Matrix Factorizations, D-branes and Homological Mirror Symmetry

- Motivation, general remarks
- Mirror symmetry and D-branes

- Matrix factorizations and LG models
- Toy example: eff. superpotential for intersecting branes, applications
much more diverse instantons than for closed strings (world-sheet and D-brane instantons)

Part I Motivation: D-brane worlds

Typical brane + flux configuration on a Calabi-Yau space

closed string (bulk) moduli t open string (brane location + bundle) moduli u

3+I dim world volume with effective $\mathrm{N}=\mathrm{I}$ SUSY theory
What are the exact effective superpotential, the vacuum states, gauge couplings, etc?
$\mathcal{W}_{\text {eff }}(\Phi, t, u)=?$

Quantum geometry of D-branes

Classical geometry ("branes wrapping p-cycles", gauge bundle configurations on top of them) makes sense only at weak coupling/large radius!

In fact, practically all of string phenomenology deals with the boundary of the moduli space (weak coupling, large radius)

Quantum geometry of D-branes

Classical geometry ("branes wrapping p-cycles", gauge bundle configurations on top of them) makes sense only at weak coupling/large radius!

"Gepner point"
(CFT description)
typ. symmetry between 0,2,4,6 cycles
"conifold point"
extra massles
states
Classical geometry: cycles, gauge ("bundle") configurations on them

Quantum corrected geometry: (instanton) corrections wipe out notions of classical geometry

Quantum geometry of D-branes

Classical geometry ("branes wrapping p-cycles", gauge bundle configurations on top of them) makes sense only at weak coupling/large radius!

....well developed techniques (mirror symmetry) mostly for non-generic (non-compact, non-intersecting, integrable) brane configurations branes only !

Intersecting branes: eff. potential for quivers

boundary changing operator

Quiver diagram
Disk world sheet in TCFT

Intersecting branes: eff. potential for quivers

Quiver diagram
Disk world sheet in TCFT
Superpotential \sim closed paths in quiver

> tachyons closed and open string

> $$
\begin{array}{l}\text { moduli } \sim \text { const }+\mathcal{O}\binom{e^{-t}, e^{-u}}{\text { instannton }} \text { corrections... how to } \\ \text { compute? }\end{array}
$$

D-branes: homological mirror symmetry

- Mirror symmetry acts between full categories descr. A- and B-branes!

DI branes on (p, q) cycles
..."Fukaya category" of lagrangian cycles

$\left(\mathrm{N}_{2}, \mathrm{~N}_{0}\right)=\left(r, \mathrm{c}_{\mathrm{I}}\right)$ of "gauge bundle"
..."derived category" of coherent sheaves

- There is much more to this than just quantum numbers (K-theory) Homological mirror symmetry also preserves the higher A_{∞} products (open string correlators)

Mirror symmetry and open string TFT correlators

Disk amplitude for intersecting branes $C_{a b c}\left(\tau ; u_{A}, u_{B}, u_{C}\right)=\left\langle\Psi_{a}^{(A, B)} \Psi_{b}^{(B, C)} \Psi_{c}^{(C, A)}\right\rangle$

A-Model
localizes on holomorphic maps: world-sheet instantons $\Sigma \rightarrow \boldsymbol{T}_{2}$

Fukaya products
$C_{a b c} \sim e^{-S_{\text {Inst }}}$
$S_{\text {Inst. }} \sim$ Area
$\Psi_{a}^{(A, B)}$
$D_{A} \longrightarrow \mathcal{D}_{B}$
Σ

B-Model

(Landau-Ginzburg model) localizes on constant maps: classical

Massey products
mirror symmetry

$$
\lambda_{m}\left(\Psi^{\otimes m}\right)=\Psi_{a_{0}} C_{a_{1} \ldots a_{m}}^{a_{0}}
$$

B-model correlators

- General structure of 3-pt fct in (holom) Chern-Simons theory:

$$
C_{a b c}=\left\langle\Psi_{a} \Psi_{b} \Psi_{c}\right\rangle=\int_{X} \operatorname{Tr}\left[\Psi_{a} \wedge \Psi_{b} \wedge \Psi_{c}\right] \wedge \Omega^{(3,0)}
$$

Wedge product of sections

$$
\Psi_{a} \equiv \Psi_{a}^{(A, B)} \in \operatorname{Ext}^{1}\left(X ; \overline{\mathcal{V}}^{A}, \mathcal{V}^{B}\right)
$$

- Branes ~ vector bundles: sections are collections of vectors = matrices
- To perfom mirror map... need flat sections determined by some flatness equations

B-model correlators....

- For the bulk theory, the flatness equations coincide with the Picard-Fuchs equations for periods, arising from the variation of Hodge structures
- For open strings theory is not yet well developed (in general no flatness to begin with, obstructions)
- Physicist's pragmatic approach: obtain diffeqs from contact terms in Landau-Ginzburg formulation

Part II D-branes and Matrix Factorizations

Seek: Description of topol. B-type D-branes that captures the mathematical intricacies, while allowing to do explicit computations

LG formulation of B-type branes in terms of matrix factorizations

Important: explicit moduli dependence of all quantities

Landau-Ginzburg description of B-type D-branes

- Consider bulk $\mathrm{d}=2 \mathrm{~N}=(2,2) \mathrm{LG}$ model with superpotential:
$\int_{\Sigma} d^{2} z d \theta^{+} d \theta^{-} W_{L G}(x)+\mathrm{cc}$.
B-type SUSY variations induce boundary ("Warner")-term:

$$
\begin{aligned}
\int_{\Sigma} d^{2} z d \theta^{+} d \theta^{-}\left(\bar{Q}_{+}+\bar{Q}_{-}\right) W_{L G} & =\int_{\Sigma} d^{2} z d \theta^{+} d \theta^{-}\left(\theta^{+} \partial_{+}+\theta^{-} \partial_{-}\right) W_{L G} \\
& =\int_{\partial \Sigma} d \sigma d \theta W_{L G}
\end{aligned}
$$

- Restore SUSY by adding boundary fermions $\Pi=\left(\pi+\theta^{+} \ell\right)$ (... not quite chiral: $\left.\bar{D} \Pi=\left.E(x)\right|_{\partial \Sigma}\right)$
via a boundary potential: $\quad \delta S=\int_{\partial \Sigma} d \sigma d \theta \Pi J(x)$
Condition for SUSY: $\quad J(x) E(x)=W_{L G}(x)$

Matrix factorizations

- BRST operator: $Q(x)=\pi J(x)+\bar{\pi} E(x)=\left(\begin{array}{ll} & J(x) \\ E(x) & \end{array}\right)$ thus SUSY condition implies a matrix factorization of W:

$$
Q(x) \cdot Q(x)=W_{L G}(x) 1
$$

Total BRST operator $\mathcal{Q}=Q+Q_{b u l k}$ then squares to zero: $\mathcal{Q}^{2}=0$

- Generalization for n LG fields: need $\mathrm{N}=2^{\mathrm{n}}$ boundary fermions, and

$$
J_{N \times N} \cdot E_{N \times N}=E_{N \times N} \cdot J_{N \times N}=W_{L G} \mathbf{1}_{N \times N}
$$

- B-type Susy D-branes:
$\mathrm{I}: \mathrm{I}$ to all possible matrix factorizations of a given $\mathrm{W}=\mathrm{W}(\mathrm{x}, \mathrm{t})$

Physical interpretation

- N... Chan-Paton labels of space-filling D \bar{D} pairs

Boundary potentials J,E form a tachyon profile that describes condensation to given B-type D-brane configuration in IR limit

- Geometrically: Maps J,E are sections of certain bundles

Ker J, Ker E encode bundle data of branes: (r,cı,..; ;)

Open string cohomology

- Physical open string spectrum is determined by the cohomology of the BRST operator:

- These are the ingredients of a nice category....

Kontsevich's category Cw

The LG model provides a concrete physical realization of a certain triangulated Z_{2}-graded category CW_{W}

- objects: "complexes" (~composites of D $\overline{\mathrm{D}}$ branes):

$$
D_{\ell} \cong\left(P_{1}^{(\ell)} \underset{E^{(\ell)}}{\stackrel{J^{(\ell)}}{\rightleftarrows}} P_{0}^{(\ell)}\right), \quad J^{(\ell)} E^{(\ell)}=W
$$

- maps (boundary Q-cohomology):

Kontsevich's category Cw

The LG model provides a concrete physical realization of a certain triangulated Z_{2}-graded category CW_{W}

Category of Matrix factorizations is isomorphic to $D(\operatorname{Coh}(M)$), the derived category of coherent sheaves on $M=$ category of B-type D-branes! (O,HHP)

Part III: branes on the elliptic curve

- Simplest Calabi-Yau: the cubic torus
complex str modulus

$$
T_{2}: \quad W=\frac{1}{3}\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)-a(\tau) x_{1} x_{2} x_{3}=0
$$

- Mirror map:

$$
\frac{3 a\left(a^{3}+8\right)}{\Delta}=J(\tau)^{1 / 3}, \quad \Delta \equiv a^{3}-1
$$

flat coo of complex structure moduli space $=$ Kahler parameter of mirror curve

Test example: branes on the elliptic curve

- B-type D-branes are composites of D2, D0 branes, characterized by $\left(N_{2}, N_{0} ; u\right)=\left(\operatorname{rank}(V), c_{1}(V) ; u\right)$
... these are mirror to A-type D1-branes with wrapping numbers $(p, q)=\left(N_{2}, N_{0}\right)$
- We will consider the
"long-diagonal" branes with charges

$$
\left(N_{2}, N_{0}\right)_{\mathcal{L}_{A}}=\{(-1,0),(-1,3),(2,-3)\}
$$

3×3 matrix factorization

- Factorizations corresponding to the long diagonal branes L_{i}

$$
\begin{align*}
& J_{i}=\left(\begin{array}{ccc}
\alpha_{1}^{(i)} x_{1} & \alpha_{2}^{(i)} x_{3} & \alpha_{3}^{(i)} x_{2} \\
\alpha_{3}^{(i)} x_{3} & \alpha_{1}^{(i)} x_{2} & \alpha_{2}^{(i)} x_{1} \\
\alpha_{2}^{(i)} x_{2} & \alpha_{3}^{(i)} x_{1} & \alpha_{1}^{(i)} x_{3}
\end{array}\right) \tag{i=1,2,3}
\end{align*}
$$

These satisfy $J_{i} E_{i}=E_{i} J_{i}=W_{L G} \mathbf{1}$ if the parameters satisfy the cubic equation themselves:

$$
W_{L G}\left(\alpha_{i}\right) \equiv \alpha_{1}{ }^{3}+\alpha_{2}{ }^{3}+\alpha_{3}{ }^{3}+a(\tau) \alpha_{1} \alpha_{2} \alpha_{3}=0
$$

Thus the parameters parametrize the (jacobian) torus and can be represented by theta-sections:
$\alpha_{\ell}^{(i)} \sim \Theta\left[\left.\frac{1-\ell-\frac{1}{2}-\frac{1}{2}}{3} \right\rvert\, 3 u_{i}, 3 \tau\right]$
u, τ...flat coordinates of open/closed moduli space (Kahler moduli in mirror A-model)

Open string BRST cohomology

Solving for the BRST cohomology yields explicit t, u-moduli dependent matrix valued maps, eg $(a=1,2,3)$:

- marginal operators corr. to brane locations
$\operatorname{Ext}^{1}\left(\mathcal{L}_{A}, \mathcal{L}_{A}\right): \Omega_{A}=\partial_{u_{A}} Q\left(u_{A}\right)$
- tachyon operators
$\operatorname{Ext}^{1}\left(\mathcal{L}_{A}, \mathcal{L}_{B}\right): \quad \Psi_{A B}^{(a)}=\left(\begin{array}{cc}0 & F_{A B}^{(a)} \\ G_{A B}^{(a)} & 0\end{array}\right)$

with eg, $F_{12}^{(1)}=\left(\begin{array}{ccc}\zeta_{1} & 0 & 0 \\ 0 & 0 & \zeta_{2} \\ 0 & \zeta_{3} & 0\end{array}\right) G_{12}^{(1)}=\left(\begin{array}{lll}\frac{\zeta_{1}}{\alpha_{1}^{(1)} \alpha_{1}^{(2)}} x_{1} & \frac{\zeta_{3}}{\alpha_{1}^{(1)} \alpha_{2}^{(2)}} x_{2} & \frac{\zeta_{2}}{\alpha_{1}^{(1)} \alpha_{3}^{(2)}} x_{3} \\ \frac{\zeta_{2}}{\alpha_{1}^{(2)} \alpha_{3}^{(1)}} x_{2} & \frac{\zeta_{1}}{\alpha_{2}^{(2)} \alpha_{3}^{(1)}} x_{3} & \frac{\zeta_{3}^{(1)}}{\alpha_{3}^{(1)} \alpha_{3}^{(2)}} x_{1} \\ \frac{\alpha_{3}}{\alpha_{1}^{(2)} \alpha_{2}^{(1)}} x_{3} & \frac{\zeta_{2}^{\left(\zeta_{2}\right.}}{\alpha_{2}^{(1)} \alpha_{2}^{(2)}} x_{1} & \frac{\zeta_{1}^{(1)}}{\alpha_{2}^{(1)} \alpha_{3}^{(2)}} x_{2}\end{array}\right)$
and $\zeta_{\ell} \sim \Theta\left[\left.\frac{1-\ell}{3}-\frac{1}{2}-\frac{1}{2} \right\rvert\, 3 u_{2}-3 u_{1}, 3 \tau\right]$

Superpotential on brane intersection I

- Compute 3-point disk correlators = Yukawa couplings $\Psi_{A B}^{a}$

$$
\mathcal{W}_{e f f}=T_{a} T_{b} T_{c} C_{a b c}\left(\tau, u_{i}\right)+\ldots
$$

$C_{a b c}\left(\tau, u_{1}, u_{2}, u_{3}\right)=\left\langle\Psi_{13}^{a}\left(u_{1}, u_{3}\right) \Psi_{32}^{b}\left(u_{3}, u_{2}\right) \Psi_{21}^{c}\left(u_{2}, u_{1}\right)\right\rangle$

Use Kapustin-Li super-residue formula (from localization of path integral) for the matrix-valued, moduli-dependent operators:

$$
=\frac{1}{2 \pi i} \oint \mathrm{~S} \operatorname{tr}\left[\left(\frac{d Q}{d W}\right)^{\otimes \wedge 3} \Psi_{13}^{(a)} \Psi_{32}^{(b)} \Psi_{21}^{(c)}\right]
$$

(A side remark)

- 90% of the actual work is not explained here

The point is to determine proper "flat cohomology representatives" which includes their t-dependent normalization

- For the closed string, this is achieved by the Picard-Fuchs differential equations, which are based on the theory of Hodge variations ... the heart of mirror symmetry

For open strings, a suitable non-commutative variant is not known

- Developed an approach based on contact terms that mimics Hodge theory for matrix valued operators, and leads to a matrix diffeq of the form:

$$
\nabla_{t} \bar{\Psi}_{a}(t)=d\left(\frac{\phi \bar{\Psi}_{a}}{d W}\right)_{+}
$$

$$
\begin{aligned}
\nabla_{t} & \equiv \partial_{t}+U\left(\left[\partial_{t} Q, *\right]\right) \\
U & \equiv\left(\frac{\{d Q, *\}}{d W}\right)_{+} \\
& \text {(propagator) }
\end{aligned}
$$

Superpotential on brane intersection II

- Solve differential eqn to determine t -dep of operators
- Insert in KL residue formula and make heavy use of theta-function identities such as the addition formula:

$$
\theta_{a}\left[u_{1}\right] \cdot \theta_{b}\left[u_{2}\right]=\sum \theta_{a-b+c}\left[u_{1}-u_{2}\right] \theta_{a+b+c}\left[u_{1}+u_{2}\right]
$$

(math: expresses product in Fukaya-category)

- Final result: theta functions

$$
\begin{aligned}
& C_{111}(\tau, \xi)=e^{6 \pi i \xi_{1} \xi_{2}} q^{3 \xi_{2}{ }^{2} / 2} \sum_{m} q^{3 m^{2} / 2} e^{6 \pi i m \xi} \\
& C_{123}(\tau, \xi)=e^{6 \pi i \xi_{1} \xi_{2}} q^{3 \xi_{2}^{2} / 2} \sum_{m}^{3(m+1 / 3)^{2} / 2} e^{6 \pi i(m+1 / 3) \xi} \\
& C_{132}(\tau, \xi)=e^{6 \pi i \xi_{1} \xi_{2}} q^{3 \xi_{2}^{2} / 2} \sum_{m}^{m} q^{3(m-1 / 3)^{2} / 2} e^{6 \pi i(m-1 / 3) \xi}
\end{aligned}
$$

What's the interpretation of the q-series? $\quad\left(\xi \equiv u_{1}+u_{2}+u_{3}=\xi_{1}+\tau \xi_{2}\right)$

The topological A-Model: instantons

- Interpretation of q-series: In A model mirror language, these are contributions from triangular disk instantons whose world-sheets are bounded by the three D1-branes:

$$
C_{a b c} \sim e^{-S_{\mathrm{inst}}} \sim q^{\Delta_{a b c}}+\ldots \ldots
$$

(the u-dependence corresponds to position and Wilson line moduli)
Count maps: $\Sigma \rightarrow T_{2}$

Complete effective potential (long diag branes)

$$
\mathcal{W}_{\mathrm{eff}}(\tau, u, T)=\sum_{N=1}^{6} T_{\substack{\left(a_{1}\right)}}^{\ldots} T^{\left(a_{N}\right)} C_{a_{1}, \ldots, a_{N}}^{(N)}\left(\tau, u_{1}, \ldots, u_{N}\right)
$$

- B-model: difficult to compute higher N -point Massey products with $\mathrm{N}>3$!
For (flat) elliptic curve, A-model is simpler....
- Generically, N-point functions get contributions from N -gonal instantons

General structure: indefinite theta-functions summing over all lattice translates, positive areas

$$
\sum_{m, n}^{\prime} q^{m n} \equiv\left(\sum_{m, n>0}-\sum_{m, n<0}\right) q^{m n}
$$

Polygons and instantons

$\mathrm{N}=4$: trapezoids

$$
\begin{aligned}
& \mathcal{T}_{a b \bar{c} \bar{d}}\left(\tau, u_{i}\right)=\delta_{a+b, \bar{c}+\bar{d}}^{(3)} \Theta_{t r a p}\left[\begin{array}{c}
{[b-\bar{c}]_{3}} \\
{[\bar{d}-\bar{c}+3 / 2]_{3}}
\end{array}\right]\left(3 \tau \mid 3\left(u_{1}+u_{2}+u_{4}\right), 3\left(u_{1}-u_{3}\right)\right) \\
& \Theta_{\text {trap }}\left[\begin{array}{l}
a \\
b
\end{array}\right](3 \tau \mid 3 u, 3 v)=\sum_{m, n}^{\prime} q^{\frac{1}{6}(a+3 n)(a+3 n+2(b+3 m))} e^{2 \pi i((a+3 n)(u-1 / 6)+(b+3 m) v)}
\end{aligned}
$$

$\mathrm{N}=4$: parallelograms

$$
\begin{array}{r}
\mathcal{P}_{a \bar{b} c \bar{d}}\left(\tau, u_{i}\right)=\delta_{a+c, \bar{b}+\bar{d}}^{(3)} \Theta_{p a r a}\left[\begin{array}{c}
{[c-\bar{b}]_{3}} \\
{[\bar{d}-c]_{3}}
\end{array}\right]\left(3 \tau \mid 3\left(u_{1}-u_{3}\right), 3\left(u_{4}-u_{2}\right)\right) \\
\Theta_{p a r a}\left[\begin{array}{c}
a \\
b
\end{array}\right](3 \tau \mid 3 u, 3 v) \equiv \sum_{m, n}^{\prime} q^{\frac{1}{3}(a+3 n)(b+3 m)} e^{2 \pi i((b+3 m) u+(a+3 n) v)}
\end{array}
$$

$\mathrm{N}=5$: pentagons

$$
\begin{aligned}
& \text { 5: pentagons } \\
& \wp_{a \bar{b} \bar{c} \bar{d} \bar{e}\left(\tau, u_{i}\right)=\delta_{a, \bar{b}+\bar{c}+\bar{d}+\bar{e}}^{(3)} \Theta_{\text {penta }}\left[\begin{array}{c}
{[-b-c-d]_{3}} \\
{[e+c+d]_{3}} \\
{\left[c-d+\frac{3}{2}\right]_{3}}
\end{array}\right]\left(3 \tau \mid 3\left(u_{5}-u_{2}\right), 3\left(u_{1}-u_{4}\right), 3\left(u_{3}+u_{2}+u_{4}\right)\right)} .
\end{aligned}
$$

$\Theta_{\text {penta }}\left[\begin{array}{l}a \\ b \\ c\end{array}\right](3 \tau \mid 3 u, 3 v, 3 w) \equiv \sum_{m, n, k}{ }^{\prime} q^{\frac{1}{3}\left(a_{>}+3(n+k)\right)\left(b_{>}+3(m+k)\right)-\frac{1}{6}(c+3 k)^{2}} e^{2 \pi i\left(\left(a_{>}+3(n+k)\right) u+(b>+3(m+k)) v+(c+3 k)(w-1 / 6)\right)}$

$\mathrm{N}=6$: hexagons

$\Theta_{h e x a}\left[\begin{array}{c}a \\ b \\ c \\ d\end{array}\right](3 \tau \mid 3 u, 3 v, 3 w, 3 z) \equiv \sum_{m, n, k, l}{ }^{\prime} q^{\frac{1}{3}(a+3 n)(b+3 m)-\frac{1}{6}(c+3 k)^{2}-\frac{1}{6}(d+3 l)^{2}} e^{2 \pi i((a+3 n) u+(b+3 m) v+(c+3 k)(w-1 / 6)+(d+3 l)(z+1 / 6))}$

$$
\sum_{m, n, k, l}^{\prime}=\sum_{m, n \geq 0}^{\infty} \sum_{k \geq 0}^{<k_{\max }<l_{\max }} \sum_{l \geq 0}^{-\infty}-\sum_{m, n \leq-1}^{>k_{\min }>l_{\min }} \sum_{k \leq-1}
$$

Global properties of open string moduli space

- Indefinite theta-fcts: singularities due to colliding branes eg., rewrite trapezoidal function in terms of Appel function:

$$
\Theta_{t r a p}\left[\begin{array}{l}
a \\
b
\end{array}\right](3 \tau \mid 3 u, 3 v)=e^{2 \pi i v b} \sum_{n \in Z} \frac{q^{\frac{1}{6}(a+3 n)(a+2 b+3 n)} e^{2 \pi i(a+3 n)(u-1 / 6)}}{1-q^{a+3 n} e^{6 \pi i v}}
$$

- analytic continuation

Area becomes negative: resum instantons in terms of different geometry
"instanton flop"

Global properties of open string moduli space

- Indefinite theta-fcts: singularities due to colliding branes eg., rewrite trapezoidal function in terms of Appel function:

$$
\Theta_{t r a p}\left[\begin{array}{l}
a \\
b
\end{array}\right](3 \tau \mid 3 u, 3 v)=e^{2 \pi i v b} \sum_{n \in Z} \frac{q^{\frac{1}{6}(a+3 n)(a+2 b+3 n)} e^{2 \pi i(a+3 n)(u-1 / 6)}}{1-q^{a+3 n} e^{6 \pi i v}}
$$

- monodromy

$$
\begin{aligned}
\Theta_{t r a p}\left[\begin{array}{l}
a \\
b
\end{array}\right](3 \tau \mid 3(u \pm \tau), 3 v)=e^{\mp 6 \pi i v} \Theta_{t r a p}\left[\begin{array}{l}
a \\
b
\end{array}\right](3 \tau \mid 3 u, 3 v) \\
\mp e^{-2 \pi i\left(u-\frac{1}{6}\right)\left(b-\frac{3}{2} \pm \frac{3}{2}\right)} e^{2 \pi i v\left(b-\frac{3}{2} \mp \frac{3}{2}\right)} q^{-\frac{1}{6}\left(b-\frac{3}{2} \pm \frac{3}{2}\right)^{2}} \Theta\left[\begin{array}{c}
a+b \\
-3 / 2
\end{array}\right](3 \tau \mid 3 u)
\end{aligned}
$$

induces "homotopy transformation", modular anomaly of eff action (compensate by non-lin field redef)

Summary and Outlook

- math: Cat of matrix factorizations $\longleftrightarrow D(\operatorname{Coh}(M))$ phyz: Boundary LG theory \longleftrightarrow Open string B-type top. CFT
- Represent all quantities in a quiver diagram (objects and maps) by explicit moduli-dependent, matrix-valued operators
- Combined with mirror symmetry this allows to explicitly compute instanton-corrected superpotentials (in particular, for intersecting brane configs). Requires solving a flatness DEQ.
- Generalization to $M=$ CY 3-folds, eg. for quintic is cumbersome:

