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Motivation
Applied string theory

*To understand heavy quark physics at RHIC
string theory —diffusion constant—RHIC observables

*To provide a theoretical laboratory for studying
strongly coupled non-abelian plasmas
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Outline

 What is there to understand about heavy quarks at
RHIC (and the LHC)?

 What can string theory say about RHIC?
-- a heavy quark diffusion constant

 What can we learn about strongly interacting non-
abelian plasmas?

-- bounds on friction coefficients



The Relativistic Heavy lon Collider
(RHIC)

* Circular accelerator that collides Au
(Pb and other) nuclei at about 200 GeV
per nucleon

o 4 detectors (STAR, PHENIX,
PHOBOS, BRAHMS)

* Believed to produce a quark-gluon
plasma (QGP) at T=250 MeV and

o~ 0.5




Heavy Quarks at RHIC

« Small quantities of charm and bottom
guarks are produced
me ~ 1.4 GeV m./T ~ 6
mey n~ 4.7 GeV mb/T ~ 20

 Quarks are detectable as D and B
mesons, charmonium, Jhyp, ...



Some Observables at RHIC

 Elliptic flow -- azimuthal anisotropy of
the produced hadrons with respect to
the reaction plane

e Jet quenching -- reabsorption of a hard
parton as it travels through the fire ball



Jet Quenching

Suppression of back-
to-back jets

RAA(P7) SUppPression
factor -- ratio of the
meson spectrum in
Au-Au collisions to
P-p collisions




Elliptic Flow

f qbpl dp1 d(;, COS(2¢)

V-
2(pT) ] dqspl dpl g

A large elliptic flow supports the
claim that QGP behaves like a nearly

ideal liquid (small viscosity) with a
small mean free path



Heavy Quark Observables

 Measure the elliptic flow with respect to
the hadrons containing a bottom or
charm quark

* Look at jets formed from charm or
bottom quarks

 These observables are sensitive to the
rate at which heavy quarks lose energy
to the QGP.
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A perturbative calculation?

 The diffusion constant D ~ (3--12) /2 n T needs to
be small to agree with data.

» The perturbative result is large.

_ om 7 1 @\, Ny (AT 1 @)
D= G| (s 277 Gy ) * s (Bimy * 2 i) |

my~ gT is the Debye mass, M the quark mass, d, = N.* -1
Tobevalid: 9<1, M/T>1, mp/T K1
Butat RHIC: mp/T~1, as~1

Plugging in the numbers Moore and Teaney estimated
D~6/2nxT



Why should string theory be useful?

String theory suggests searching for a duality
to understand strong coupling.

The AdS/CFT correspondence:
N=4 SU(N) SYM ~ type IIB string theory in
AdS; x S°

Adding a black hole to AdS; Is dual to raising
the temperature, u,, = T

Adding a D7-brane that wraps AdS; down to
some minimal radius u,, Is dual to adding a
massive N=2 hypermultiplet



The geometric dual picture

u =00
D7
\ ] u=u,
\ _ __-__//
u=u,

Classical strings model single quarks and mesons.

The mass of the quark is to first approximation
M~ u_-u;,



What does our AdS/CFT model say?

two gedanken experiments

dp

EZ—#p*‘f

« Hit the quark and watch it slow down
p(t) = p(0)e™"

e Drag the quark at constant velocity and
figure out how much force Is needed.

Mp= f/v



Some technical detalls

e QOur line element for the black hole iIs
' 2 '3 '3 3 '3 4
ds?® = L*? (dl — hdt® + uzd:i'"z) where h = u® (1 — (%) )
h U

and where L is the radius of curvature
* The classical string is governed by the action

S =-T, / dodr/—det ggp

where g, IS the induced metric on the
worldsheet and T, Is the string tension



“Dragging the String” e
* There exists an analytic solution
corresponding to a single quark
moving at constant velocity In
response to an electric field.
e This solution has a momentum current
dp _ T 2 Y
dt 2 AT V1 — v2

e Assuming a relativistic dispersion relation,
one finds

_ TVAT?
= 2 Mkin




More Results

e Assuming the quark obeys a Langevin type
equation, we can extract a jet guenching
parameter (may not be valid relativistically)

d

d = 2 (L)) = 4TuMign = 2mV/AT®

 From u, we can also extract a diffusion

constant
T 2

D = =
,U’Mkin ’/T\/S\T




The perturbative result

e Chesler and Vuorinen (hep-ph/0607148)
calculated the D in the limit A— 0 for SYM

127 oT 13 1 ¢'2)]
D= In — + == — ~In2
i’ T |Bmp T12 7 E T 32T g
1/(DT)
? from hep-

‘ ph/ 0607148
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Comparing with Experiment

 For SYM, a, ~ 0.5 corresponds to A ~ 20.

 One simplistic idea is to approximate the
strongly coupled D for QCD as

DsyM, a~20
Dsym a—0

Dqep.ac~0.5 ~ DQeD,a.—0



A simple comparison

We find the ratio

Dqcp,a,—0 _ 6 o4
Dsyma—o 1+ Ng/2N,
Moreover 1
SYM,A~20 7T
- 1
From which we conclude p,.p, ., o5~ ma

3 to 13

The data suggests -~
g9 Dqcep,as~0.5 =T

which is in reasonable agreement...



“Hitting the String”

and universality

Take a straight string that stretches from the
D7-brane to the horizon and consider
linearized fluctuations.

One can extract from this linearized analysis
a non-relativistic dispersion relation
2

p
E = Mrest T 2Mkin

One can extract u in the large mass limit:

p~1/M

Or u in the small mass limit: p=2mT



Universality

We can repeat the above three calculations
with a metric of the form

ds? = gtt(U)dt2 + Guu (u)du2 + gm(u)dz-jdxida:j
and they remain true!

assumptions:
1) metric is asymptotically AdS, v — o

2) regular power series expansion near the
horizon, © ~ Un

3) g..(un) >0 entropy condition



The friction coefficient as a function of u_,
(black hole in AdS)

Y
2 red line: 4d result
green line: 2d result
1.5 blue line: large mass approximation
v =p/un 1.
0.5




Issues with the friction coefficient bound

e Assumed we can model the string with a 5D
Nambu-Goto action, c.f. Caceres and Guijosa

* It is possible to set (g,,)'(u;,) < 0 In some
backgrounds, N=2* of Buchel and Liu,
Antonyan

 Light quark limit of a heavy quark system
--can make A large, phase transition

--ongoing project with Jensen and Karch



Concluding Remarks

» Calculation of a diffusion constant for a strongly

coupled theory.

- Conjectured friction coefficient bound.
- There are few techniques available for computing

time dependent quantities in the QGP: perturbation
theory, string theory.

Perturbation theory does not appear to be valid in
the regime relevant for RHIC.

- String theory is valid in the right regime but

describes the wrong theory.

» Asking the right questions! It took some time to think

to look at n/s.



“Hitting the String” again

Unsatisfied with the linear, small velocity analysis, we
performed a full numeric simulation of the slowing string.

« Create a quark-antiguark pair flying apart
from each other at high energy.

* This configuration corresponds to an
expanding semi-circular string.

e Use the Polyakov action and a PDE solver to
calculate the motion of the string.

 Measure how quickly the quarks (endpoints
of the string) slow down.



guark-antiquark pair slowing
down
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Fitting to find w

* We fit the motion of the x
endpoint assuming a 0.8 /_/___‘_,...-—-—
relativistic dispersion 0.6 ya
relation. 04 [/
/
) ) 0.2 /
E = Mgt — Myin + \/:DZ + lein /

 In this particular example, the result is u/xT = 1.40.
All numeric values for u agree well with the linear

analysis just presented.

 The solid black line is the endpoint while the
dashed green line is the best fit.

« Small deviation at early times from the quark
potential.



M/Am(T)
LT

The Kinetic and Rest Mass as a
Function of the Lagrangian Mass
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But we want QCD, not SYM!
Maybe the two are not so different.

Hot non-abelian plasma with Debye screening and
finite spatial correlation lengths.

1) Pressure

For SYM, Gubser, Klebanov, and Peet (hep-
th/9602135) calculated

Psy pr(A — 00)
Psy pr(A — 0)

3
4

While for QCD, the ratio of the lattice and
perturbative results are

PQCD (T ~ 2TC) -
= 0.8
PQCD (Ofs — 0)




QCD Pressure vs. Temperature
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2) Viscosity to entropy ratio n/s (Kovtun, Son,
Starinets, hep-th/0405231)

This ratio Is 1/4w In the A—o limit for all finite T

field theories with gravity duals.
A viscosity bound?

This value Is consistent with measurements
of v,(p,) at RHIC.

Lesson: We need to be careful about the
guestions we ask.
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