GUTs in Type IIB Orientifold Compactifications

Thomas W. Grimm

Bethe Center for Theoretical Physics

based on

0811.2936 [hep-th] Nucl.Phys.B 0805.3361 [hep-th] JHEP

with R. Blumenhagen, V. Braun, T. Weigand with A. Klemm

KITP, March 2009

Introduction and Motivation

Particle phenomenology in Type II string theories

Realistic gauge theories and matter interactions from Type IIB intersecting 7-branes? example: SU(5) Georgi-Glashow GUT and its susy and higher-dim. extensions

• Standard model particles fit nicely into SU(5) representations:

$$\begin{array}{rcl} {\bf 24} & \to & ({\bf 8},{\bf 1})_{0_Y} + ({\bf 1},{\bf 3})_{0_Y} + ({\bf 1},{\bf 1})_{0_Y} + ({\bf 3},{\bf 2})_{5_Y} + (\overline{{\bf 3}},{\bf 2})_{-5_Y} \\ \\ & \Rightarrow & {\rm gauge\ fields} \end{array}$$

10
$$\rightarrow$$
 (3,2)_{1_Y} + ($\overline{\mathbf{3}}$, 1)_{-4_Y} + (1, 1)_{6_Y}

$$\overline{\mathbf{5}} \rightarrow (\overline{\mathbf{3}}, \mathbf{1})_{2_Y} + (\mathbf{1}, \mathbf{2})_{-3_Y}$$

$$\mathbf{1}_N \quad \to \quad (1,1)_{0_Y}$$

 \Rightarrow quarks, leptons and neutrinos

$$\begin{array}{rcl} \mathbf{5}_H & \to & (\mathbf{3}, \mathbf{1})_{-2_Y} + (\mathbf{1}, \mathbf{2})_{3_Y} & & \overline{\mathbf{5}}_H & \to & (\overline{\mathbf{3}}, \mathbf{1})_{2_Y} + (\mathbf{1}, \mathbf{2})_{-3_Y} \\ & \Rightarrow & \mathsf{Higgs \ doublet} \end{array}$$

• gauge coupling unification is natural at the GUT scale

GUT models and Compactification

- Recently, there has been much progress in realizing GUT models in local F-theory constructions on intersect. 7-branes Beasley, Heckman, Vafa; Donagi, Wijnholt Heckman, Marsano, Saulina, Schäfer-Nameki, Vafa; Marsano, Saulina, Schäfer-Nameki
 - \Rightarrow F-theory treats Type IIB string backgrounds with a varying dilaton
 - \Rightarrow strong coupling enhancements of gauge groups to exceptional groups
 - ⇒ various new insights for models for which gravity can be decoupled (for example new mechanism to break GUT group)

However:

New GUT breaking in local F-theory models requires knowledge about global geometry. Cannot address global constraints. Restrictive?

Cannot address moduli stabilization in local set-ups. Value of couplings?

- Construction of compact scenarios with all the desired properties is more challenging:
 - \Rightarrow general F-theory background: construction of viable compact Calabi-Yau fourfolds
 - \Rightarrow new consistency conditions (such as tadpole cancellation)

In this talk:

• work in the weak coupling regime but compact set-ups

GUTs in Type IIB Calabi-Yau orientifolds with intersecting D7 branes

- 1. Building Models in Type IIB orientifolds
 - D7 branes with gauge flux
 - Consistency conditions
- 2. SU(5) GUTs and their breaking
 - Georgi-Glashow SU(5) GUT
 - Hypercharge flux
- 3. Concrete compact GUT models
 - GUTs on del Pezzo transitions of the Quintic $\mathbb{P}_{1,1,1,1,1}[5]$
 - GUTs on del Pezzo transitions of $\mathbb{P}_{1,1,1,6,9}[18]$

Building Models in Type IIB orientifolds

- \Rightarrow <u>Calabi-Yau Orientifolds</u>: Calabi-Yau space Y + orientifold involution
 - orientifolds with O3 / O7 planes: $\Omega_p (-1)^{F_L} \sigma$ (Ω_p world-sheet parity, σ is holomorphic isometry)
 - orientifold involution σ : splits $H^p(Y) = H^p_+(Y) \oplus H^p_-(Y)$

$$\Rightarrow \text{ bulk spectrum (K\"ahler deformation sector)}$$

$$e^{-B} \wedge (e^{-\phi} \operatorname{Re}(e^{iJ}) + i(C_0 + C_2 + C_4)) = \tau \operatorname{1}_+ + G^i \omega_i^- + T_I \tilde{\omega}_+^I$$

$$\operatorname{R-R axions} \qquad H_+^0 \quad H_-^2 \quad H_+^4$$

⇒ bulk Kähler potential (large volume): Giddings,Kachru,Polchinski; TG,Louis

$$K(\tau + \bar{\tau}, G + \bar{G}, T + \bar{T}) = -2\log\left[e^{-2\phi}\int_{Y} J \wedge J \wedge J\right]$$

 \Rightarrow K is independent of R-R axions

• axions might become gauged in the presence of D7-branes: <u>D-term</u>: $D = X^{T_I} \partial_{T_I} K + X^{G^i} \partial_{G^i} K$

- $rac{>}$ D7 branes with gauge bundles: Calabi-Yau manifold Y + D-branes
 - stack of N_a space-time filling D7 branes wrapped on susy four-cycle $\iota : D_a \hookrightarrow Y$ $\Rightarrow U(N_a)$ gauge group, preserve $\mathcal{N} = 1$ susy on world-volume
 - D7-branes can carry a gauge flux bundle \mathcal{F}_a \Rightarrow restrict to \mathcal{F}_a of rank one: <u>line bundles</u>

$$\mathcal{F}_a = \mathbf{1}_{N_a} (F_a^{(0)} + \iota^* B) + \sum_i \mathbf{T}_i F_a^{(i)} \qquad (\mathsf{tr}(\mathbf{T}_i) = 0)$$

line bundles are uniquely determined by their first Chern class:

$$c_1(L_a^{(0)}) = \frac{1}{2\pi}(F_a^{(0)} + \iota^* B) \in H^2(D_a) \qquad c_1(L_a^{(i)}) = \frac{1}{2\pi}F_a^{(i)} \in H^2(D_a)$$
$$- L_a^{(0)} \text{ induces split } U(N_a) \to SU(N_a) \times U(1)_a$$
$$- L_a^{(i)} \text{ can break } SU(N_a) \text{ further:} \qquad \text{split of } U(1) \text{ factors}$$

- ➡ D- and F-terms form gauge bundles on D7 branes:
 - gauge-flux \mathcal{F}_a might induce a gauging of bulk scalars G^i and T_I : Jockers, Louis

D-term
$$\propto \int_{D_a} \iota^* J \wedge (F_a^{(0)} + \iota^* B)$$
 (*J* is Kähler form on *Y*)

- <u>However</u>: $H^2(D_a)$ can have elements which are non-trivial or trivial in $H^2(Y)$
 - $\begin{array}{l} \Rightarrow \quad \underline{\text{non-trivial parts of } L_a:} \\ \Rightarrow \underline{\text{massive } U(1)} \text{ via Green-Schwarz mechanism} \end{array}$
 - $\Rightarrow \quad \underline{\text{trivial parts of } L_a: \text{ do not couple to bulk scalars (at large volume)} \\ \Rightarrow \text{ massless } U(1)$
- D7-brane superpotential

$$W = \int_{\mathcal{C}_5} F_a^{(0)} \wedge \Omega \qquad \qquad D_a \subset \partial \mathcal{C}_5$$

- obtained e.g. from Witten's holomorphic Chern-Simons action
- dimensional reduction keeping non-dynamical three-forms TG,Ha,Klemm,Klevers

Witten

- Solution ⇒ Orientifold planes and D-branes:
 - orientifold involution σ maps D-brane to image D-brane: line bundles $\mathcal{F}'_a = -\sigma^* \mathcal{F}_a$

 \checkmark Tadpole cancellation: vanishing of all induced tadpoles in the compact Y/σ

• D7-tadpole:
$$\sum_{a} N_a ([D_a] + [D'_a]) = 8 [D_{O7}]$$

• D5-tadpole: induced D5-charge due to non-trivial line-bundle on D7-brane

$$\forall \omega \in H^2_{-}(Y): \qquad \sum_a N_a \, \int_Y \omega \wedge \left(\, [D_a] \wedge \operatorname{tr}(\mathcal{F}_a) + [D'_a] \wedge \operatorname{tr}(\mathcal{F}'_a) \, \right) = 0$$

• D3-tadpole:

$$\frac{\chi(CY_4)}{12} = (N_{\text{D3}} + N_{\text{D3'}}) + N_{\text{flux}} - \sum_a \frac{N_a}{4\pi^2} \Big(\int_{D_a} \text{tr}(\mathcal{F}_a^2) + \int_{D_a'} \text{tr}(\mathcal{F}_a'^2) \Big)$$

 $\chi(CY_4)$: - O3-charge - gravitational D3-charges $\propto \chi(D)$ of D7 and O7

Remarks on Tadpole cancelation:

- also $c_1(L_a)$ on trivial cycles in Y will contribute to D3 tadpole
- discrete *B*-field flux in $H^2_+(Y)$ contributes tadpole: $c_1(L) \rightarrow c_1(L) + B_+$

Additional constraints:

• Freed-Witten anomaly: quantization condition on $F_a = \mathcal{F}_a - \mathbf{1}_{N_a} \cdot \iota^* B$

$$\frac{1}{2\pi}[F_a]_{ij} + \delta_{ij}\frac{1}{2}c_1(K_{D_a}) \in H_2(D_a,\mathbb{Z}) \implies L_a^{(i)} \text{ can be fract. quantized}$$

• K-theory constraints (generalized charge quantization)

Supersymmetry constraints:

Becker², Strominger; Marino, Minasian, Moore, Strominger

D-term constraints restricts values of Kähler form and B-field

D-terms
$$\propto \int_{D_a} \iota^* J \wedge (F^{(0)} + \iota^* B_2) = 0$$

 \Rightarrow needs to be satisfied inside the Kähler cone

- Spectrum from intersecting D7-brane
 - adjoint matter from D7 branes:
 - $h^{2,0}(D_a)$ deformations of the brane
 - $h^{1,0}(D_a)$ Wilson line moduli
 - \Rightarrow both absent for special four-cycles such as del Pezzo surfaces
 - chiral matter from intersections (full matter content using Ext-groups)

Representation	Multiplicity	
(\overline{N}_a, N_b)	I _{ab}	bifundam
(N_a, N_b)	$I_{a'b}$	
A_a	$\frac{1}{2}(I_{a'a} + 2I_{\text{O7a}})$	anti-symn
S_a	$\frac{1}{2}(I_{a'a} - 2I_{\text{O7a}})$	symmetrie

bifundamental reps.

anti-symmetric reps. symmetric reps.

example:
$$I_{ab} = -\int_X [D_a] \wedge [D_b] \wedge (c_1(L_a) - c_1(L_b))$$

$SU(5)\ {\rm GUTs}$ and their breaking

- \Rightarrow Schematics of a GUT model from D7 branes (1):
 - Start with $12 \ \mathrm{D7}$ branes on top of O7 plane

SO(12) gauge group

- Schematics of a GUT model from D7 branes (2):
 - $\bullet~$ Move 5~ D7 branes and their images off the O7 plane

- \Rightarrow Schematics of a GUT model from D7 branes (3):
 - Move 1 D7 branes and its image off the O7 plane

• adjoint of SO(12) splits under $SU(5) \times U(1)_a \times U(1)_b$ and yields the needed GUT representations:

$$\mathbf{66} = \mathbf{24}^{(0,0)} + \mathbf{1}^{(0,0)} + \mathbf{10}^{(2,0)} + \overline{\mathbf{10}}^{(-2,0)} + \mathbf{5_H}^{(1,-1)} + \overline{\mathbf{5}_H}^{(-1,1)} + \mathbf{5}^{(1,1)} + \overline{\mathbf{5}}^{(-1,-1)}$$

Schematics of a GUT model from D7 branes (4):

10	3	$D_G \cap D'_G$
$\overline{5}$	3	$D_G \cap D'_{U(1)}$
1_N	3	$D_{U(1)} \cap D'_{U(1)}$
$5_{H} + \mathbf{\overline{5}}_{H}$	1 + 1	$D_G \cap D_{U(1)}$

➡ Hypercharge and GUT breaking:

$$U(5) \rightarrow SU(5) \times U(1) \rightarrow SU(3) \times SU(2) \times U(1)_Y \times U(1)$$

- F-theory with GUT 7-brane: Use L_Y with $c_1(L_Y) \in H^2(D_G)$ trivial in $H^2(Y)$ to break GUT to MSSM \Rightarrow no scalar to render the $U(1)_Y$ massive (no direct het. analog ?) hypercharge flux for MSSM: Buican, Malyshev, Morrison, Verlinde, Wijnholt
- Freed-Witten anomaly: L_Y and L have mixed embedding for non-spin divisors (relevant for branes on del Pezzo surfaces)

$$F_{\text{GUT}} = \mathbf{1}_{N_a} \left(F^{4D} + c_1(L) + \frac{2}{5}c_1(L_Y) + \frac{1}{2}c_1(K_{D_a}) \right) + T_Y \left(F_Y^{4D} + \frac{1}{5}c_1(L_Y) \right)$$

with $T_Y = \text{diag}(-2, -2, -2, 3, 3)$ $c_1(L) \in \frac{1}{2}\mathbb{Z}$ $c_1(L_Y) \in \mathbb{Z}$
 \Rightarrow factor $\frac{1}{5}$ ensures that $H^*(D_a, L_Y)$ can be zero (no vector-like exotics)
Blumenhagen, Braun, TG, Weigand

• Compact models:

- need to check that not all elements of $H^2(D_G)$ are non-trivial in Y (hypercharge), but that additional U(1)'s become massive

- check by computing BPS numbers (GV invariants) for the curve classes
- simple compact examples are obtained by generic four-cycle transitions
- $\Rightarrow \text{ non-perturbative generation of missing Yukawa couplings } \mathbf{10}^{(2,0)} \mathbf{10}^{(2,0)} \mathbf{5}_{\mathbf{H}}^{(1,-1)}$ Blumenhagen,Cvetic,Lüst,Richter,Weigand
 - main obstacle to get fully realistic models at weak coupling
 - in compact models one can check for the presence of 4-cycles which can support the appropriate D3-brane instanton ($I_{GUT,inst} = 1$, $I_{U(1),inst} = -1$) in the Kähler cone
 - \Rightarrow non-pert. **10 10 5**_H scale $\propto \exp(-\text{Vol}_{inst}/g_s)$

TG,Klemm; Blumenhagen,Braun,TG,Weigand

Concrete compact GUT models

- D7 branes on del Pezzo surfaces
 - Why del Pezzo surfaces?
 - local F-theory constructions: Beasley, Heckman, Vafa; Donagi, Wijnholt del Pezzos are shrinkable \Rightarrow decoupling of gravity <u>leaves 10 choices</u>: $\mathbb{P}^1 \times \mathbb{P}^1$, \mathbb{P}^2 blown up at $n = 0, \dots, 8$ points
 - compact models: del Pezzo $\rightarrow h^{2,0} = h^{1,0} = 0 \rightarrow$ no adjoint matter also allow dP_9 or even more blow-ups (not shrinkable)
 - geometry of del Pezzo surfaces is intimately linked to representations of groups - $h^{1,1}(dP_n) = 1 + n$ anti-canonical class -K

n simple roots of $A_2 \oplus A_1, D_4, D_5, E_6, E_7, E_8$

- geometry of lines on del Pezzos (genus 0, degree 1 curves)

Simple Examples:

- E_8 del Pezzo transition starting with $\mathbb{P}_{1,1,1,6,9}[18]$ Morrison, Vafa $h^{(1,1)} = 2, h^{(2,1)} = 272 \longrightarrow h^{(1,1)} = 3, h^{(2,1)} = 243$
- E_6 del Pezzo transition starting with quintic hypersurface $h^{(1,1)} = 1, h^{(2,1)} = 101 \longrightarrow h^{(1,1)} = 2, h^{(2,1)} = 90$

 \Rightarrow there exist whole chains of del Pezzo transitions realized in toric geometry

- \Rightarrow 1 Transitions of the Quintic hypersurface
 - begin with quintic in \mathbb{P}^4 , i.e. $\mathbb{P}_{1,1,1,1,1}[5]$, perform del Pezzo transitions torically:

add point $u_1 = (0, 0, 0, 1)$ to toric data of \mathbb{P}^4

$$\chi(D_1) = \int_{D_1} c_2(D_1) = 9$$
$$K^2 = \int_{D_1} c_1^2(D_1) = 3$$

How many classes of dP_6 are non-trivial in new CY?

- check that $\Delta h_{CY}^{1,1} = 1$ (only divisor class)
- check that $\Delta \chi_{CY} = 24 = 2 \times C_{E_6}$
- count curves in homology class of globally non-trivial cycle (computation of BPS/GV invariants) $\Rightarrow n = 27$ - number of degree one curves in dP_6 \Rightarrow whole E_6 lattice is trivial in new CY

➡ continue to perform del Pezzo transitions torically (add further divisors)

Transition (1):	generate one generic dP_6
Transition (2):	generate two intersecting dP_7 (intersecting in $\mathbb{P}^1)$
Transition (3):	generate three intersecting dP_8
Transition (4):	generate four intersecting dP_9

- note that always $\Delta \chi = 24 = 2 \times C_{E_6}$, indeed one checks that there are always E_6 lattices trivial in the CY threefolds \Rightarrow can support hypercharge flux
- simple quintic involutions extend to transitioned spaces

Example: toric base $dP_3 \rightarrow CY$ as hypersurface in toric space

 \Rightarrow there are actually 18 topological phases connected via flop transitions

 \Rightarrow one phase corresponds to 3 \times dP_8 - transition of $\mathbb{P}_{1,1,1,6,9}[18]$

Solutions on del Pezzo base classified all involutions on all del Pezzo surface

```
Blumenhagen, Braun, TG, Weigand
```


 \Rightarrow base involution extends to elliptically fibered threefold: exchange of dP_9 fibers

property	mechanism	status
globally consistent	tadpoles + K-theory	\checkmark
D-term susy	vanishing FI-terms inside Kähler cone	\checkmark
gauge group $SU(5)$	U(5) imes U(1) stacks	\checkmark
3 chiral generations	choice of line bundles $L_{ m GUT}, L_{ m U(1)}$	\checkmark
no vector-like matter	localisation on \mathbb{P}^1 curves	\checkmark
1 vector-like of Higgs	choice of line bundles	\checkmark
no adjoints	rigid 4-cycles ← del Pezzo	\checkmark
GUT breaking	$U(1)_Y$ flux L_Y on trivial 2-cycles	\checkmark
3-2 splitting	Wilson lines on $g = 1$ curve	\checkmark
3-2 split + no dim=5 p^+ -decay	local. of H_u, H_d on disjoint comp.	\checkmark
${f 10}{f 10}{f 5}_H$ Yukawa	presence of appropriate D3-instanton	\checkmark
Majorana neutrino masses	presence of appropriate D3-instanton	\checkmark

_	
	\rightarrow
	7

found models which satisfy <u>all</u> criteria,

property	mechanism	status
globally consistent	tadpoles + K-theory	\checkmark
D-term susy	vanishing FI-terms inside Kähler cone	\checkmark
gauge group $SU(5)$	U(5) imes U(1) stacks	\checkmark
3 chiral generations	choice of line bundles $L_{ m GUT}, L_{ m U(1)}$	\checkmark
no vector-like matter	localisation on \mathbb{P}^1 curves	\checkmark
1 vector-like of Higgs	choice of line bundles	\checkmark
no adjoints	rigid 4-cycles ← del Pezzo	\checkmark
GUT breaking	$U(1)_Y$ flux L_Y on trivial 2-cycles	\checkmark
3-2 splitting	Wilson lines on $g = 1$ curve	\checkmark
3-2 split + no dim=5 p^+ -decay	local. of H_u, H_d on disjoint comp.	\checkmark
${f 10}{f 10}{f 5}_H$ Yukawa	presence of appropriate D3-instanton	\checkmark
Majorana neutrino masses	presence of appropriate D3-instanton	\checkmark

\Rightarrow	found models which satisfy <u>all</u> criteria,	but not yet simultaneously
---------------	---	----------------------------

⇒ generalization: models with more complicated del Pezzo configurations and orientifold involutions

Conclusions

- Discussed constructions of GUTs in Type IIB orientifold compactifications
 - many of the local F-theory mechanisms can be realized (e.g. GUT breaking)
 - new consistency conditions arise (e.g. tadpole cancellation, Kähler cone conditions)
 - non-perturbative generations of the missing couplings needed
- Construction of promising class of compact CY orientifolds
 - intersecting del Pezzo and other rigid surfaces
 - involutions and O-planes can be determined explicitly
 - \Rightarrow globally consistent D-brane configurations
 - gauge bundles on D7 branes \Rightarrow spectrum, GUT breaking etc.
 - appealing phenomenological feature (MSSM chiral spectrum, no exotics, etc.)
- Open problem: lift to compact GUT models in F-theory
 - combination with moduli stabilization, susy breaking