isomorphism theo-

rem, giving the 2nd justification of the crossed

product algebra as the T-dual.

We also have the commutative diagram,

K•(E, H)
T!−→
∼=

K•(CT(E, H) ⋊ R2)

ChH

y

yCh

H•(E, H)
T∗−→
∼=

HP•(CT(E, H)∞ ⋊ R2)

where the horizontal arrows are isomorphisms,

ChH is the twisted Chern character, Ch is the

Connes-Chern character and the lower hori-

zontal arrow is the Elliott-Natsume-Nest Thom

isomorphism in periodic cyclic homology.



In the example of the trivial torus bundle,

T2 −→ T3

p

y
T

with H-flux H = kvol ∈ H3(T3, Z), k 6= 0, then

it turns out that the T-dual is

CT(T3, H) ⋊ R2 ∼= C∗(HZ) ⊗ K,

where HZ is the integer Heisenberg group,

HZ =








1 x 1

kz
0 1 y
0 0 1


 : x, y, z ∈ Z





,

which is a Z-central extension of Z2,

0 → Z → HZ → Z2 → 0.

Mackey induction via the central Z subgroup

of HZ gives the direct integral decomposition,

C∗(HZ) ⊗ K =

∫

θ∈T
Aθ dθ ⊗K.



3rd justification of T-dual:

Can reformulate T-duality for circle bundles

discussed earlier, via C∗-algebras as follows.

Let

T −→ E

p

y
M

be a principal circle bundle and H a closed,

integral 3-form on E. Then there is a con-

tinuous trace C∗-algebra CT(E, H) with spec-

trum equal to E and Dixmier-Douady invariant

equal to [H] ∈ H3(E, Z). Using a connection

on the associated principal PU bundle, the R

action on E lifts to an R action on CT(E, H)

(uniquely!, cf. Raeburn-Rosenberg), and one

has a commutative diagram,



spec(CT(E, H))

π

��
??

??
??

??
??

??
??

??
??

??

spec(CT(E, H) ⋊ Z)

p̂

��
??

??
??

??
??

??
??

??
??

??

p

����
��

��
��

��
��

��
��

��
��

spec(CT(E, H))/R

spec(CT(E, H) ⋊ R)

π̂

����
��

��
��

��
��

��
��

��
��

(18)

That is, Raeburn-Rosenberg show that the C∗-

algebras CT(E, H) ⋊ Z and CT(E, H) ⋊ R are

also continuous trace C∗-algebras with

spec(CT(E, H) ⋊ R) = Ê a circle bundle over

M = spec(CT(E, H))/R, such that c1(Ê) =

π∗[H] and the Dixmier-Douady invariant of

CT(E, H) ⋊ R is [Ĥ] ∈ H3(Ê, Z), such that

c1(E) = π̂∗[Ĥ], and spec(CT(E, H) ⋊ Z) =

E ×M Ê is the correspondence space, i.e.

we recover the T-duality for circle bundles.



Theorem (rank n case, part 1) [MR2] Let

Tn i
−→ E

p

y
M

be a principal torus bundle over M , [H] ∈

H3(M, Z). Then the Rn action on E lifts to

a Rn action on CT(E, H) if and only if the

restriction, i∗[H] = 0 ∈ H3(Tn, Z) is trivial.

This is a nontrivial obstruction ⇔ n ≥ 3.

(1) If 0 = π∗(H) =
(∫

T2
1

H, ...,
∫

T2
k

H
)
∈ H1(M, H2(Tn, Z)),

where k =
(
n
2

)
and T2

j are the subtori of rank

2 in the torus fibers, then there is a uniquely

determined classical T-dual consisting of π# :

E# → M , which is a another principal Tn-

bundle over Z, and H# ∈ H3(E#, Z), the “T-

dual H-flux” on E#. T-dualizing a circle at a

time works and the picture is exactly as in the

case of circle bundles.



(2) If 0 6= π∗(H) ∈ H1(M, H2(Tn, Z)) = [M, Tk], then

the T-dual is again defined as the C∗-algebra

CT(E, H) ⋊ Rn, which is again a continuous

field of noncommutative tori, whose fiber at

the point x ∈ M is the noncommutative torus

Af(x) of rank n where f : M → Tk is a contin-

uous map corresponding to π∗(H). Geomet-

rically, the T-dual can be viewed as a rank n

bundle of (Kronecker) foliated tori over M .

X

Z
z

p

A
f(z)



We also have a commutative diagram

K•(E, H)
T!−→
∼=

K•+n(CT(E, H) ⋊ Rn)

ChH

y

yCh

H•(E, H)
T∗−→
∼=

HP•+n(CT(E, H)∞ ⋊ Rn)

where the horizontal arrows are isomorphisms,

ChH is the twisted Chern character and Ch is

the Connes-Chern character.

Observations so far: A striking fact is that

starting off with a type II string theory on a

(compactified) classical spacetime which is

a non-trivial torus bundle with topologically

nontrivial background H-flux, then the T-dual

is a type II string theory on a noncommutative

spacetime, which is a continuous field of non-

commutative tori. The action etc has been

studied in special situations cf. D. Lowe, H.

Nastase, S. Ramgoolam, [hep-th/030317]



Nonassociative tori

Definition in 3D. Let U1, U2, U3 be generators

satisfying the relations

e2πiφU1(U2U3) = (U1U2)U3,

where φ ∈ R is a tricharacter and e2πiφ ∈

H3(Z3, U(1)) is the associator. The algebra

generated by U1, U2, U3 is what we call the 3D

nonassociative torus. Jackiw’s nonassocia-

tive anomaly in QFT/gauge theory is related.

The right context for studying it and its hy-

brids is the theory of generalized C∗-algebras

in the monoidal/tensor category of Ĝ-modules

(where G = Rn) with non-trivial associator

given by a tricharacter φ of G, which is what

is developed in [BHM2] and in some work in

progress.



Theorem (rank n case, part 2) [BHM2] Let

Tn i
−→ E

p

y
M

be a principal torus bundle over M , [H] ∈

H3(E, Z). Now suppose that the restriction,

i∗([H]) 6= 0 ∈ H3(Tn, Z).

Then the Rn action on E lifts to a twisted Rn

action on CT(E, H) and the T-dual of (E, H)

is defined to be the twisted crossed product

CT(E, H)⋊twistR
n which is a nonassociative alge-

bra, or what we call a generalized C∗-algebra.

It is in general is a continuous field of hybrids

of noncommutative tori & nonassociative tori.



Justification of the T-dual

First of all, when i∗([H]) = 0 ∈ H3(Tn, Z),

then the twisted crossed product is the stan-

dard crossed product and we are reduced to

the earlier definition of the T-dual. Then we

prove in [BHM2] the following untwisting trick:

(CT(E, H) ⋊twist Rn) ⊗K ∼=
(
CT(E, H) ⊗Kφ

)
⋊ Rn.

Kφ is a nonassociative deformation of the al-

gebra of compact operators K on L2(Rn), such

that on the smoothing operators it looks like

T1 ⋆T2(x, z) =

∫

y∈Rn
φ(x, y, z)T1(x, y)T2(y, z)dy.

We also prove a new Takai duality theorem

in this context, which says in particular that,

(
CT(E, H) ⊗Kφ

)
⋊ Rn ⋊ R̂n ∼= CT(E, H) ⊗Kφ.

This enables us to conclude that T-duality ap-

plied twice is the identity.



Finally, in some work in progress, we first de-

velop the K-theory of our nonassociative gen-

eralized C∗-algebras, and use the Takai du-

ality theorem proved in [BHM2] to prove a

new Connes-Thom isomorphism theorem

in this nonassociative context of generalized

C∗-algebras, thereby fully justifying the twisted

crossed product algebra as the T-dual of a

general principal torus bundle with H-flux.



Summary of 4 important special cases:

1) The T-dual of the torus T3 with no back-

ground flux is the dual torus T̂3. Similar if

the background flux is topologically trivial.

2) (T3, kvol) considered as a trivial circle bun-

dle over T2. The T-dual of (T3, kvol) is the

Heisenberg nilmanifold (HR/HZ,0), where HR

is the 3D Heisenberg group, HZ a lattice in it.

3) (T3, kvol) considered as a trivial T2-bundle

over T. The T-dual of (T3, kvol) is a continu-

ous field over T of stabilized noncommutative

tori, C∗(HZ) ⊗K, since
∫
T2 kvol 6= 0.

4) (T3, kvol) considered as a trivial T3-bundle

over a point. The T-dual of (T3, kvol) is a

nonassociative torus, Aφ, where φ is the trichar-

acter associated to H = kvol, where
∫
T3 kvol 6=

0.



Other results covered in our papers

Because of time constraints, the following rel-

evant topics could not be covered.

1) Just as principal torus bundles are classified

by their 1st Chern class, the fields of noncom-

mutative tori (and nonassociative tori) con-

jecturally ([BHM3] are classified by ‘twisted’

cohomology classes (cf. [BHM3]). In the lat-

est paper with J. Rosenberg [MR2], we have

proved this for rank 2 torus bundles, but the

general case is an open problem.

2) There is a classifying space for T-dual pairs,

whose automorphism group is the T-duality

group O(n, n, Z). This acts to give a whole

orbit of T-dual pairs and isomorphisms in K-

theory (with J. Rosenberg [MR2]). This work

generalizes some work of Bunke-Schick.


