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Motivation

• Introduce a large class of SCFT’s in 2+1d

• What is the world volume theory of a stack 
of N M2 branes in M theory?

• Understand Chern Simons (CS) theories 
better

• Algebraic Geometry - Quiver Gauge 
Theories
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Motivation: AdS/CFT

• Long standing problem:

• What is the theory dual to AdS4 x H7

• H7 Sasaki Einstein

• M2 probing CY4 - Cone over H7
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Recall in 3+1 
dimensions
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AdS/CFT

• Have a good understanding for the case of N 
D3 branes probing CY3

• AdS5 x H5, H5 Sasaki Einstein base of CY3

• Best description in terms of “Brane Tilings”
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Brane Tilings
Dictionary

• Face (tile) - U(N) Gauge group

• Edge - A bi-fundamental chiral multiplet

• Node - Interaction term in W

• 2+1d: Each Face - integer CS level
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3 Hexagon tiling
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Ex: Chessboard Tiling
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Brane Tilings
Simple properties

• Arrows oriented in an alternating fashion 
around each face

• Bi-partite: arrows oriented (counter)clockwise 
around (black) white nodes

• black (white) nodes connected to white 
(black) nodes only
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Brane Tilings
Properties

• odd sided faces are forbidden - anomaly 
cancellation condition in 3+1d

• white (black) nodes with + (-) sign in W

• These rules define a unique Lagrangian in 3
+1 & in 2+1 dimensions, 4 SUSY’s
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The 2+1d Lagrangian

−
∫

d4θ
∑

Xab

X†
abe

−VaXabe
Vb

+ i

∫
d4θ

G∑

a=1

ka

1∫

0

dtVaD̄α(etVaDαe−tVa)

+
∫

d2θW (Xab) + c.c.
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Choice of CS levels

G∑

a=1

ka = 0, gcd({ka}) = 1

C =
(

1 1 1 . . . 1
k1 k2 k3 . . . kG

)
.
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Vacuum Equations

∂XabW = 0

µa(X) :=
G∑

b=1

XabX
†
ab −

G∑

c=1

X†
caXca + [Xaa, X†

aa] = 4kaσa

σaXab −Xabσb = 0
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Fibration of a CY3 over 
a line
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Forward Algorithm
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Solving Vacuum 
Equations

• First set of equations - F terms - Master 
Space

• Second set - D terms - some vanish some 
not

• CS levels <> FI parameter

• Third set - a new ingredient in 2+1d
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Some (new) Tools

• Master Space

• Lattice of generators - toric diagram

• Kasteleyn matrix

• Perfect Matchings
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Master Space

• Solution to F term equations

• in 3+1d - combined baryonic & mesonic 
moduli space

• Toric, singular non-compact CY cone of dim 
G+2
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Example: Chessboard 
Tiling; CS levels (1,-1)

W = Tr(X1
12X

1
21X

2
12X

2
21 −X1

12X
2
21X

2
12X

1
21)
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Chessboard tiling - C4

• For N=1 W =0, no F terms

• Master space is C4

• Third set of equations set σ’s equal

• Second set of equations set value of σ

• CS levels 0 & in 3+1d: Conifold
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CS levels on Edges

• Assign CS levels n’s to edges such that

• d is the incidence matrix of the quiver

31

ka =
∑

i

daini
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chessboard
fundamental domain
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Useful in computing the 
toric diagram
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4 fields in the quiver
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1 hexagon; 1 double 
edge, G=2
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Toric Duality
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2 hexagon tiling; (1-,1)
Conifold (C ) x C II

W = φ1(X1
12X

2
21 −X2

12X
1
21) + φ2(X1

21X
2
12 −X2

21X
1
12)
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Ex: 2 hexagon tiling 
Conifold x C II

• In 3+1d this is C2/Z2 x C

• Master space - 2+1d mesonic moduli space

• Non trivial scaling dimensions

• 1/2 for ϕ’s, 3/4 for X’s

• Non-trivial SCFT in the IR

• a test of AdS/CFT
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Toric Diagram C x C
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5 fields in the Quiver
Master space - C5
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Chessboard tiling; 1 
double edge; (1,-1,0)
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Chessboard tiling; 1 
double edge; (1,-1,0)

• mesonic moduli space is conifold x C

• 1 dimensional baryonic moduli space

• Combined mesonic baryonic space - C5

• Scaling dimensions 1/2 for X12, 3/8 other
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Conifold x C
Phase III (0,1,-1); (-2,1,1)
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Global symmetry
conifold x C

• SU(2) x SU(2) x U(1)q x U(1)R x U(1)B

44

Wednesday, April 29, 2009



Conifold x C
Table of charges
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Toric Duality
conifold x C

• Three phases

• 2 tiles | 3 tiles | 3 tiles

• Master space: mesonic | mesonic baryonic | “

• mesonic generators: linear | bi-linear | “
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Hilbert Series
conifold x C

t1 = t3q t2 = t4/q4

1

(1− t1x1b)
(
1− t1x2

b

) (
1− t1b

x1

) (
1− t1

x2b

)
(1− t2)
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Lattice of generators
conifold x C
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D3 theory
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D3 phase II
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D3 phase III
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D3
Toric Diagram
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D3
Table of charges
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D3
Lattice of Generators
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Fano 3-folds

• 18 smooth toric Fano 3-folds

• translate toric data to brane tilings

• known for 10 cases, first 4:

• P3, P2 x P1, P1 x P1 x P1, dP1 x P1
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M111

CS (1,1,-2)
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M111

Toric Diagram
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M111

Table of Charges
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M111

mesonic Hilbert Series
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M111

Lattice of generators
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Q111/Z2

Phase I

Wednesday, April 29, 2009



Q111/Z2

Toric Diagram
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Q111/Z2

Table of charges
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Q111/Z2

Lattice of Generators
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Fano 68 O(1,-1)P1xP1

(1,0,1,-2)
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Fano 68 O(1,-1)P1xP1

Table of charges
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dP2 bundle over P1

(1,-1,0,-1,1)
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dP2 x P1

(1,1,-1,0,-1)
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dP2 x P1

Toric Diagram
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dP3 x P1

(0,0,0,0,1,-1)
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2+1d: current results

• Mesonic moduli space of vacua - CY4

• interacting SCFT’s in the IR

• Non-trivial scaling dimensions

• Master space - partial baryonic & mesonic 
moduli space

• Hilbert Series
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Summary

• All theories described are conjectured to 
live on the world volume of M2 branes 
probing the CY4 - mesonic moduli space

• Infinite families of SCFT’s

• Count how many?

• Know for 2 terms in W and arbitrary G
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Tools for study

• Mesonic moduli space

• Master space (including baryons)

• toric diagrams - lattice of generators

• toric duality
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More technical tools

• Perfect matchings

• Kasteleyn matrix

• Hilbert Series

•
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Classification of 2+1d 
theories?

• “order parameters”

• Number of gauge groups G

• Number of fields in the quiver E

75
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Summary

• Infinitely many quivers

• Each represents a lattice of SCFT’s in 2+1d

• A variety of scaling dimensions

• Toric Duality

• ...
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6 fields in the Quiver
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G=2, E=4, Model I
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G=4, E=6, Model IV
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Counting Quivers
1 Hexagon

f1(t) =
1

(1− t)(1− t2)(1− t3)
= 1 + t + 2t2 + 3t3 + . . .
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Counting Quivers
Chessboard Tiling

f2(t) =
1− t6

(1− t)(1− t2)2(1− t3)(1− t4)
= 1 + t + 3t2 + 4t3 + 8t4 + . . .
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3+1d: we know how to

• Compute the moduli space of vacua

• Spectrum of scaling dimensions

• Central charge and volume of SE manifold

• Master space - Baryonic & mesonic moduli 
space of vacua

• Hilbert Series - partition function to count 
the spectrum of the Chiral Ring
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What is special in 2+1d?

• YM gauge coupling has dimension 1/2

• All IR theories are strongly coupled

• CS terms exactly marginal

• CS levels have dimension 0

• Integer coefficients

• Scale invariant 
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Simple observations in 2
+1d CS theories

• No beta function for CS levels

• Finite renormalization - typically at 1 loop

• N=2 supersymmetry (4 supercharges): no 
corrections

• Infinite family of SCFT’s parametrized by CS 
terms
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A lattice of SCFT’s

• For one gauge group - a 1d lattice of SCFT’s

• For a product of G gauge groups a G 
dimensional lattice of SCFT’s

• If put c conditions on CS levels G-c 
dimensional sub - lattice of SCFT’s
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Nathan Broomhead
Dimer Models and 
Calabi-Yau Algebras
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Periodic bipartite tiling
87
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2+1d Lagrangians

• Given a 2d periodic, bipartite tiling with G 
tiles, add G CS levels, 1 for each tile.

• Largest known family of SCFT’s in 2+1d!
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Solving Vacuum 
Equations

• F terms - Master Space, G+2

• Third set of equations set σ’s equal

• D terms - form linear combinations (LC)

• G equations, G-2 LC set to 0

• Divide by complexified gauge group

• Moduli space: toric singular CY4 cone
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