The Complete Phase Diagram of Minimal Universal Extra Dimensions

Jonathan Feng UC Irvine

work in progress with Jose Ruiz Cembranos and Louis Strigari

KITP, Santa Barbara 5 December 2006

Motivations

- Naturalness
 - String landscape, inflation
 - Little hierarchy is 5% fine-tuning too much?
 - Good time to diversify
- Cosmology
 - Incontrovertible progress
 - Dark matter is the best evidence for new physics (beyond Higgs) at the weak scale. Theoretically attractive, implications for central problems
 - Room for ideas, even after 100 s
- LHC
 - Exotic signatures: are signals being lost in triggers, analyses?
 - Spectacular signals may be found in first 2 years, should be explored now

Preview

- Consider minimal Universal Extra Dimensions, a simple, 1 parameter extension of the standard model
 - Unnatural, but dark matter \rightarrow weak scale
 - Diverse cosmological connections
 - Many exotic signatures for the LHC

Universal Extra Dimensions

- Following Kaluza and Klein, consider 1 extra dimension, with 5th dimension compactified on circle S¹ of radius R
- Put all fields in the extra dimension, so each known particle has a KK partner with mass ~ nR⁻¹ at level n
- Problem: many extra 4D fields; most are massive, but some are massless. E.g., 5D gauge field:

$$V_{\mu}(x^{\mu}, y) = \underbrace{V_{\mu}(x^{\mu})}_{\text{good}} + \sum_{n} V_{\mu}^{n}(x^{\mu})\cos(ny/R) + \sum_{m} V_{\mu}^{m}(x^{\mu})\sin(my/R)$$
$$V_{5}(x^{\mu}, y) = \underbrace{V_{5}(x^{\mu})}_{\text{bad}} + \sum_{n} V_{5}^{n}(x^{\mu})\cos(ny/R) + \sum_{m} V_{5}^{m}(x^{\mu})\sin(my/R)$$

• Solution: compactify on S^1/Z_2 interval (orbifold); require

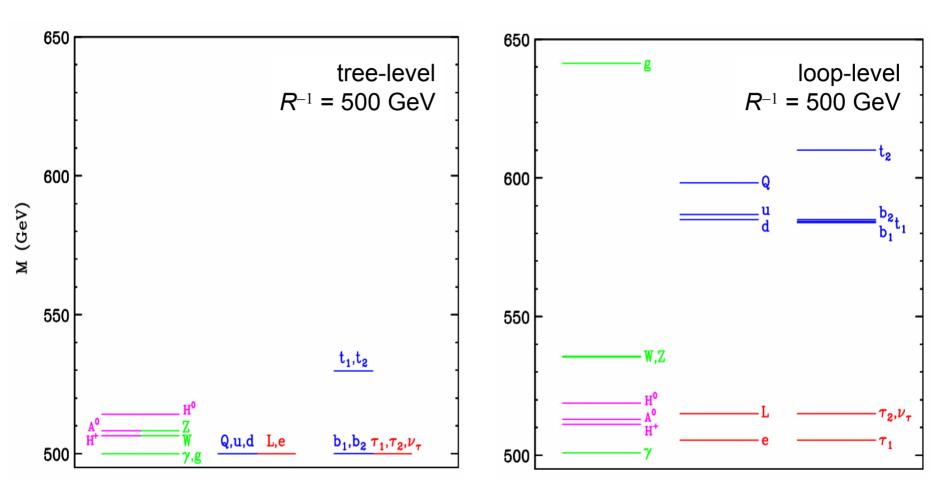
y
ightarrow -y : $V_{\mu}
ightarrow V_{\mu}
ightarrow V_{5}
ightarrow -V_{5}$

• Unwanted scalar is projected out:

$$V_{\mu}(x^{\mu}, y) = \underbrace{V_{\mu}(x^{\mu})}_{\text{good}} + \sum_{n} V_{\mu}^{n}(x^{\mu})\cos(ny/R) + \underbrace{\sum_{m} V_{\mu}^{m}(x^{\mu})\sin(my/R)}_{m}$$
$$V_{5}(x^{\mu}, y) = \underbrace{V_{5}(x^{\mu})}_{\text{bad}} + \sum_{n} \frac{V_{5}^{n}(x^{\mu})\cos(ny/R)}_{5} + \sum_{m} V_{5}^{m}(x^{\mu})\sin(my/R)$$

- Similar projection on fermions \rightarrow 4D chiral theory at n = 0 level
- n=0 is standard model [+ gravi-scalar]
- Very simple, assuming UV completion at $\Lambda >> R^{-1}$

Appelquist, Cheng, Dobrescu (2001)


KK-Parity

- An immediate consequence: conserved KK-parity $(-1)^{KK}$ Interactions require an even number of odd KK modes
 - 1st KK modes must be pair-produced at colliders
 - Weak bounds: R^{-1} > 250 GeV
 - LKP (lightest KK particle) is stable dark matter

Minimal UED

- In fact, can place mass terms on the orbifold boundaries
- These would typically break KK-parity (eliminate dark matter), or introduce flavor- and CP-violating problems
- Here assume these are absent this defines *minimal* UED
- mUED is an extremely simple, viable extension of the SM: 1 new parameter, R

Minimal UED KK Spectrum

Cheng, Matchev, Schmaltz (2002)

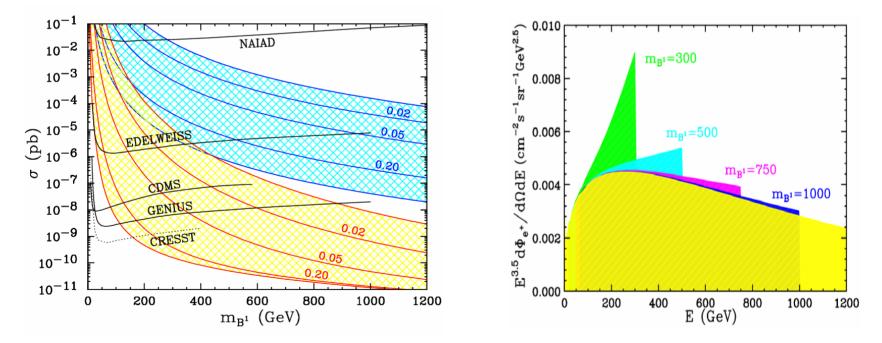
mUED Common Lore

- mUED looks like SUSY
 - n=2 and higher levels typically out of reach
 - *n*=1 Higgses → *A*, H^0 , H^{\pm}
 - Colored particles are heavier than uncolored ones
 - LKP is stable $B^1 \rightarrow$ missing energy at LHC
- Spectrum is more degenerate, but basically similar to SUSY

"Bosonic supersymmetry"

Cheng, Matchev, Schmaltz (2002)

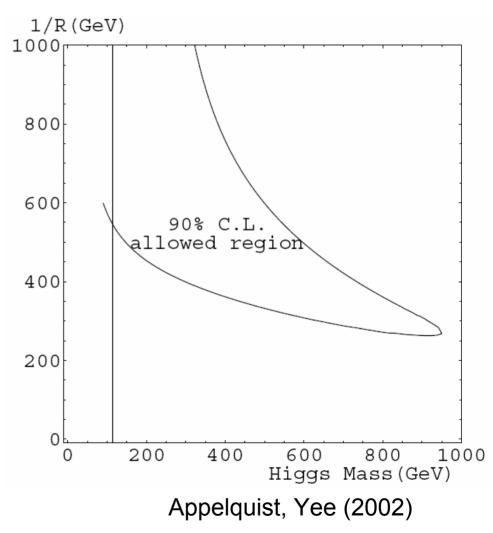
B¹ Dark Matter


0.6 • Relic density: **Overclosure** Limit 0.5 Annihilation through 0.4 B^1 Ωh^2 0.3 $B^1 \longrightarrow$ 0.2 $\Omega h^2 = 0.16 \pm 0.4$ 0.1 Similar to neutralinos, but higher masses 0 0.2 0.4 0.6 1.8 0.8 1.21.6 2 0 1.4 preferred m_{KK} (TeV) Servant, Tait (2002)

B1 Dark Matter Detection

Cheng, Feng, Matchev (2002)

• Direct Detection $e.g., B^1q \rightarrow q^1 \rightarrow B^1q$



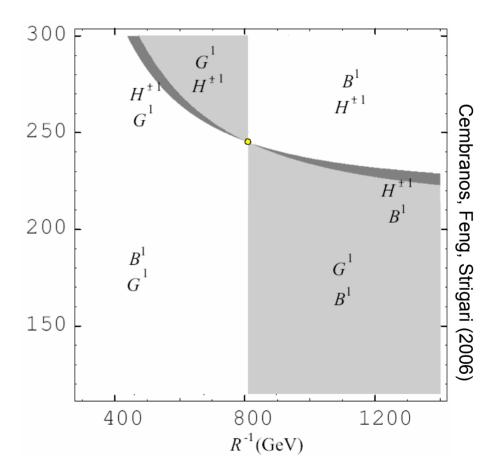
Some interesting differences relative to neutralinos, but basically WIMP-like

But Wait, There's More

- *R* is the only new parameter, but it is not the only free parameter: the Higgs boson mass is unknown
- These studies set m_h=120 GeV, but it can be larger
- H⁰, A, H[±] masses depend on m_h

The KK Graviton

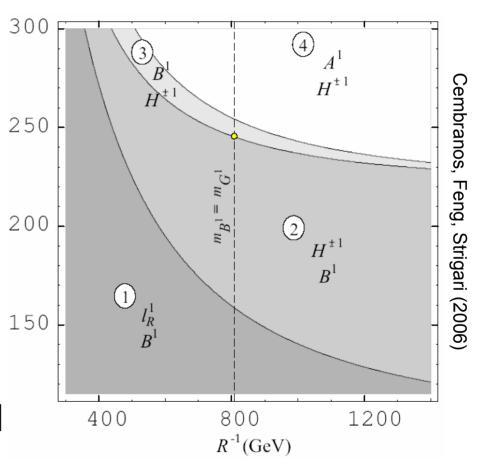
- The KK graviton G¹ exists with mass R⁻¹ and can be lighter than the B¹
- (B^1, W^1) mass matrix:


$$\begin{pmatrix} R^{-2} + \frac{1}{4}g'^2v^2 + \delta m_{B^1}^2 & \frac{1}{4}g'gv^2 \\ \frac{1}{4}g'gv^2 & R^{-2} + \frac{1}{4}g^2v^2 + \delta m_{W^1}^2 \end{pmatrix}$$

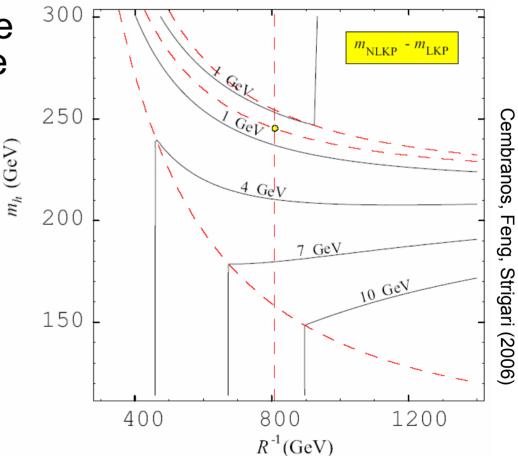
$$\delta m_{B^1}^2 = \left(-\frac{39}{2} \frac{g'^2 \zeta(3)}{16\pi^4} - \frac{g'^2}{6} \frac{\ln(\Lambda^2 R^2)}{16\pi^2} \right) R^{-2}$$

$$\delta m_{W^1}^2 = \left(-\frac{5}{2} \frac{g^2 \zeta(3)}{16\pi^4} + \frac{15g^2}{2} \frac{\ln(\Lambda^2 R^2)}{16\pi^2} \right) R^{-2}$$

Complete Phase Diagram


- Including the graviton, there are 6 (NLKP, LKP) phases
- The triple point with *G¹, B¹, H*[±]

 all degenerate lies in the heart of parameter space


Collider Phase Diagram

- To make progress, first exclude G¹
 - Decouples cosmology
 - Reduces complexity
- Then there are 4 (NLKP, LKP) phases
- Note: m_h=120 GeV lies entirely in Phase 1

Degeneracies

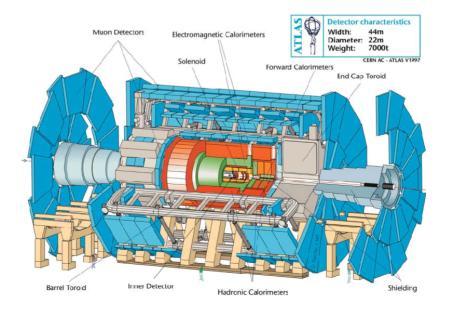
- The lightest states are extremely degenerate
- One might expect degeneracies of m_w² R⁻¹ ~ 10 GeV
- Modest accidental cancelations tighten the degeneracies

NLKP Decays

300

10 µm

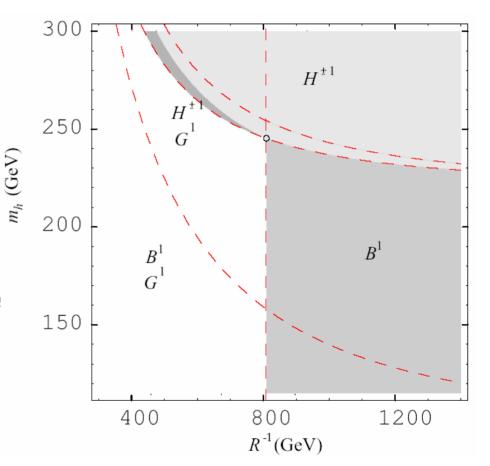
 This leads to long decay lengths: microns to 10 m


$$\begin{array}{c} \underset{\Gamma}{\mathsf{microns to 10 m}}{\mathsf{microns to 10 m}} & 250 \\ \overbrace{\Theta}{\mathsf{f}}^{\sharp} & 200 \\ \overbrace{\Theta}{\mathsf{f}}^{\sharp} & 200 \\ \overbrace{(1 - y)(1 + y + 73y^2 + 9y^3) + 12y^2(3 + 4y) \ln y]}{(1 - y)(1 + y + 73y^2 + 9y^3) + 12y^2(3 + 4y) \ln y]} \\ \approx \frac{N_C \alpha^2}{80\pi \sin^2 \theta_W \cos^2 \theta_W} \frac{(\Delta m)^5}{m_W^2 M^2} & 150 \\ \simeq 1.96 \times 10^{-16} \text{ GeV } N_C \left[\frac{\Delta m}{\text{GeV}}\right]^5 \left[\frac{\text{TeV}}{M}\right]^2 \\ \simeq \left[1.01 \text{ m} \frac{1}{N_C} \left[\frac{\text{GeV}}{\Delta m}\right]^5 \left[\frac{M}{\text{TeV}}\right]^2\right]^{-1}, & 400 & 800 & 1200 \\ R^{-1}(\text{GeV}) \end{array}$$

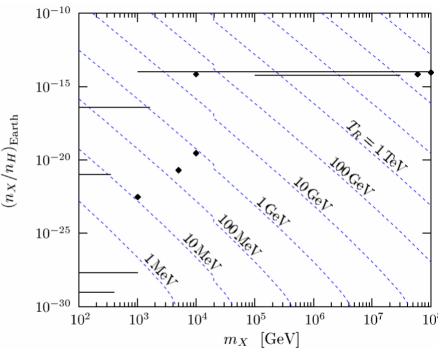
 $c\tau$

LHC Signals

- Kinks: $H^{\pm} \rightarrow B^{1} e v$
- Displaced vertices: $H^{\pm} \rightarrow B^{1} u d$
- Vanishing tracks: $H^{\pm} \rightarrow B^{1}$ (e) v
- Highly-ionizing tracks : H[±]
- Time-of-flight anomalies: H[±]
- Appearing tracks: $A \rightarrow H^{\pm} e v$


- Appearing tracks: $A \rightarrow H^{\pm}$ (e[±]) v
- Impact parameter: $A \rightarrow H^{\pm}$ (e[±]) v
 - ...
- Decays in vertex detectors, trackers, calorimeters, muon chambers, outside detector are all possible.

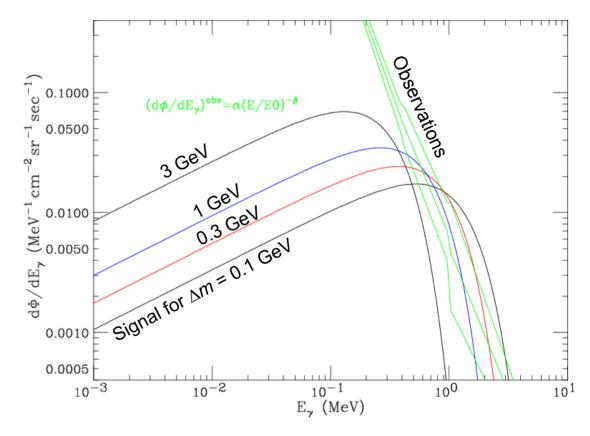
Cosmological Phase Diagram


- Can cosmological constraints restore order?
- Include G¹ cosmologically relevant when it's the LKP

 $[H^{\pm} \rightarrow G^{1} \text{ takes } 10^{26} \text{ s}]$

Charged Stable Relics

- Charged stable relics create anomalously heavy isotopes
- Severe bounds from sea water searches
- But inflation can dilute this away
- What is the maximal reheat temperature?



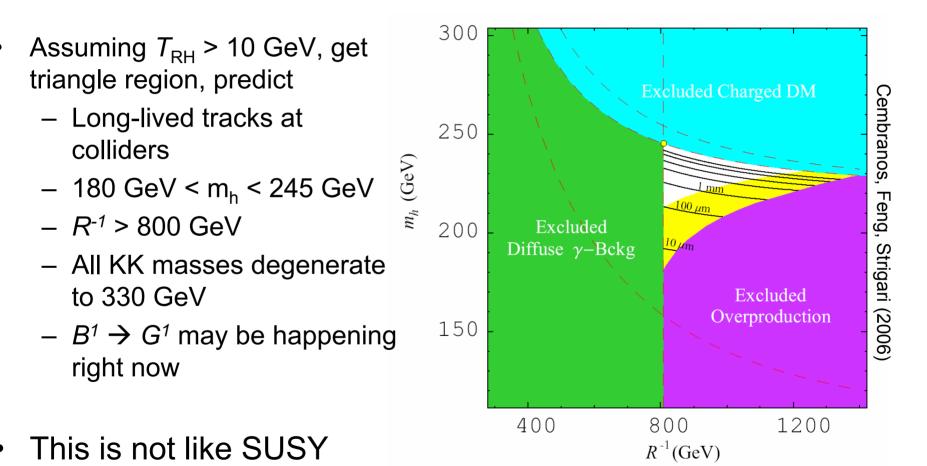
Kudo, Yamaguchi (2001)

Masses < TeV are excluded by T_{RH} > 1 MeV, but masses > TeV are allowed

Diffuse Photon Flux

- Late $B^1 \rightarrow \gamma G^1$ contributes to diffuse photon flux
- Small ∆m implies smaller initial energy, but also less red shifting; latter effect dominates
- Excludes lifetimes < 10 Gyr, but again evaded for low T_{RH}

Feng, Rajaraman, Takayama (2003)


Overproduction of B¹ WIMPs

- The original calculation of thermal relic densities
 has now been greatly refined
 - Radiative contributions to masses included
 - n=2 resonances included
 - All co-annihilations included

Kakizaki, Matsumoto, Sato, Senami (2005); Burnell, Kribs (2005) Kong, Matchev (2005); Kakizaki, Matsumoto, Senami (2006)

• The requirement that B^1 's not overclose the universe also restricts the parameter space (but is again avoided for low $T_{\rm RH}$)

Complete Cosmologically Constrained Phase Diagram

CONCLUSIONS

- mUED is a simple, 1 parameter extension of the SM
- Nevertheless it has extremely rich implications for particle physics and cosmology
- "Exotic" signatures may produce spectacluar signals *soon* if we are prepared; much work to be done