Brane Tilings, M2 Branes, CS Theories

Amihay Hanany

In collaboration with

Alberto Zaffaroni

Giuseppe Torri

Motivation

- Introduce a large class of SCFT's in 2+Id
- What is the world volume theory of a stack of N M2 branes in M theory?
- Understand Chern Simons (CS) theories better
- Algebraic Geometry - Quiver Gauge Theories

Motivation:AdS/CFT

- Long standing problem:
- What is the theory dual to $\mathrm{AdS}_{4} \times \mathrm{H}^{7}$
- H ${ }^{7}$ Sasaki Einstein
- M2 probing CY4 - Cone over H ${ }^{7}$

Recall in 3+ I dimensions

AdS/CFT

- Have a good understanding for the case of N D3 branes probing CY3
- $\mathrm{AdS}_{5} \times \mathrm{H}^{5}, \mathrm{H}^{5}$ Sasaki Einstein base of CY3
- Best description in terms of "BraneTilings"

Brane Tilings Dictionary

- Face (tile) - U(N) Gauge group
- Edge - A bi-fundamental chiral multiplet
- Node - Interaction term in W
- 2+ld: Each Face - integer CS level

3 Hexagon tiling

$$
C Y_{6}=\text { conifold }
$$

quiver
brane tiling

$$
W=X_{12}^{(1)} X_{21}^{(1)} X_{12}^{(2)} X_{21}^{(2)}-X_{12}^{(1)} X_{21}^{(2)} X_{12}^{(2)} X_{21}^{(1)}
$$

pl.sug f!!! ia

Ex: Chessboard Tiling

Brane Tilings Simple properties

- Arrows oriented in an alternating fashion around each face
- Bi-partite: arrows oriented (counter)clockwise around (black) white nodes
- black (white) nodes connected to white (black) nodes only

Brane Tilings Properties

- odd sided faces are forbidden - anomaly cancellation condition in 3+ld
- white (black) nodes with + (-) sign in W
- These rules define a unique Lagrangian in 3 +| \& in 2+ I dimensions, 4 SUSY's

The 2+Id Lagrangian

$$
\begin{aligned}
& -\int d^{4} \theta \sum_{X_{a b}} X_{a b}^{\dagger} e^{-V_{a}} X_{a b} e^{V_{b}} \\
& +\quad i \int d^{4} \theta \sum_{a=1}^{G} k_{a} \int_{0}^{1} d t V_{a} \bar{D}^{\alpha}\left(e^{t V_{a}} D_{\alpha} e^{-t V_{a}}\right) \\
& +\int d^{2} \theta W\left(X_{a b}\right)+\text { c.c. }
\end{aligned}
$$

Choice of CS levels

$$
\sum_{a=1}^{G} k_{a}=0, \quad \operatorname{gcd}\left(\left\{k_{a}\right\}\right)=1
$$

$$
C=\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
k_{1} & k_{2} & k_{3} & \ldots & k_{G}
\end{array}\right)
$$

Vacuum Equations

$$
\begin{aligned}
\partial_{X_{a b}} W & =0 \\
\mu_{a}(X):=\sum_{b=1}^{G} X_{a b} X_{a b}^{\dagger}-\sum_{c=1}^{G} X_{c a}^{\dagger} X_{c a}+\left[X_{a a}, X_{a a}^{\dagger}\right] & =4 k_{a} \sigma_{a} \\
\sigma_{a} X_{a b}-X_{a b} \sigma_{b} & =0
\end{aligned}
$$

Fibration of a CY3 over a line

Forward Algorithm

Solving Vacuum Equations

- First set of equations - F terms - Master Space
- Second set - D terms - some vanish some not
- CS levels <> FI parameter
- Third set - a new ingredient in $2+1 d$

Some (new) Tools

- Master Space
- Lattice of generators - toric diagram
- Kasteleyn matrix
- Perfect Matchings

Master Space

- Solution to F term equations
- in 3+ld - combined baryonic \& mesonic moduli space
- Toric, singular non-compact CY cone of dim G+2

Example: Chessboard Tiling; CS levels (I,-I)

$$
W=\operatorname{Tr}\left(X_{12}^{1} X_{21}^{1} X_{12}^{2} X_{21}^{2}-X_{12}^{1} X_{21}^{2} X_{12}^{2} X_{21}^{1}\right)
$$

Chessboard tiling - \mathbb{C}^{4}

- For $\mathrm{N}=\mathrm{I} \mathrm{W}=0$, no F terms
- Master space is \mathbb{C}^{4}
- Third set of equations set O's equal
- Second set of equations set value of σ
- CS levels 0 \& in 3+ld: Conifold

CS levels on Edges

- Assign CS levels n's to edges such that
- d is the incidence matrix of the quiver

$$
k_{a}=\sum_{i} d_{a i} n_{i}
$$

chessboard

fundamental domain

Figure 2: [Phase I of \mathbb{C}^{4}] The fundamental domain of the tiling for the \mathscr{C} model: Assignments of the integers n_{i} to the edges are shown in blue and the weights for these edges are shown in green.

Useful in computing the toric diagram

4 fields in the quiver

I hexagon; I double edge, $G=2$

Toric Duality

2 hexagon tiling; (I-,I) Conifold (G) \times C III

$W=\phi_{1}\left(X_{12}^{1} X_{21}^{2}-X_{12}^{2} X_{21}^{1}\right)+\phi_{2}\left(X_{21}^{1} X_{12}^{2}-X_{21}^{2} X_{12}^{1}\right)$

Ex: 2 hexagon tiling Conifold x C III

- $\ln 3+1 d$ this is $C^{2} / Z_{2} \times C$
- Master space - 2+Id mesonic moduli space
- Non trivial scaling dimensions
- I/2 for ϕ 's, $3 / 4$ for X's
- Non-trivial SCFT in the IR
- a test of AdS/CFT

Toric Diagram $\mathcal{G} \times \mathbb{C}$

5 fields in the Quiver Master space - \mathbb{C}^{5}

Chessboard tiling; double edge; (I,-I,0)

Chessboard tiling; double edge; (I,-I,0)

- mesonic moduli space is conifold $\times \mathbb{C}$
- I dimensional baryonic moduli space
- Combined mesonic baryonic space - \mathbb{C}^{5}
- Scaling dimensions I/2 for $X_{12}, 3 / 8$ other

Conifold x C

Phase III (0,I,-I); (-2, I,I)

Global symmetry conifold $\times \mathbb{C}$

- $\operatorname{SU}(2) \times S U(2) \times U(I)_{\mathrm{q}} \times U(I)_{\mathrm{R}} \times U(1)_{\mathrm{B}}$

Conifold x C

Table of charges

	$S U(2)_{1}$	$S U(2)_{2}$	$U(1)_{q}$	$U(1)_{B}$	$U(1)_{R}$	fugacity
p_{1}	1	0	1	1	$3 / 8$	$t^{3} q b x_{1}$
p_{2}	-1	0	1	1	$3 / 8$	$t^{3} q b / x_{1}$
p_{3}	0	1	1	-1	$3 / 8$	$t^{3} q x_{2} / b$
p_{4}	0	-1	1	-1	$3 / 8$	$t^{3} q /\left(b x_{2}\right)$
p_{5}	0	0	-4	0	$1 / 2$	t^{4} / q^{4}

Table 2: Charges under the global symmetry of the $\mathcal{C} \times \mathbb{C}$ theory. Here t is the fugacity associated with the $U(1)_{R}$ charges. The power of t counts R -charges in the unit of $1 / 8, q$ is the fugacity associated with the $U(1)_{q}$ charges, and x_{1}, x_{2} are respectively the $S U(2)_{1}, S U(2)_{2}$ weights.

Perfect matchings	Generator of Phase I	Generator of Phase II	Generator of Phase III
$p_{1} p_{3}$	$X_{13} X_{32}^{1}$	X_{12}^{1}	$X_{21} X_{12}$
$p_{2} p_{3}$	$X_{13} X_{32}^{2}$	X_{21}^{1}	$X_{21} X_{13}$
$p_{1} p_{4}$	$X_{23} X_{32}^{1}$	X_{12}^{2}	$X_{31} X_{12}$
$p_{2} p_{4}$	$X_{23} X_{32}^{2}$	X_{21}^{2}	$X_{21} X_{13}$
p_{5}	X_{21}	$\phi_{1}=\phi_{2}$	ϕ_{1}

Toric Duality conifold x C

- Three phases
- 2 tiles | 3 tiles | 3 tiles
- Master space: mesonic | mesonic baryonic |"
- mesonic generators: linear | bi-linear |"

Hilbert Series conifold x C

1
$\overline{\left(1-t_{1} x_{1} b\right)\left(1-\frac{t_{1} x_{2}}{b}\right)\left(1-\frac{t_{1} b}{x_{1}}\right)\left(1-\frac{t_{1}}{x_{2} b}\right)\left(1-t_{2}\right)}$

$$
t_{1}=t^{3} q \quad t_{2}=t^{4} / q^{4}
$$

Lattice of generators conifold $\times \mathbb{C}$

D3 theory

$$
\begin{equation*}
W=\operatorname{Tr}\left(X_{14} X_{42} X_{21} X_{12} X_{23} X_{31}-X_{14} X_{42} X_{23} X_{31} X_{12} X_{21}\right) . \tag{5.1}
\end{equation*}
$$

We choose the CS levels to be $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=(1,1,-1,-1)$.

Figure 15: [Phase I of the D_{3} theory] (i) Quiver diagram of the $\mathscr{D}_{2} \mathscr{C}$ model. (ii) Tiling of the $\mathscr{D}_{2} \mathscr{C}$ model.

D3 phase II

$$
\begin{equation*}
W=\operatorname{Tr}\left(X_{32} X_{23} X_{31} X_{13}-X_{23} X_{32} X_{21} X_{12}-\phi_{1}\left(X_{13} X_{31}-X_{12} X_{21}\right)\right) . \tag{5.19}
\end{equation*}
$$

We choose the CS levels to be $k_{1}=1, k_{2}=-1, k_{3}=0$.

Figure 19: [Phase II of the D_{3} theory] (i) Quiver diagram for the $\mathscr{H}_{2} \partial_{1}$ model. (ii) Tiling of the $\mathscr{H}_{2} \partial_{1}$ model.

D3 phase III

Figure 21: [Phase III of the D_{3} theory] (i) Quiver diagram of the $\mathscr{D}_{3} \mathscr{H}_{1}$ model.
(ii) Tiling of the $\mathscr{D}_{3} \mathscr{H}_{1}$ model.

$$
W=\operatorname{Tr}\left(X_{13} X_{31} X_{14} X_{41} X_{12} X_{21}-X_{14} X_{41} X_{13} X_{31} X_{12} X_{21}\right)
$$

We choose the CS levels to be $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=(1,-1,1,-1)$.

D3

 Toric Diagram

 Toric Diagram}

D3

Table of charges

	$U(1)_{1}$	$U(1)_{2}$	$U(1)_{3}$	$U(1)_{R}$	$U(1)_{B_{1}}$	$U(1)_{B_{2}}$	fugacity
p_{1}	1	1	1	$1 / 3$	1	1	$t q_{1} q_{2} q_{3} b_{1} b_{2}$
p_{2}	-1	-1	0	$1 / 3$	0	1	$t b_{2} /\left(q_{1} q_{2}\right)$
p_{3}	1	0	-1	$1 / 3$	-1	0	$t q_{1} /\left(b_{1} q_{3}\right)$
p_{4}	-1	0	-1	$1 / 3$	1	0	$t b_{1} /\left(q_{1} q_{3}\right)$
p_{5}	-1	1	1	$1 / 3$	0	-1	$t q_{3} q_{2} /\left(q_{1} b_{2}\right)$
p_{6}	1	-1	0	$1 / 3$	-1	-1	$t q_{1} /\left(q_{2} b_{1} b_{2}\right)$

Perfect matchings	Generator of Phase I	Generator of Phase II	Generator of Phase III
$p_{1} p_{6}$	$X_{23} X_{14}$	X_{12}	$X_{41} X_{21}$
$p_{2} p_{5}$	$X_{42} X_{31}$	X_{21}	$X_{12} X_{14}$
$p_{3} p_{4}$	$X_{12} X_{21}$	ϕ_{1}	$X_{31} X_{13}$
$p_{1} p_{3} p_{5}$	$X_{23} X_{12} X_{31}$	$X_{23} X_{31}$	$X_{13} X_{41} X_{14}$
$p_{2} p_{4} p_{6}$	$X_{42} X_{21} X_{14}$	$X_{13} X_{32}$	$X_{31} X_{12} X_{21}$

D3
 Lattice of Generators

Figure 18: The lattice of generators of the D_{3} theory

Fano 3-folds

- I8 smooth toric Fano 3-folds
- translate toric data to brane tilings
- known for 10 cases, first 4:
- $\mathbb{P}^{3}, \mathbb{P}^{2} \times \mathbb{P}^{\prime}, \mathbb{P}^{\prime} \times \mathbb{P}^{\prime} \times \mathbb{P}^{\prime}, d P^{\prime} \times \mathbb{P}^{\prime}$

$M^{I I I}$ CS (I, I,-2)

Figure 13: (i) Quiver diagram of the $M^{1,1,1}$ theory. (ii) Tiling of the $M^{1,1,1}$ theory.

$M^{I I I}$
 Toric Diagram

$M^{I I I}$

Table of Charges

	$S U(3)$	$S U(2)$	$U(1)_{R}$	$U(1)_{B}$	fugacity
p_{1}	$(1,0)$	0	$4 / 9$	0	$t^{4} y_{1}$
p_{2}	$(-1,1)$	0	$4 / 9$	0	$t^{4} y_{2} / y_{1}$
p_{3}	$(0,-1)$	0	$4 / 9$	0	t^{4} / y_{2}
p_{4}	$(0,0)$	1	$1 / 3$	-1	$t^{3} x / b$
p_{5}	$(0,0)$	-1	$1 / 3$	-1	$t^{3} /(x b)$
s_{1}	$(0,0)$	0	0	2	b^{2}

$M^{I I I}$ mesonic Hilbert Series

$$
\begin{align*}
g^{\operatorname{mes}}\left(t, x, y_{1}, y_{2} ; M^{1,1,1}\right)= & \oint_{|b|=1} \frac{\mathrm{~d} b}{2 \pi i b} g^{\operatorname{Irr} \mathcal{F}^{b}}\left(t, x, y_{1}, y_{2}, b ; M^{1,1,1}\right) \\
& =\frac{P_{M^{1,1,1}}\left(t, x, y_{1}, y_{2}\right)}{\left(1-\frac{t^{18} y_{1}^{3}}{x^{2}}\right)\left(1-t^{18} x^{2} y_{1}^{3}\right)\left(1-\frac{t^{18} x^{2}}{y_{2}^{2}}\right)\left(1-\frac{t^{18}}{x^{2} y_{2}^{3}}\right)\left(1-\frac{t^{18} y_{2}^{2}}{x^{2} y_{1}^{3}}\right)\left(1-\frac{t^{18} x^{2} y_{2}^{3}}{y_{1}^{1}}\right)} \\
& =\sum_{j=0}^{\infty}[3 j, 0 ; 2 j] t^{18 j} \tag{2.25}
\end{align*}
$$

$M^{I I I}$
 Lattice of generators

Figure 16: The lattice of generators of the $M^{1,1,1}$ theory

$Q^{I I I / Z} Z_{2}$ Phase

Figure 23: [Phase I of $Q^{1,1,1} / \mathbb{Z}_{2}$] (i) Quiver diagram for the \mathscr{S}_{4} model. (ii) Tiling for the \mathscr{S}_{4} model.

$$
\begin{gathered}
W=\epsilon_{i j} \epsilon_{p q} \operatorname{Tr}\left(X_{12}^{i} X_{23}^{p} X_{34}^{j} X_{41}^{q}\right) \\
k_{1}=-k_{2}=-k_{3}=k_{4}=1
\end{gathered}
$$

$Q^{I I I} / Z_{2}$
 Toric Diagram

$Q^{1 I I} / Z_{2}$
 Table of charges

	$S U(2)_{1}$	$S U(2)_{2}$	$S U(2)_{3}$	$U(1)_{R}$	$U(1)_{B_{1}}$	$U(1)_{B_{2}}$	fugacity
p_{1}	1	0	0	$1 / 3$	1	0	$t b_{1} x_{1}$
p_{2}	-1	0	0	$1 / 3$	1	0	$t b_{1} / x_{1}$
q_{1}	0	1	0	$1 / 3$	0	0	$t x_{2}$
q_{2}	0	-1	0	$1 / 3$	0	0	t / x_{2}
r_{1}	0	0	1	$1 / 3$	-1	-1	$t x_{3} /\left(b_{1} b_{2}\right)$
r_{2}	0	0	-1	$1 / 3$	-1	-1	$t /\left(x_{3} b_{1} b_{2}\right)$
s_{1}	0	0	0	0	0	2	b_{2}^{2}
s_{2}	0	0	0	0	0	0	1
s_{3}	0	0	0	0	0	0	1

$Q^{1 I I} / Z_{2}$ Lattice of Generators

Fano $68 \mathrm{O}(1,-I) p^{1} \times p^{1}$ (1,0,l,-2)

Figure 13: [Phase I of \mathcal{C}_{5}] (i) Quiver diagram of the \mathcal{S}_{4} model. (ii) Tiling of the \mathcal{S}_{4} model.

Fano $68 \mathrm{O}(1,-1) p^{1} \times p^{1}$ Table of charges

	$S U(2)_{1}$	$S U(2)_{2}$	$U(1)_{q}$	$U(1)_{R}$	$U(1)_{B_{1}}$	$U(1)_{B_{2}}$	fugacity
p_{1}	1	0	1	$4 / 11$	0	0	$t^{4} x_{1} q$
p_{2}	-1	0	1	$4 / 11$	0	0	$t^{4} q / x_{1}$
q_{1}	0	1	-1	$4 / 11$	0	0	$t^{4} x_{2} / q$
q_{2}	0	-1	-1	$4 / 11$	0	0	$t^{4} /\left(x_{2} q\right)$
r_{1}	0	0	0	$3 / 11$	0	-1	t^{3} / b_{2}
r_{2}	0	0	0	$3 / 11$	0	-1	t^{3} / b_{2}
s_{1}	0	0	0	0	1	0	b_{1}
s_{2}	0	0	0	0	-1	2	b_{2}^{2} / b_{1}
s_{3}	0	0	0	0	0	0	1

Table 4: Charges of the perfect matchings under the global symmetry of the \mathcal{C}_{5} theory. Here t is the fugacity of the R-charge, x_{1}, x_{2} are the weights of the $S U(2)$ symmetry, q, b_{1} and b_{2} are, respectively, the charges under the mesonic abelian symmetry $U(1)$ and of the two baryonic $U(1)_{B_{1}}$ and $U(1)_{B_{2}}$.

dP2 bundle over P^{I}

(I,-I,0,-I,I)

Figure 20: $\left[\mathcal{E}_{1}\right]$ (i) Quiver diagram of the $\mathcal{H}_{3} \mathcal{D}_{1} \partial_{1}$ model. (ii) Tiling of the $\mathcal{H}_{3} \mathcal{D}_{1} \partial_{1}$ model.

$\mathrm{dP2} \times \mathrm{Pl}^{\mathrm{l}}$ (I, I,-I,0,-I)

Figure 23: $\left[\mathcal{E}_{3}\right]$ (i) Quiver diagram of the $\mathcal{S}_{4} \mathcal{D}_{1}$ model. (ii) Tiling of the $\mathcal{S}_{4} \mathcal{D}_{1}$ model.

$d P 2 \times P^{\prime}$

Toric Diagram

Figure 25: The toric diagram of the toric \mathcal{E}_{3}.

$d P 3 \times P^{\prime}$ (0,0,0,0, I,-I)

Figure 30: $\left[\mathcal{F}_{1}\right]$ (i) Quiver diagram of the $\mathcal{S}_{4} \mathcal{D}_{2}$ model. (ii) Tiling of the $\mathcal{S}_{4} \mathcal{D}_{2}$ model.

$2+1 \mathrm{~d}$: current results

- Mesonic moduli space of vacua - CY4
- interacting SCFT's in the IR
- Non-trivial scaling dimensions
- Master space - partial baryonic \& mesonic moduli space
- Hilbert Series

Summary

- All theories described are conjectured to live on the world volume of M2 branes probing the CY4 - mesonic moduli space
- Infinite families of SCFT's
- Count how many?
- Know for 2 terms in W and arbitrary G

Tools for study

- Mesonic moduli space
- Master space (including baryons)
- toric diagrams - lattice of generators
- toric duality

More technical tools

- Perfect matchings
- Kasteleyn matrix
- Hilbert Series

Classification of $2+$ Id theories?

- "order parameters"
- Number of gauge groups G
- Number of fields in the quiver E

Summary

- Infinitely many quivers
- Each represents a lattice of SCFT's in 2+Id
- A variety of scaling dimensions
- Toric Duality

6 fields in the Quiver

(4)

(10)

(6)

(11)

(7)

(16)

$$
W_{(4)}=\operatorname{Tr}\left(X_{31} X_{14}^{1} X_{41} X_{14}^{2} X_{42} X_{23}-X_{31} X_{14}^{2} X_{41} X_{14}^{1} X_{42} X_{23}\right) ;
$$

$$
W_{(6)}=\operatorname{Tr}\left(X_{42} X_{21}\left(X_{14}^{1} X_{43} X_{31} X_{14}^{2}-X_{14}^{2} X_{43} X_{31} X_{14}^{1}\right)\right)
$$

$$
W_{(7)}=\operatorname{Tr}\left(X_{12} X_{21}\left(X_{14} X_{41} X_{13} X_{31}-X_{13} X_{31} X_{14} X_{41}\right)\right)
$$

$$
W_{(10)}=\operatorname{Tr}\left(X_{42} X_{21} X_{14} X_{41} X_{13} X_{34}-X_{42} X_{21} X_{13} X_{34} X_{41} X_{14}\right)
$$

$$
W_{(11)}=\operatorname{Tr}\left(X_{32} X_{21} \phi_{1} X_{14} X_{41} X_{13}-X_{32} X_{21} X_{14} X_{41} \phi_{1} X_{13}\right) ;
$$

$$
W_{(16)}=\operatorname{Tr}\left(X_{42} X_{23} X_{31} X_{14}\left[\phi_{4}^{1}, \phi_{4}^{2}\right]\right)
$$

$\mathrm{G}=2, \mathrm{E}=4$, Model I

G=4, E=6, Model IV

Figure 11: (i) Quiver diagram for phase 2 of the D_{3} theory. (ii) Tiling for phase 2 of the D_{3} theory.

Counting Quivers I Hexagon

$$
\begin{aligned}
f_{1}(t) & =\frac{1}{(1-t)\left(1-t^{2}\right)\left(1-t^{3}\right)} \\
& =1+t+2 t^{2}+3 t^{3}+\ldots
\end{aligned}
$$

Counting Quivers Chessboard Tiling

$$
\begin{aligned}
f_{2}(t) & =\frac{1-t^{6}}{(1-t)\left(1-t^{2}\right)^{2}\left(1-t^{3}\right)\left(1-t^{4}\right)} \\
& =1+t+3 t^{2}+4 t^{3}+8 t^{4}+\ldots
\end{aligned}
$$

3+ Id: we know how to

- Compute the moduli space of vacua
- Spectrum of scaling dimensions
- Central charge and volume of SE manifold
- Master space - Baryonic \& mesonic moduli space of vacua
- Hilbert Series - partition function to count the spectrum of the Chiral Ring

What is special in $2+$ I d?

- YM gauge coupling has dimension I/2
- All IR theories are strongly coupled
- CS terms exactly marginal
- CS levels have dimension 0
- Integer coefficients
- Scale invariant

Simple observations in 2 +ld CS theories

- No beta function for CS levels
- Finite renormalization - typically at I loop
- $\mathcal{N}=2$ supersymmetry (4 supercharges): no corrections
- Infinite family of SCFT's parametrized by CS terms

A lattice of SCFT's

- For one gauge group - a Id lattice of SCFT's
- For a product of G gauge groups a G dimensional lattice of SCFT's
- If put c conditions on CS levels G-c dimensional sub - lattice of SCFT's

Nathan Broomhead Dimer Models and Calabi-Yau Algebras

Periodic bipartite tiling

2+ Id Lagrangians

- Given a 2d periodic, bipartite tiling with G tiles, add G CS levels, I for each tile.
- Largest known family of SCFT's in 2+Id!

Solving Vacuum

 Equations- F terms - Master Space, G+2
- Third set of equations set σ 's equal
- D terms - form linear combinations (LC)
- G equations, G-2 LC set to 0
- Divide by complexified gauge group
- Moduli space: toric singular CY4 cone

