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Particle phenomenology in Type II string theories

Realistic gauge theories and matter interactions from Type IIB intersecting 7-branes?

example: SU(5) Georgi-Glashow GUT and its susy and higher-dim. extensions

• Standard model particles fit nicely into SU(5) representations:

24 → (8,1)0Y + (1,3)0Y + (1,1)0Y + (3,2)5Y + (3,2)−5Y

⇒ gauge fields

10 → (3,2)1Y + (3,1)−4Y + (1,1)6Y

5 → (3,1)2Y + (1,2)−3Y

1N → (1, 1)0Y

⇒ quarks, leptons and neutrinos

5H → (3,1)−2Y + (1,2)3Y 5H → (3,1)2Y + (1,2)−3Y

⇒ Higgs doublet

• gauge coupling unification is natural at the GUT scale
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GUT models and Compactification

• Recently, there has been much progress in realizing GUT models in

local F-theory constructions on intersect. 7-branes Beasley,Heckman,Vafa; Donagi,Wijnholt

Heckman,Marsano,Saulina,Schäfer-Nameki,Vafa; Marsano,Saulina,Schäfer-Nameki

⇒ F-theory treats Type IIB string backgrounds with a varying dilaton

⇒ strong coupling enhancements of gauge groups to exceptional groups

⇒ various new insights for models for which gravity can be decoupled

(for example new mechanism to break GUT group)

However:

New GUT breaking in local F-theory models requires knowledge about global geometry.

Cannot address global constraints. Restrictive?

Cannot address moduli stabilization in local set-ups. Value of couplings?

• Construction of compact scenarios with all the desired properties is more challenging:

⇒ general F-theory background: construction of viable compact Calabi-Yau fourfolds

⇒ new consistency conditions (such as tadpole cancellation)
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In this talk:

• work in the weak coupling regime but compact set-ups

GUTs in Type IIB Calabi-Yau orientifolds with intersecting D7 branes

1. Building Models in Type IIB orientifolds

– D7 branes with gauge flux

– Consistency conditions

2. SU(5) GUTs and their breaking

– Georgi-Glashow SU(5) GUT

– Hypercharge flux

3. Concrete compact GUT models

– GUTs on del Pezzo transitions of the Quintic P1,1,1,1,1[5]

– GUTs on del Pezzo transitions of P1,1,1,6,9[18]



6

�
�

�
Building Models in Type IIB orientifolds



7

ê Calabi-Yau Orientifolds: Calabi-Yau space Y + orientifold involution

• orientifolds with O3 / O7 planes: Ωp (−1)FL σ

(Ωp world-sheet parity, σ is holomorphic isometry)

• orientifold involution σ: splits Hp(Y ) = Hp
+(Y )⊕Hp

−(Y )

⇒ bulk spectrum (Kähler deformation sector)

e−B ∧ (e−φRe(eiJ) + i(C0 + C2 + C4)) = τ 1+ +Giω−i + TI ω̃
I
+

R-R axions H0
+ H2

− H4
+

⇒ bulk Kähler potential (large volume): Giddings,Kachru,Polchinski; TG,Louis

K(τ + τ̄ , G+ Ḡ, T + T̄ ) = −2 log
[
e−2φ

∫
Y
J ∧ J ∧ J

]
⇒ K is independent of R-R axions

• axions might become gauged in the presence of D7-branes:

D-term: D = XTI∂TI
K +XGi

∂GiK
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ê D7 branes with gauge bundles: Calabi-Yau manifold Y + D-branes

• stack of Na space-time filling D7 branes wrapped on susy four-cycle ι : Da ↪→ Y

⇒ U(Na) gauge group, preserve N = 1 susy on world-volume

• D7-branes can carry a gauge flux bundle Fa
⇒ restrict to Fa of rank one: line bundles

Fa = 1Na(F (0)
a + ι∗B) +

∑
iTiF

(i)
a (tr(Ti) = 0)

Da

Fa

line bundles are uniquely determined by their first Chern class:

c1(L(0)
a ) =

1
2π

(F (0)
a + ι∗B) ∈ H2(Da) c1(L(i)

a ) =
1

2π
F (i)
a ∈ H2(Da)

− L
(0)
a induces split U(Na)→ SU(Na)× U(1)a

− L
(i)
a can break SU(Na) further: split of U(1) factors
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ê D- and F-terms form gauge bundles on D7 branes:

• gauge-flux Fa might induce a gauging of bulk scalars Gi and TI : Jockers,Louis

D-term ∝
∫
Da

ι∗J ∧ (F (0)
a + ι∗B) (J is Kähler form on Y )

However: H2(Da) can have elements which are non-trivial or trivial in H2(Y )

⇒ non-trivial parts of La:

⇒ massive U(1) via Green-Schwarz mechanism

⇒ trivial parts of La: do not couple to bulk scalars (at large volume)

⇒ massless U(1)

• D7-brane superpotential Witten

W =
∫
C5
F (0)
a ∧ Ω Da ⊂ ∂C5

- obtained e.g. from Witten’s holomorphic Chern-Simons action

- dimensional reduction keeping non-dynamical three-forms TG,Ha,Klemm,Klevers
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ê Orientifold planes and D-branes:

• orientifold involution σ maps D-brane to image D-brane:

line bundles F ′a = −σ∗Fa

U(N) U(N)'

N  D-branes N  image D-branes

Orientifold plane

(D  , L  )a (D'  , L'  )aa a
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ê Tadpole cancellation: vanishing of all induced tadpoles in the compact Y/σ

• D7-tadpole:
∑
a

Na ([Da] + [D′a]) = 8 [DO7]

• D5-tadpole: induced D5-charge due to non-trivial line-bundle on D7-brane

∀ω ∈ H2
−(Y ) :

∑
a

Na

∫
Y
ω ∧

(
[Da] ∧ tr(Fa) + [D′a] ∧ tr(F ′a)

)
= 0

• D3-tadpole:

χ(CY4)
12

= (ND3 +ND3′) +Nflux −
∑
a

Na

4π2

(∫
Da

tr(F 2
a ) +

∫
D′

a

tr(F ′ 2a )
)

χ(CY4): - O3-charge

- gravitational D3-charges ∝ χ(D) of D7 and O7
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Remarks on Tadpole cancelation:

• also c1(La) on trivial cycles in Y will contribute to D3 tadpole

• discrete B-field flux in H2
+(Y ) contributes tadpole: c1(L)→ c1(L) +B+

Additional constraints:

• Freed-Witten anomaly: quantization condition on Fa = Fa − 1Na · ι∗B

1
2π

[Fa]ij + δij
1
2
c1(KDa) ∈ H2(Da,Z) ⇒ L(i)

a can be fract. quantized

• K-theory constraints (generalized charge quantization)

Supersymmetry constraints: Becker2,Strominger; Marino,Minasian,Moore,Strominger

D-term constraints restricts values of Kähler form and B-field

D-terms ∝
∫
Da

ι∗J ∧ (F (0) + ι∗B2) = 0

⇒ needs to be satisfied inside the Kähler cone
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ê Spectrum from intersecting D7-brane

• adjoint matter from D7 branes:

h2,0(Da) deformations of the brane

h1,0(Da) Wilson line moduli

⇒ both absent for special four-cycles such as del Pezzo surfaces

• chiral matter from intersections (full matter content using Ext-groups)

Representation Multiplicity

(Na, Nb) Iab bifundamental reps.

(Na, Nb) Ia′b

Aa
1
2(Ia′a + 2IO7a) anti-symmetric reps.

Sa
1
2(Ia′a − 2IO7a) symmetric reps.

example: Iab = −
∫
X

[Da] ∧ [Db] ∧ ( c1(La)− c1(Lb) )
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SU(5) GUTs and their breaking
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ê Schematics of a GUT model from D7 branes (1):

• Start with 12 D7 branes on top of O7 plane

SO(12) gauge group
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ê Schematics of a GUT model from D7 branes (2):

• Move 5 D7 branes and their images off the O7 plane

U(5) U(5)' SO(2) 

GUT brane
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ê Schematics of a GUT model from D7 branes (3):

• Move 1 D7 branes and its image off the O7 plane

U(5) U(5)' U(1) 

GUT brane
U(1)' 

U(1) brane

SU(5) 

FGUT

U(1) 

• adjoint of SO(12) splits under SU(5)× U(1)a × U(1)b and yields the needed GUT

representations:

66 = 24(0,0) + 1(0,0) + 10(2,0) + 10(−2,0) + 5H
(1,−1) + 5H

(−1,1) + 5(1,1) + 5(−1,−1)
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ê Schematics of a GUT model from D7 branes (4):

SU(5) GUT brane

U(1) brane

(D'   , L'  )G G(D    , L   )G G

(D      , L       )U(1) U(1) (D'     , L'      )U(1) U(1)

10 3 DG ∩D′G
5 3 DG ∩D′U(1)

1N 3 DU(1) ∩D′U(1)

5H + 5H 1 + 1 DG ∩DU(1)
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ê Hypercharge and GUT breaking:

U(5) → SU(5)× U(1) → SU(3)× SU(2)× U(1)Y × U(1)

• F-theory with GUT 7-brane: Beasley,Heckman,Vafa; Donagi,Wijnholt

use LY with c1(LY ) ∈ H2(DG) trivial in H2(Y ) to break GUT to MSSM

⇒ no scalar to render the U(1)Y massive (no direct het. analog ?)

hypercharge flux for MSSM: Buican,Malyshev,Morrison,Verlinde,Wijnholt

• Freed-Witten anomaly: LY and L have mixed embedding for non-spin divisors

(relevant for branes on del Pezzo surfaces)

FGUT = 1Na

(
F 4D + c1(L) +

2
5
c1(LY ) +

1
2
c1(KDa)

)
+ TY

(
F 4D
Y +

1
5
c1(LY )

)
with TY = diag(−2,−2,−2, 3, 3) c1(L) ∈ 1

2Z c1(LY ) ∈ Z

⇒ factor 1
5 ensures that H∗(Da, LY ) can be zero (no vector-like exotics)

Blumenhagen,Braun,TG,Weigand
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• Compact models: TG,Klemm; Blumenhagen,Braun,TG,Weigand

- need to check that not all elements of H2(DG) are non-trivial in Y (hypercharge),

but that additional U(1)’s become massive

- check by computing BPS numbers (GV invariants) for the curve classes

- simple compact examples are obtained by generic four-cycle transitions

ê non-perturbative generation of missing Yukawa couplings 10(2,0) 10(2,0) 5H
(1,−1)

Blumenhagen,Cvetic,Lüst,Richter,Weigand

– main obstacle to get fully realistic models at weak coupling

– in compact models one can check for the presence of 4-cycles which can support

the appropriate D3-brane instanton (IGUT,inst = 1, IU(1),inst = −1) in the Kähler

cone

⇒ non-pert. 10 10 5H scale ∝ exp(−Volinst/gs)
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ê D7 branes on del Pezzo surfaces

• Why del Pezzo surfaces?

- local F-theory constructions: Beasley,Heckman,Vafa; Donagi,Wijnholt

del Pezzos are shrinkable ⇒ decoupling of gravity

leaves 10 choices: P1 × P1, P2 blown up at n = 0, . . . , 8 points

- compact models: del Pezzo → h2,0 = h1,0 = 0 → no adjoint matter

also allow dP9 or even more blow-ups (not shrinkable)

• geometry of del Pezzo surfaces is intimately linked to representations of groups

- h1,1(dPn) = 1 + n anti-canonical class −K
n simple roots of A2 ⊕A1, D4, D5, E6, E7, E8

- geometry of lines on del Pezzos (genus 0, degree 1 curves)

6 intersecting linesdP   example:3

27 intersecting linesdP   example:6

56 intersecting linesdP   example:7
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ê Del Pezzo surfaces in a compact Calabi-Yau: del Pezzo transitions

del Pezzo singularity del Pezzo surfacefix complex structure

Simple Examples:

• E8 del Pezzo transition starting with P1,1,1,6,9[18] Morrison,Vafa

h(1,1) = 2, h(2,1) = 272 −→ h(1,1) = 3, h(2,1) = 243

• E6 del Pezzo transition starting with quintic hypersurface

h(1,1) = 1, h(2,1) = 101 −→ h(1,1) = 2, h(2,1) = 90

⇒ there exist whole chains of del Pezzo transitions realized in toric geometry
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ê
�� ��1 Transitions of the Quintic hypersurface

• begin with quintic in P4, i.e. P1,1,1,1,1[5], perform del Pezzo transitions torically:

New toric blow-up divisor

D   = dP6

Singular quintic

1

add point ν1 = (0, 0, 0, 1) to toric data of P4

χ(D1) =
∫
D1

c2(D1) = 9

K2 =
∫
D1

c2
1(D1) = 3

How many classes of dP6 are non-trivial in new CY?

– check that ∆h1,1
CY = 1 (only divisor class)

– check that ∆χCY = 24 = 2× CE6

– count curves in homology class of globally

non-trivial cycle (computation of BPS/GV invariants)

⇒ n = 27 - number of degree one curves in dP6

⇒ whole E6 lattice is trivial in new CY
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ê continue to perform del Pezzo transitions torically (add further divisors)

Transition (1): generate one generic dP6

Transition (2): generate two intersecting dP7 (intersecting in P1)

Transition (3): generate three intersecting dP8

Transition (4): generate four intersecting dP9

(1) (2) (3) (4)

• note that always ∆χ = 24 = 2× CE6 , indeed one checks that there are always E6

lattices trivial in the CY threefolds ⇒ can support hypercharge flux

• simple quintic involutions extend to transitioned spaces

GUT brane
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ê
�� ��2 Elliptic fibration over dPr - Transitions of P1,1,1,6,9[18]

Example: toric base dP3 → CY as hypersurface in toric space

 

       's    intersect each other on     
             genus 1 curve  

dP     base3

dP     9

dP     9

dP     9       's    intersect base on    
             genus 0 curve  

        over each of the 6 lines

⇒ there are actually 18 topological phases connected via flop transitions

⇒ one phase corresponds to 3 × dP8 - transition of P1,1,1,6,9[18]
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ê Involutions on del Pezzo base classified all involutions on all del Pezzo surface

Blumenhagen,Braun,TG,Weigand

example: dP3 - base

orientifold plane

ê base involution extends to elliptically fibered threefold: exchange of dP9 fibers

dP     base3

dP     9

9

        GUT brane on 

        image GUT brane on dP     

        orientifold plane
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property mechanism status

globally consistent tadpoles + K-theory X

D-term susy vanishing FI-terms inside Kähler cone X

gauge group SU(5) U(5)× U(1) stacks X

3 chiral generations choice of line bundles LGUT, LU(1) X

no vector-like matter localisation on P1 curves X

1 vector-like of Higgs choice of line bundles X

no adjoints rigid 4-cycles ← del Pezzo X

GUT breaking U(1)Y flux LY on trivial 2-cycles X

3-2 splitting Wilson lines on g = 1 curve X

3-2 split + no dim=5 p+-decay local. of Hu, Hd on disjoint comp. X

10105H Yukawa presence of appropriate D3-instanton X

Majorana neutrino masses presence of appropriate D3-instanton X

⇒ found models which satisfy all criteria,
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property mechanism status

globally consistent tadpoles + K-theory X

D-term susy vanishing FI-terms inside Kähler cone X

gauge group SU(5) U(5)× U(1) stacks X

3 chiral generations choice of line bundles LGUT, LU(1) X

no vector-like matter localisation on P1 curves X

1 vector-like of Higgs choice of line bundles X

no adjoints rigid 4-cycles ← del Pezzo X

GUT breaking U(1)Y flux LY on trivial 2-cycles X

3-2 splitting Wilson lines on g = 1 curve X

3-2 split + no dim=5 p+-decay local. of Hu, Hd on disjoint comp. X

10105H Yukawa presence of appropriate D3-instanton X

Majorana neutrino masses presence of appropriate D3-instanton X

⇒ found models which satisfy all criteria, but not yet simultaneously

⇒ generalization: models with more complicated del Pezzo configurations

and orientifold involutions
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Conclusions

• Discussed constructions of GUTs in Type IIB orientifold compactifications

– many of the local F-theory mechanisms can be realized (e.g. GUT breaking)

– new consistency conditions arise (e.g. tadpole cancellation, Kähler cone conditions)

– non-perturbative generations of the missing couplings needed

• Construction of promising class of compact CY orientifolds

– intersecting del Pezzo and other rigid surfaces

– involutions and O-planes can be determined explicitly

⇒ globally consistent D-brane configurations

– gauge bundles on D7 branes ⇒ spectrum, GUT breaking etc.

– appealing phenomenological feature (MSSM chiral spectrum, no exotics, etc.)

• Open problem: - lift to compact GUT models in F-theory

- combination with moduli stabilization, susy breaking


