Brane Tilings, M2 Branes, CS Theories

Amihay Hanany

In collaboration with

Alberto Zaffaroni

Yang-Hui He

David Vegh

Sebastian Franco

Jaemo Park

Diego Rodriguez-Gomez

Noppadol Mekareeya

Giuseppe Torri

John Davey

Motivation

- Introduce a large class of SCFT's in 2+1d
- What is the world volume theory of a stack of N M2 branes in M theory?
- Understand Chern Simons (CS) theories better
- Algebraic Geometry Quiver Gauge Theories

Motivation: AdS/CFT

- Long standing problem:
- What is the theory dual to $AdS_4 \times H^7$
- H⁷ Sasaki Einstein
- M2 probing CY4 Cone over H⁷

Recall in 3+1 dimensions

AdS/CFT

- Have a good understanding for the case of N D3 branes probing CY3
- AdS₅ x H⁵, H⁵ Sasaki Einstein base of CY3
- Best description in terms of "Brane Tilings"

Brane Tilings Dictionary

- Face (tile) U(N) Gauge group
- Edge A bi-fundamental chiral multiplet
- Node Interaction term in W
- 2+1d: Each Face integer CS level

3 Hexagon tiling

Brane Tilings Simple properties

- Arrows oriented in an alternating fashion around each face
- Bi-partite: arrows oriented (counter)clockwise around (black) white nodes
- black (white) nodes connected to white (black) nodes only

Brane Tilings Properties

- odd sided faces are forbidden anomaly cancellation condition in 3+1d
- white (black) nodes with + (-) sign in W
- These rules define a unique Lagrangian in 3 +1 & in 2+1 dimensions, 4 SUSY's

$$Ihe 2+Id Lagrangian$$

$$- \int d^{4}\theta \sum_{X_{ab}} X_{ab}^{\dagger} e^{-V_{a}} X_{ab} e^{V_{b}}$$

$$+ i \int d^{4}\theta \sum_{a=1}^{G} k_{a} \int_{0}^{1} dt V_{a} \bar{D}^{\alpha} (e^{tV_{a}} D_{\alpha} e^{-tV_{a}})$$

$$+ \int d^{2}\theta W(X_{ab}) + \text{c.c.}$$

Choice of CS levels

$$\sum_{a=1}^{G} k_a = 0, \quad \gcd(\{k_a\}) = 1$$

$$C = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ k_1 & k_2 & k_3 & \dots & k_G \end{pmatrix}$$

$$\partial_{X_{ab}} W = 0$$

$$\mu_a(X) := \sum_{b=1}^G X_{ab} X_{ab}^{\dagger} - \sum_{c=1}^G X_{ca}^{\dagger} X_{ca} + [X_{aa}, X_{aa}^{\dagger}] = 4k_a \sigma_a$$

$$\sigma_a X_{ab} - X_{ab} \sigma_b = 0$$

Fibration of a CY3 over a line

Forward Algorithm

Solving Vacuum Equations

- First set of equations F terms Master Space
- Second set D terms some vanish some not
- CS levels <> FI parameter
- Third set a new ingredient in 2+1d

Some (new) Tools

- Master Space
- Lattice of generators toric diagram
- Kasteleyn matrix
- Perfect Matchings

Master Space

- Solution to F term equations
- in 3+1d combined baryonic & mesonic moduli space
- Toric, singular non-compact CY cone of dim G+2

Example: Chessboard Tiling; CS levels (1,-1)

$W = \operatorname{Tr}(X_{12}^1 X_{21}^1 X_{12}^2 X_{21}^2 - X_{12}^1 X_{21}^2 X_{21}^2 X_{12}^2 X_{21}^1)$

Chessboard tiling - \mathbb{C}^4

- For N=I W =0, no F terms
- Master space is \mathbb{C}^4
- Third set of equations set σ 's equal
- Second set of equations set value of σ
- CS levels 0 & in 3+1d: Conifold

CS levels on Edges

- Assign CS levels n's to edges such that
- d is the incidence matrix of the quiver

$$k_a = \sum_i d_{ai} n_i$$

chessboard fundamental domain

Figure 2: [Phase I of \mathbb{C}^4] The fundamental domain of the tiling for the \mathscr{C} model: Assignments of the integers n_i to the edges are shown in blue and the weights for these edges are shown in green.

Useful in computing the toric diagram

4 fields in the quiver

 $W_{(1)} = \text{Tr}(X_{12}^1 X_{21}^1 X_{12}^2 X_{21}^2 - X_{12}^1 X_{21}^2 X_{21}^2 X_{12}^1); \qquad W_{(2)} = \text{Tr}(X_{12}[\phi_2^1, \phi_2^2] X_{21})$

Figure 1: The quivers with 4 fields and 2 nodes. There are 2 solutions and the 2-term superpotentials are also given. The moduli space in both cases is just the trivial CY 4-fold \mathbb{C}^4 .

I hexagon; I double edge, G=2

Toric Duality
2 hexagon tiling; (I-,I)Conifold $(\mathcal{C}) \times \mathbb{C} \mathbb{I}$

$W = \phi_1 (X_{12}^1 X_{21}^2 - X_{12}^2 X_{21}^1) + \phi_2 (X_{21}^1 X_{12}^2 - X_{21}^2 X_{12}^1)$

Ex: 2 hexagon tiling Conifold x C II

- In 3+1d this is $C^2/Z_2 \times C$
- Master space 2+1d mesonic moduli space
- Non trivial scaling dimensions
- 1/2 for φ's, 3/4 for X's
- Non-trivial SCFT in the IR
- a test of AdS/CFT

Toric Diagram Gx C

Wednesday, April 29, 2009

5 fields in the Quiver Master space - C⁵

Wednesday, April 29, 2009

Chessboard tiling; I double edge; (1,-1,0)

Chessboard tiling; I double edge; (1,-1,0)

• mesonic moduli space is conifold x $\mathbb C$

- I dimensional baryonic moduli space
- Combined mesonic baryonic space \mathbb{C}^5
- Scaling dimensions 1/2 for X₁₂, 3/8 other

Conifold x C Phase III (0,1,-1); (-2,1,1)

Figure 13: [Phase III of $C \times \mathbb{C}$] (i) Quiver diagram of the $\mathscr{D}_2 \mathscr{H}_1$ model. (ii) Tiling of the $\mathscr{D}_2 \mathscr{H}_1$ model.

Global symmetry conifold x C

• $SU(2) \times SU(2) \times U(1)_q \times U(1)_R \times U(1)_B$

Conifold x C Table of charges

	$SU(2)_1$	$SU(2)_2$	$U(1)_q$	$U(1)_B$	$U(1)_R$	fugacity
p_1	1	0	1	1	3/8	t^3qbx_1
p_2	-1	0	1	1	3/8	t^3qb/x_1
p_3	0	1	1	-1	3/8	t^3qx_2/b
p_4	0	-1	1	-1	3/8	$t^3q/(bx_2)$
p_5	0	0	-4	0	1/2	t^{4}/q^{4}

Table 2: Charges under the global symmetry of the $\mathcal{C} \times \mathbb{C}$ theory. Here t is the fugacity associated with the $U(1)_R$ charges. The power of t counts R-charges in the unit of 1/8, q is the fugacity associated with the $U(1)_q$ charges, and x_1 , x_2 are respectively the $SU(2)_1$, $SU(2)_2$ weights.

Perfect matchings	Generator of Phase I	Generator of Phase II	Generator of Phase III
$p_1 p_3$	$X_{13}X_{32}^1$	X_{12}^{1}	$X_{21}X_{12}$
$p_2 p_3$	$X_{13}X_{32}^2$	X_{21}^{1}	$X_{21}X_{13}$
$p_1 p_4$	$X_{23}X_{32}^{1}$	X_{12}^2	$X_{31}X_{12}$
$p_2 p_4$	$X_{23}X_{32}^2$	X_{21}^2	$X_{21}X_{13}$
p_5	X_{21}	$\phi_1 = \phi_2$	ϕ_1

Toric Duality conifold x C

- Three phases
- 2 tiles | 3 tiles | 3 tiles
- Master space: mesonic | mesonic baryonic | "
- mesonic generators: linear | bi-linear | "

Hilbert Series conifold x C

$$\frac{1}{\left(1 - t_1 x_1 b\right) \left(1 - \frac{t_1 x_2}{b}\right) \left(1 - \frac{t_1 b}{x_1}\right) \left(1 - \frac{t_1}{x_2 b}\right) \left(1 - t_2\right)}$$

$$t_1 = t^3 q$$
 $t_2 = t^4/q^4$

Wednesday, April 29, 2009

Lattice of generators conifold x C

D3 theory

 $W = \operatorname{Tr} \left(X_{14} X_{42} X_{21} X_{12} X_{23} X_{31} - X_{14} X_{42} X_{23} X_{31} X_{12} X_{21} \right) .$ (5.1)

We choose the CS levels to be $(k_1, k_2, k_3, k_4) = (1, 1, -1, -1)$.

Figure 15: [Phase I of the D_3 theory] (i) Quiver diagram of the $\mathcal{D}_2 \mathscr{C}$ model. (ii) Tiling of the $\mathcal{D}_2 \mathscr{C}$ model.

D3 phase II

 $W = \text{Tr} \left(X_{32} X_{23} X_{31} X_{13} - X_{23} X_{32} X_{21} X_{12} - \phi_1 \left(X_{13} X_{31} - X_{12} X_{21} \right) \right) .$ (5.19)

We choose the CS levels to be $k_1 = 1$, $k_2 = -1$, $k_3 = 0$.

Figure 19: [Phase II of the D_3 theory] (i) Quiver diagram for the $\mathcal{H}_2\partial_1$ model. (ii) Tiling of the $\mathcal{H}_2\partial_1$ model.

D3 phase III

 $W = \operatorname{Tr} \left(X_{13} X_{31} X_{14} X_{41} X_{12} X_{21} - X_{14} X_{41} X_{13} X_{31} X_{12} X_{21} \right)$

We choose the CS levels to be $(k_1, k_2, k_3, k_4) = (1, -1, 1, -1)$.

D3 Toric Diagram

Figure 17: The toric diagram of the D_3 theory.

D3 Table of charges

	$U(1)_{1}$	$U(1)_2$	$U(1)_3$	$U(1)_R$	$U(1)_{B_1}$	$U(1)B_2$	fugacity
p_1	1	1	1	1/3	1	1	$tq_1q_2q_3b_1b_2$
p_2	-1	-1	0	1/3	0	1	$tb_2/(q_1q_2)$
p_3	1	0	-1	1/3	-1	0	$tq_1/(b_1q_3)$
p_4	-1	0	-1	1/3	1	0	$tb_1/(q_1q_3)$
p_5	-1	1	1	1/3	0	-1	$tq_3q_2/(q_1b_2)$
p_6	1	-1	0	1/3	-1	-1	$tq_1/(q_2b_1b_2)$

Perfect matchings	Generator of Phase I	Generator of Phase II	Generator of Phase III
$p_{1}p_{6}$	$X_{23}X_{14}$	X_{12}	$X_{41}X_{21}$
$p_2 p_5$	$X_{42}X_{31}$	X_{21}	$X_{12}X_{14}$
$p_{3}p_{4}$	$X_{12}X_{21}$	ϕ_1	$X_{31}X_{13}$
$p_1 p_3 p_5$	$X_{23}X_{12}X_{31}$	$X_{23}X_{31}$	$X_{13}X_{41}X_{14}$
$p_2 p_4 p_6$	$X_{42}X_{21}X_{14}$	$X_{13}X_{32}$	$X_{31}X_{12}X_{21}$

D3 Lattice of Generators

Fano 3-folds

- 18 smooth toric Fano 3-folds
- translate toric data to brane tilings
- known for 10 cases, first 4:
- \mathbb{P}^3 , $\mathbb{P}^2 \times \mathbb{P}^1$, $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$, $d\mathbf{P}_1 \times \mathbb{P}^1$

M^{III} CS (I,I,-2)

Figure 13: (i) Quiver diagram of the $M^{1,1,1}$ theory. (ii) Tiling of the $M^{1,1,1}$ theory.

Wednesday, April 29, 2009

M^{III} Toric Diagram

M^{III} Table of Charges

	SU(3)	SU(2)	$U(1)_R$	$U(1)_B$	fugacity
p_1	(1, 0)	0	4/9	0	t^4y_1
p_2	(-1,1)	0	4/9	0	$t^{4}y_{2}/y_{1}$
p_3	(0, -1)	0	4/9	0	t^{4}/y_{2}
p_4	(0,0)	1	1/3	-1	t^3x/b
p_5	(0,0)	-1	1/3	-1	$t^3/(xb)$
s_1	(0,0)	0	0	2	b^2

M^{III} mesonic Hilbert Series

$$g^{\text{mes}}(t, x, y_1, y_2; M^{1,1,1}) = \oint_{|b|=1} \frac{\mathrm{d}b}{2\pi i b} g^{\text{Irr}\mathcal{F}^{\flat}}(t, x, y_1, y_2, b; M^{1,1,1})$$

$$= \frac{P_{M^{1,1,1}}(t, x, y_1, y_2)}{\left(1 - \frac{t^{18}y_1^3}{x^2}\right) \left(1 - t^{18}x^2y_1^3\right) \left(1 - \frac{t^{18}x^2}{y_2^3}\right) \left(1 - \frac{t^{18}y_2^2}{x^2y_1^3}\right) \left(1 - \frac{t^{18}x^2y_2^3}{y_1^3}\right) \left(1 - \frac{t^{18}x^2y_2^3}{y_1^3}\right) \left(1 - \frac{t^{18}x^2y_2^3}{y_1^3}\right) \left(1 - \frac{t^{18}y_2^2}{x^2y_1^3}\right) \left(1 - \frac{t^{18}y_2^2}{y_1^3}\right) \left(1 - \frac{t^{18}y_2^2}{y_1^3}$$

M^{III} Lattice of generators

Q¹¹¹/Z₂ Phase I

Figure 23: [Phase I of $Q^{1,1,1}/\mathbb{Z}_2$] (i) Quiver diagram for the \mathscr{S}_4 model. (ii) Tiling for the \mathscr{S}_4 model.

$$W = \epsilon_{ij}\epsilon_{pq}\operatorname{Tr}(X_{12}^iX_{23}^pX_{34}^jX_{41}^q)$$

$$k_1 = -k_2 = -k_3 = k_4 = 1$$

Q^{III}/Z₂ Toric Diagram

Q¹¹/Z₂ Table of charges

	$SU(2)_1$	$SU(2)_2$	$SU(2)_3$	$U(1)_R$	$U(1)B_1$	$U(1)B_2$	fugacity
p_1	1	0	0	1/3	1	0	tb_1x_1
p_2	-1	0	0	1/3	1	0	tb_1/x_1
q_1	0	1	0	1/3	0	0	tx_2
q_2	0	-1	0	1/3	0	0	t/x_2
r_1	0	0	1	1/3	-1	-1	$tx_3/(b_1b_2)$
r_2	0	0	-1	1/3	-1	-1	$t/(x_3b_1b_2)$
s_1	0	0	0	0	0	2	b_{2}^{2}
s_2	0	0	0	0	0	0	1
s_3	0	0	0	0	0	0	1

Q^{III}/Z₂ Lattice of Generators

Wednesday, April 29, 2009

Fano 68 O(1,-1)_P'_{xP}' (1,0,1,-2)

Figure 13: [Phase I of C_5] (i) Quiver diagram of the S_4 model. (ii) Tiling of the S_4 model.

Fano 68 O(I,-I)_P $|_{xP}$ ^I Table of charges

	$SU(2)_1$	$SU(2)_2$	$U(1)_q$	$U(1)_R$	$U(1)B_1$	$U(1)_{B_2}$	fugacity
p_1	1	0	1	4/11	0	0	t^4x_1q
p_2	-1	0	1	4/11	0	0	$t^{4}q/x_{1}$
q_1	0	1	-1	4/11	0	0	$t^{4}x_{2}/q$
q_2	0	-1	-1	4/11	0	0	$t^4/(x_2q)$
r_1	0	0	0	3/11	0	-1	t^{3}/b_{2}
r_2	0	0	0	3/11	0	-1	t^{3}/b_{2}
s_1	0	0	0	0	1	0	b_1
s_2	0	0	0	0	-1	2	b_2^2/b_1
s_3	0	0	0	0	0	0	1

Table 4: Charges of the perfect matchings under the global symmetry of the C_5 theory. Here t is the fugacity of the R-charge, x_1, x_2 are the weights of the SU(2) symmetry, q, b_1 and b_2 are, respectively, the charges under the mesonic abelian symmetry U(1) and of the two baryonic $U(1)_{B_1}$ and $U(1)_{B_2}$.

dP2 bundle over P^I (1,-1,0,-1,1)

Figure 20: $[\mathcal{E}_1]$ (i) Quiver diagram of the $\mathcal{H}_3\mathcal{D}_1\partial_1$ model. (ii) Tiling of the $\mathcal{H}_3\mathcal{D}_1\partial_1$ model.

$dP2 \times P^{I}$ (1,1,-1,0,-1)

Figure 23: $[\mathcal{E}_3]$ (i) Quiver diagram of the $\mathcal{S}_4 \mathcal{D}_1$ model. (ii) Tiling of the $\mathcal{S}_4 \mathcal{D}_1$ model.

dP2 x P¹ Toric Diagram

$dP3 \times P^{1}$ (0,0,0,0,1,-1)

Figure 30: $[\mathcal{F}_1]$ (i) Quiver diagram of the $\mathcal{S}_4\mathcal{D}_2$ model. (ii) Tiling of the $\mathcal{S}_4\mathcal{D}_2$ model.

2+1d: current results

- Mesonic moduli space of vacua CY4
- interacting SCFT's in the IR
- Non-trivial scaling dimensions
- Master space partial baryonic & mesonic moduli space
- Hilbert Series

Summary

- All theories described are conjectured to live on the world volume of M2 branes probing the CY4 - mesonic moduli space
- Infinite families of SCFT's
- Count how many?
- Know for 2 terms in W and arbitrary G
Tools for study

- Mesonic moduli space
- Master space (including baryons)
- toric diagrams lattice of generators
- toric duality

More technical tools

- Perfect matchings
- Kasteleyn matrix
- Hilbert Series

Classification of 2+1d theories?

- "order parameters"
- Number of gauge groups G
- Number of fields in the quiver E

Summary

- Infinitely many quivers
- Each represents a lattice of SCFT's in 2+1d
- A variety of scaling dimensions
- Toric Duality

6 fields in the Quiver

Wednesday, April 29, 2009

G=2, E=4, Model I

Figure 1: (i) Quiver diagram for the ABJM theory. (ii) Tiling for the ABJM theory.

G=4, E=6, Model IV

Counting Quivers I Hexagon

Counting Quivers Chessboard Tiling

3+1d: we know how to

- Compute the moduli space of vacua
- Spectrum of scaling dimensions
- Central charge and volume of SE manifold
- Master space Baryonic & mesonic moduli space of vacua
- Hilbert Series partition function to count the spectrum of the Chiral Ring

What is special in 2+1d?

- YM gauge coupling has dimension 1/2
- All IR theories are strongly coupled
- CS terms exactly marginal
- CS levels have dimension 0
- Integer coefficients
- Scale invariant

Simple observations in 2 +Id CS theories

- No beta function for CS levels
- Finite renormalization typically at I loop
- N=2 supersymmetry (4 supercharges): no corrections
- Infinite family of SCFT's parametrized by CS terms

A lattice of SCFT's

- For one gauge group a Id lattice of SCFT's
- For a product of G gauge groups a G dimensional lattice of SCFT's
- If put c conditions on CS levels G-c dimensional sub - lattice of SCFT's

Nathan Broomhead Dimer Models and Calabi-Yau Algebras

Periodic bipartite tiling

2+1d Lagrangians

- Given a 2d periodic, bipartite tiling with G tiles, add G CS levels, I for each tile.
- Largest known family of SCFT's in 2+1d!

Solving Vacuum Equations

- F terms Master Space, G+2
- Third set of equations set σ 's equal
- D terms form linear combinations (LC)
- G equations, G-2 LC set to 0
- Divide by complexified gauge group
- Moduli space: toric singular CY4 cone