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In this talk I will discuss two topics:

1. BRST derivation of the minimal and non-minimal amplitude prescrip-

tion for the pure spinor superstring.

2. Non-decoupling of BRST exact states in the minimal formalism.
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1. Brief review of minimal pure spinor formalism

1. The worldsheet action is

Sσ =
∫

d2z
(

1

2
∂xm∂̄xm + pα∂̄θα − wα∂̄λα

)

where we display only the left-moving sector for pα, θα, wα, λα.

2. This model is invariant under a fermionic nilponent symmetry gen-

erated by

QS =
∮

dzλα(z)dα(z),

where dα = pα − 1
2
γm

αβθβ∂xm − 1
8
γm

αβγm γδθ
βθγ∂θδ.

3. The cohomology of this operator at ghost number one reproduces

the superstring spectrum.

4. The total central charge is zero, c = 0.
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Scattering amplitude prescription [Berkovits, (2004)]

1. Vertex operators:

[QS, V (0)] = 0, [QS, V (1)] = ∂V (0)

V (0) has dimension 0; V (1) has dimension 1.

2. “Picture raising and lowering” operators

YC = Cαθαδ(Cαλα),

ZB =
1

2
Bmndγmnλδ(BmnNmn), ZJ = (λαdα)δ(wαλα)

Cα is a constant spinor, Bmn is a constant antisymmetric tensor,

Nmn = 1
2
wα(γmn)α

βλβ is the Lorentz current.
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3. Picture raised “b-field”

{QS, b} = ZBT

where T is the stress energy tensor.

Amplitude prescription:

At tree-level:

A0 = 〈V (0)
1 (z1)V

(0)
2 (z2)V

(0)
3 (z3)

∫
dz4V

(1)
4 (z4)· · ·

∫
dzNV

(1)
N (zN)

YC1(y1) · · ·YC11(y11)〉
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At g-loops (g > 1)

Ag =
∫

d3g−3τ〈
3g−3∏

j=1

(b, ∂j ĝ)
10g∏

P=3g−2

ZBP
(wP )

g∏

R=1

ZJ(uR)

11∏

I=1

YCI
(yI)

N∏

r=1

∫
dzrV

(1)
r (zr)〉

where

(b, ∂j ĝ) =
∫

d2σ
√

ĝbαβ ∂ĝαβ(σ; τ k)

∂τ k

and τ k are the metric moduli.
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Non-minimal formalism

We introduce non-minimal variables: the complex conjugate λ̄α of

λα, a fermionic constrained spinor rβ satisfying

λ̄αγαβ
m λ̄β = 0, λ̄αγαβ

m rβ = 0,

and their conjugate momenta, w̄α and sa.

The action is now

Sσ → Sσ +
∫

d2z
(
−w̄α∂̄λ̄α + sα∂̄rα

)
,

and

QS → QS +
∮

dzw̄αrα

This implies that the cohomology of QS is independent of the non-minimal

variables.
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Scattering prescription [Berkovits, (2005)]

1. Vertex operators: same as in minimal formulation.

2. Picture charging operators are replaced by the ”regularization fac-

tor”

N = exp
[
−λ̄αλα − rαθα

−
g∑

I=1

(
NmnIN I

mn + J̄ IJ I + SmnI(dIγmnλ)0 + SI(dI
αλα)0

)]

N̄mn, J̄ , Smn, S are constructed from the non-mininal fields.

NmnI is the zero mode part of Nmn etc.
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3. Composite “b̃ field”

{QS, b̃} = T

Amplitude prescription

• At tree-level:

A0 = 〈NV
(0)
1 (z1)V

(0)
2 (z2)V

(0)
3 (z3)

∫
dz4V

(1)
4 (z4) · · ·

∫
dzNV

(1)
N (zN)〉

• At g-loops (g > 1)

Ag =
∫

d3g−3τ〈N
3g−3∏

j=1

(b̃, ∂j ĝ)
N∏

r=1

∫
dzrV

(1)
r (zr)〉
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Plan

Our aim is to derive these scattering amplitude prescriptions from first

principles.

Our point of view is:

1. We consider the original model as a “matter” sigma model with

target space the 10d superspace times the pure spinor space.

2. To construct a string theory we couple this theory to 2d gravity and

then BRST quantize this system.

Because the matter variables have c = 0 the 2d gravity has to be

topological.
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2. Coupling to topological gravity

The first step is to relax the conformal gauge.

The action of the minimal model coupled to gravity is given by

Sσ =
∫

d2σ
√

ggab
(

1

4
∂ax

m∂bxm + p̂aα∂bθ
α − ŵaα∂bλ

α
)

where

p̂a = P (+)b
a pb

and P (+)b
a is a projection operator,

P (±)b
a =

1

2
(δa

b ∓ iJa
b) ,

Ja
b is the worldsheet complex structure.
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For the 2d gravity to be topological the QS transformations should

also act on gab,

[QS, gab] = ψ̂ab

where ψab is a new field.

To construct an invariant action we now add a new term to the action,

Sσ → S = Sσ +
1

2

∫
d2σ

√
ggacgbdGabψ̂cd

The new action would be invariant provided there exists a composite field

Gab transforming as

{QS, Gab} = Tab
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Adding vertex operators

We will be interested in computing scattering amplitudes. For this aim,

it is useful to introduce sources ρi with Weyl weight one that couple to

vertex operators Vi

S = S +
n∑

i=1

ρiVi[ϕ](zi, ζi)

where ϕ denotes collectively all worldsheet fields.

The generating functional of scattering amplitudes is then

Z[ρi] =
∫

[dµ] exp(−S)

where the precise form of the path integral measure [dµ] will be derived

presently.
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The new action S depends on the positions of the vertex operators zi

and their QS partners, [QS, zi] = ζi.

Since ζi is fermionic

Vi[ϕ](zi, ζi) = V
(0)
i [ϕ](zi) + ζiV

(1)
i [ϕ](zi).

QS invariance of S then requires

[QS, V (0)] = 0, [QS, V (1)] = ∂V (0)
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To summarize, we have obtained an action S which

1. depends on the original fields {X, pα, θα, λα, wα}, the world-

sheet metric gab and its QS partner ψ̂cd, the positions of the vertex oper-

ators {zi, ζ
i}, which are considered as constant ”fields”, and the sources

ρi,

2. it is QS invariant,

3. it is invariant under local diffeomorphism and Weyl transformations.

This is our starting point for BRST quantization.
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3. BRST quantization

• Now that we have an action with local invariance under worldsheet

diffeomorphisms and Weyl transformations we can just follow the stan-

dard BRST rules to quantize this system.

• In our BRST treatment we include the ”gauge invariances” due to

zero modes.
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• Zero modes imply an invariance of the action, where the fields are

shifted by their zero modes. This invariance must be fixed for the path

integral to be well-defined.

• This can be done using the BV quantization scheme and amounts to

introducing a gauge fixing condition, constant ghosts, ghosts-for-ghosts,

extraghosts etc.

• In the case of the bosonic string, this leads straightforwardly to the

usual scattering amplitude prescription with all the correct path integral

insertions. The metric moduli themselves play the role of extraghosts.

[Craps, KS (2005)]
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• To maintain the QS symmetry in the process of quantization ghosts,

antighost etc are introduced in QS-pairs.

• Gauge-fixing:

L1 = QV QS(β̃ab[gab − ĝab(τ)])

where QV is the BRST operators and ĝab(τ) is a reference metric.

In addition when the Riemann surface has κ conformal Killing vectors

we need to fix κ additional constant “gauge” symmetries.

L2 = QV QS


∑

f

β ĵ(zĵ − ẑĵ)




With L1 + L2 we deal with all gauge invariances except the ones due to

zero modes of the original fields.
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All fields introduced in the BRST quantization appear at most quadrat-

ically and can be explicitly integrated out leading to the following formula

for the scattering amplitudes:

∫
dµσe

−Sσ
∏

k

dτ k(G, ∂kĝ)
κ∏

ĵ=1

V
(0)

ĵ
(ẑĵ)

n∏

i=κ+1

∫
dziV

(1)
i (zi)

where (G, ∂kĝ) =
∫
Σ d2σ

√
ĝGab∂kĝab. Recall that G is defined by

{QS, G} = T

We still need to determine the path integral measure dµσ over the

original fields {X, pα, θα, λα, wα}.
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Pure spinor measure

The pure spinor path integral measure is again determined by BRST-

BV quantization treatment of the zero mode gauge invariances.

”Gauge” invariances due to fermionic zero modes are not very impor-

tant in this context; the vertex operators provide the required zero modes

so that the path integral is non-vanishing.

”Gauge” invariance due to bosonic non-compact zero modes must be

gauge fixed, however, because otherwise the integration over them is

divergent; the action Sσ does not contain a convergence factor because

of the zero mode gauge invariance.
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Recall that on a genus g surface:

A worldsheet scalar has one zero mode, and a worldsheet vector has g

zero modes.

So in total we have the following bosonic zero modes:

10 zero modes xm, 11 zero modes λα

11g zero modes wI
α. These we trade for:

10g zero modes N I
mn of the 10 independent components of Nmn

g zero modes J I of J .

(Nmn is the (contribution of the pure spinors to the) Lorentz current and

J is the ”ghost” U(1) generator).
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Gauge fixing

The treatment of x-zero modes is standard.

To gauge fix the remaining invariances due to the pure spinor fields

we introduce the following gauge fixing term:

L3 = QV QS

(
bαθα +

g∑

I=1

(bmnIN I
mn + bIJ I)

)
.

where bα, bmnI , bI are corresponding antighosts.
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Integrating out ghost and antighosts leads to

L3 = παλα + π̃αθα

+
g∑

I=1

(
π̃mnIN I

mn + π̃IJ I + πmnI(dIγmnλ)0 + πI(dI
αλα)0

)

where the π fields are the (constant) BRST auxiliary fields imposing the

gauge fix conditions.

πα, π̃α have 11 independent components each,

πmnI , π̃mnI have 10g independent components each and

πI , π̃I are g (constant) fields.
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Non-minimal formulation

The auxiliary fields πα and π̃α have exactly the properties of the (zero

modes) of the non-minimal variables λ̄α and rα, namely the have the

same number of components and the same QS transformations, so one

may identify them:

πα = λ̄0
α, π̃α = r0

α

Similarly one finds that one can identify:

πmnI = N̄mnI , π̄mnI = SmnI , πI = SI , π̃I = J̄ I

With these identifications, the regularization factor is exactly equal to

the gauge fixing Lagrangian:

N = exp(−L3)
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Furthermore, the equation

{QS, G} = T

has a solution

GB =
λ̄αGα

(λ̄λ)
+

λ̄αrβH [αβ]

(λ̄λ)2
− λ̄αrβrγK

[αβγ]

(λ̄λ)3
− λ̄αrβrγrδL

[αβγδ]

(λ̄λ)4

We thus arrive at the non-minimal scattering amplitude prescription.

The GB field however has poles as λ̄λ → 0 so there are potentially

problems.
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Note that there exits a field [Berkovits, (2005)]

ξnm =
λ̄αθα

λ̄βλβ + rβθβ
, {QS, ξnm} = 1.

This diverges as (λ̄λ)−11.

Had one allowed such singular behavior any closed operator V would

also be exact,

{QS, V } = 0 ⇒ V = {QS, (ξnmV )}.

So one must ensure that no operators which diverge with this rate are al-

lowed. A related issue is that the path integral will diverge if the insertions

diverge as fast as (λ̄λ)−11. This can only happen for genus g > 2.
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To avoid this problem one needs a different representative of [G] that

is less singular. A construction of such representative is discussed in

[Berkovits, Nekrasov (2006)]. The actual construction however is very

complicated and has not been used is actual computations to date.

Given that the issues with singularities are related to the λ̄λ → 0

limit, a different approach would be to modify the gauge fixing condition

for the pure spinor zero modes such that they are fixed to a non-zero

value.

If such gauge fixing can be consistently implemented it would lead to

a simpler scattering amplitude prescription.
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Minimal prescription

Let us go back to the gauged fixed action:

L3 = παλα + π̃αθα

+
g∑

I=1

(
π̃mnIN I

mn + π̃IJ I + πmnI(dIγmnλ)0 + πI(dI
αλα)0

)

where the π fields are the (constant) BRST auxiliary fields imposing the

gauge fix conditions.

πα, π̃α have 11 independent components each,

πmnI , π̃mnI have 10g independent components each and

πI , π̃I are g (constant) fields.
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Let us parametrize the 11 independent components of πα and π̃α as

πα = piC
i
α, π̃α = p̃iC

i
α, i = 1, . . . , 11

where pi, p̃i and the independent components and Cα
i is a constant

matrix of rank 11. Integrating out pi, p̃i leads to the insertion in the path

integral
11∏

i=1

δ(Ci
αλα)Ci

αθα

which is the same as the insertion of 11 “picture-lowering” operator YC .
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Similarly, we parametrize the 10g independent components of πmnI

and π̃mnI as

πmnI = pjIBmn
jI , π̃mnI = p̃jIBmn

jI , j = 1, . . . , 10

Integrating over pjI , p̃jI and πI , π̃I leads to 10g insertions of ZB and g

insertions of ZJ :
g∏

i=1

ZJi

10g∏

j=1

ZBj
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It remains to discuss the composite G field. A simple solution of the

defining equation

{QS, G} = T

is

G0 =
CαGα

Cαλα

where Gα is a known expression. [Berkovits, (2001)
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This solution is however not acceptable because had we allowed for

operators with behavior (Cαλα)−1 the QS-cohomology would be trivial.

Indeed, since there exists

ξ =
Cαθα

Cαλα
, {QS, ξ} = 1.

A related issue is that the positions of the poles of G are also the

positions of the zeros of the path integral insertions thus making the ex-

pressions ill-defined.
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The defining equation only defines a cohomology class [G]. The

question is then whether there exists a different representative such that

the poles in the new G would cancel against zeros in other path integra-

tion insertions. Indeed, such a representative G1 exists,

G1 = b/ZB

where b is the “picture-raised b ghost”

{QS, b} = ZBT.

G1 indeed represents the same cohomology class as G0 [Oda, Tonin

(2005)].

Combing all ingredients we arrive at the scattering amplitude prescrip-

tion in the minimal formulation.
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In this case the b field is

• complicated but explicitly known.

• it has no poles as λ → 0.

So the minimal version appears to give in principle a well-defined pre-

scription for any scattering amplitude.

However, as we will shortly see, the theory suffers from BRST anoma-

lies, namely QS-exact states do not decouple.
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• To define the minimal scattering amplitudes one has to supply the

constant tensors Cα, Bmn. These enter through gauge fixing so phys-

ical quantities should be independent of them. In particular, the theory

should still be Lorentz invariant.

• At tree-level we need to choose 11 independent tensors Cα. A

Weyl spinor decomposed under SU(5) as 16 → 1 ⊕ 1̄0 ⊕ 5, so a

simple choice is:

C1
α = δ+

α , (C2)a1a2 = δ
[a1

1 δ
a2]
2 , · · · , (C11)a1a2 = δ

[a1

4 δ
a2]
5 ,

all other CI
α = 0.
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Let us compute a simple amplitude, the 3-point function of a gauge

boson with two gluinos:

〈λαA1α(z1)λ
βA2β(z2)λ

γA3γ(z3)YC1(∞) · · ·YC11(∞)〉

where Aα(x, θ) = (1
2
am(γmθ)α − 1

3
(ξγmθ)(γmθ)α + · · ·),

Computing this amplitude with this choice of C ’s leads to a surprising

answer:

εabcdeξ1
abξ

2
cda

3
e

instead of the expected answer

ξ1γmξ2a3
m =

2(ξ+
1 ξa

2a
3
a + ξa

1ξ
+
2 a3

a −
1

4
εabcdeξ1

abξ
2
cda

3
e + ξ1

abξ
a
2a

b
3 + ξa

1ξ
2
aba

b
3).
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The amplitudes are formally independent of Cα but is this really true?

Let us shift

δC11
α = δ1

α

This leads to

δYC11 = QS(θ1θ45δ
′(λ45))

Computing

δA = 〈V1(z1)V2(z2)V3(z3)YC1(∞) · · ·YC10(∞)δYC11(∞)〉
=

∫
d16θA1

(+A2
+A3

45)θ12 · · · θ45.

which is non-zero.
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To understand the origin of the problem we need to know a little

bit more about the pure spinor integration measure. This is given by

[Berkovits (2004)]:

[dλ]λαλβλγ = dλα1 ∧ · · · ∧ dλα11(εT )αβγ
α1···α11

for a certain known invariant tensor (εT )αβγ
α1···α11

. In U(5) variables

[dλ] =
dλ+ ∧ dλ12 ∧ · · · ∧ dλ45

(λ+)3

The problems originate from the poles in the measure.
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The picture changing operators are formally QS-closed but because

of the poles in the measure they are not closed inside correlators:

QSYC = Cαλαδ(Cαλα) = λ+δ(λ+), for C+
α = δ+

α

This would be zero, if the remaining expression was polynomial in λ+ but

the measure contains a factor of (λ+)−3.
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Resolution

The minimal scattering amplitude prescription, as presented in the

original paper [Berkovits (2004)], involved an additional step: since the

amplitude is is (formally) independent of the C , one can integrate over

C .

This step restores Lorentz invariance and furthermore one can show

that now all BRST exact states decouple.

However, since the amplitudes do depend on the choice of C ’s, such

procedure is questionable.

40



Lorentz invariant version of PCO

It turns out there is a Lorentz invariant version of the picture changing

insertions that does not contain constant tensors:

A = 〈V1(z1)V2(z2)V3(z3)
∫

dz4U4(z4) · · ·
∫

dzNUN(zN)

Λαβγ(∞)(εT )αβγ
β1···β11

θβ1(∞) · · · θβ11(∞)〉.
where Λαβγ is defined by

∫
[dλ]λαλβλγΛα′β′γ′ = δ

(α
α′ δ

β
β′δ

γ)
γ′ −

1

40
γ(αβ

m γm
(α′β′δ

γ)
γ′).
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• There is a unique such tensor. All components can be obtained

from

Λ+++ = 6δ(λ+)δ(λ12) · · · δ(λ45).

by acting with the Lorentz generators.

• One can show that QS-exact states decouple.

• This is equivalent with integrating over C ’s.
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One-loop amplitudes

There are two new features. We need to insert

1. new PCO’s: ZB, ZJ .

2. composite b ghost.

Both of them involve the constant tensor Bmn. So let us choose some

Bmn’s and see whether

• amplitudes are Lorentz invariant

• BRST exact states decouple.
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We want to compute amplitudes with one insertion of a BRST exact

state:

〈QSΩ1

N∏

i=2

∫
dziUi(zi)

∫
duµ(u)b̃B1(u,w)

(λB2d)(y) · · · (λB10d)(y)(λd)(y)

δ(B2N(y)) · · · δ(B10N(y))δ(J(y))

Λδ1δ2δ3(y)(εT )δ1δ2δ3
β1···β11

θβ1(y) · · · θβ11(y)〉,

”Integrating QS by parts” one may get a boundary contribution from QS

acting on b̃. The anomaly we will discuss here originates instead from

QS acting on the picture changing operators. These terms are formally

zero since PCO are meant to be BRST closed.
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We choose:

(B1)ab = δ[1
a δ

2]
b , · · · , (B10)ab = δ[4

a δ
5]
b , (BI)ab = (BI)a

b = 0

It turns out that all one-loop amplitudes with one BRST exact state are

proportional to the following integral:

Iβ2···β11 =
∫

[dλ]
1

(λ+)8
λβ1(λγ13d) · · · (λγ45d)(λd)Λαβγ(εT )αβγ

β1···β11
.

In this form it becomes apparent that the problems with factors of λ+ in

the denominator only become worse at one loop.

We have computed this integral and it is non-zero.
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4- and 5-point 1-loop amplitudes

• For 4-point 1-loop amplitude with one BRST exact state, it turns out

the amplitude vanishes after the d-integration is performed.

• This is special to 4-point functions, it does not happen for 5-point

functions.

• The Lorentz variation of 4-point 1-loop amplitudes is also non-zero.
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These computations were done for a specific choice of Bmn. What

happens if we integrate over Bmn?

4-point functions: BRST exact states decouple. This follows from

representation theory: the amplitude vanishes because a certain type of

invariant tensor does not exist.

5-point functions: Group theory alone does not imply decoupling of

BRST exact states.
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BRST anomalies in non-minimal formalism?

Given that we have found BRST anomalies in the minimal formal-

ism, one can ask whether there are similar problems in the non-minimal

version. In the minimal formalism the problems originated from the QS

variation of the PCO. These are replaced in the non-minimal version by

N = exp(−λλ̄− rθ + · · ·)
The QS variation of this is

QSN = −(λr − rλ + (A− A)) exp(−λλ̄− rθ + · · ·) = 0,

where (A−A) comes from QS(· · ·) and this formally implies decoupling

of QS-exact states.

The question is then whether one gets other infinities that would in-

validate decoupling.
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To check this we split the amplitude into two parts and compute the

piece with only the insertion (rλ) (and its analogue for 1-loop) sepa-

rately. If each piece is infinite one would have a∞−∞ situation and a

potential anomaly.

We found no anomaly. However, the amplitudes behave differently

depending whether the minimal computation is anomalous or not:

1. BRST anomaly in the minimal version↔ each piece is finite in the

non-minimal version.

2. Group theory implies decoupling in the the minimal version ↔
same group theory implies each piece vanishes separately.
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Summary

1. I presented a first principles derivation of the scattering amplitude

prescriptions for the pure spinor superstring.

2. Minimal and non-minimal formulations are formally equivalent.

3. Minimal formulation, however, suffers from BRST anomalies.

Outlook

There are indications that one can formulate a ”new minimal” version

that does not suffer from BRST anomalies.
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An analogy

One can describe the relation between the minimal and non-minimal

formalisms using the following elementary example.

Consider complex x, p and consider the following integral along the

real axis for both x, p,
∫ ∞

−∞
dx

∫ ∞

−∞
dp

2π
eipxf(x) =

∫ ∞

−∞
dxδ(x)f(x) = f(0) (1)

Now rotate the contour so that p = ix∗ so the integral becomes

i

2π

∫
dxdx∗e−|x|

2

f(x) =
1

π

∫ 2π

0
dθ

∫ ∞

0
rdre−r2

f(reiθ) (2)

(1) and (2) would give exactly the same answer if f(x) is non-singular

but (1) is ill-defined for any choice of singular f(x) whereas (2) may not

be singular.
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For example, choose

f(x) =
1

x
(3)

(1) yields∞ but (2) gives 0.
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