Freedom and constraints in the landscape of magnetized/intersecting brane models

KITP workshop: Fundamental Aspects of Superstring Theories

March 25, 2009

Washington (Wati) Taylor, MIT

Based on:

arXiv:0903.0386, w/ V. Kumar hep-th/0606109, w/ M. R. Douglas arXiv:090?.?, w/ V. Rosenhaus

W. Taylor Freedom and constraints in the landscape

Outline

Intersecting Brane Models

1. Philosophy

Can string theory make quantitative predictions for 4D low-E physics?

- A priori, unlikely q. gravity at 10¹⁹ GeV affects physics at 1 TeV
- Long hoped: low-energy physics computable from string theory (e.g. *e*⁻ mass)
- Landscape: threatens predictability below Planck scale
- Issues:
 - Can't define theory completely
 - Probably understand only set of measure 0 of vacua (*G*₂, non-Kaehler, non-geometric,...)
 - Difficult to compute in known vacua (no simple world-sheet description w/R-R fields, etc.)
- Probabilities on landscape: difficult to interpret w/o understanding time-dependence & cosmology in ST

So how can we hope for quantitative predictions?

Searching for stringy constraints

Given a large set \mathcal{V} of vacua (e.g. II flux vacua on CY, IBM on toroidal orientifolds, ...)

And observables $\ensuremath{\mathcal{O}}$

(e.g. gauge group, matter content, couplings, ...)

How are observables distributed?

Extreme cases

A: "Anything goes" (perhaps B: "Bounded"), C: "Constrained"

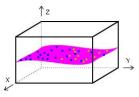
A) Anything goes

B) Bounded

C) Constrained

If there are constraints on low-energy physics

These constraints should be visible in every corner of the landscape



Common constraint on \mathcal{O} in disparate sets of vacua $\mathcal{V}_1, \mathcal{V}_2$

 \Rightarrow hints at global constraint

Motivates looking at classes of vacua, looking for:

- Mathematical characterization of classes of vacua
- Range of low-energy field theories available in classes
- Complementary to standard approach of looking for realistic model
- Secondary motivation: find algorithms for constructing classes of models with specific properties like $H \subset G$ for $H = SU(2) \times SU(3)$

Landscape/Swampland problem for predictive phenomenology: What range of EFT's arise in allowed (metastable) string vacua?

Possibility A: "Anything goes"

Perhaps virtually any variation on standard model below 100 TeV can be realized in string theory (change masses, couplings, matter content, extensions, ...)

- Predictivity difficult, maybe impossible in practice
- Progress requires real dynamics, measure etc.

Possibility C: Low-Energy Constraints

Perhaps not all low-E field theories allowed from ST

- May give constraints, (e.g. 3/19 of SM parameters)

Focus on theories w/SUSY ----why?

- If SUSY at intermediate scale:
 - If no constraints from ST on SUSY theory, low-energy constraints derivable from SUSY FT and SUSY breaking mechanism
 - If constraints from ST on SUSY theory:
 ⇒ constraints on broken SUSY theory at sub TeV scales
- If SUSY breaking at Planck scale: \Rightarrow predictions very tough

So: look for constraints arising from ST on SUSY field theory + gravity in 4 and higher dimensions

For today, focus on gauge group *G*, matter content (representations, # generations)

Don't worry about moduli, cosmology

Question: does ST make definite predictions anywhere in landscape?

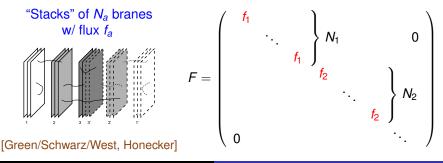
2. Magnetized Brane Models

Magnetized brane models on K3 [V. Kumar/WT arXiv:0903.0386]

Result: Clean mathematical characterization of class of vacua: $6D \ {\cal N}=1 \ SUSY$ models w/ rank 16 gauge group

Setup: Type I/heterotic SO(32) (Spin(32)/ \mathbb{Z}_2) on K3

16 D9's (+ orientifold images) w/fluxes \sim T-dual of IBM



Constraints on fluxes

• Fluxes fa integrally quantized

 $f_a \in H^2(K3,\mathbb{Z}) = \Gamma^{3,19} = U \oplus U \oplus U \oplus U \oplus E_8(-1) \oplus E_8(-1) \quad \left[U = \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}\right)\right]$

• f_a generate even integral lattice $\Lambda \subset \Gamma^{3,19}$

Tadpole constraint :
$$\frac{1}{8\pi^2} \int_{S} \text{Tr} \mathcal{F} \wedge \mathcal{F} = -\frac{1}{2} \int_{S} p_1(R) \Rightarrow \sum_{a} N_a f_a \cdot f_a = -24$$

SUSY constraints : $\int f^a \wedge \Omega = 0 \quad \int f^a \wedge \overline{\Omega} = 0 \quad \int f^a \wedge J = 0$

$$J$$
 J J J J

Λ negative definite \Rightarrow ∃ Ω, *J* giving SUSY (pos. def. 3-plane in Γ^{3,19})

Constraints for SUSY vacuum: Define matrix $m_{ab} = f_a \cdot f_b$

$$\sum_{a} N_{a} m_{aa} = -24, \quad m_{ab} \text{ negative semidefinite}$$

Parameters N_a , $m_{ab} \Rightarrow$ gauge group, matter content in 6D Gauge group: $G = U(N_1) \times U(N_2) \times \cdots \times U(N_K) \times SO(32 - 2\sum_a N_a)$

> [Technical points: 1) Some U(1)'s anomalous \rightarrow massive, 2) *G* may be enhanced when $J \cdot f = 0$, $f^2 = -2$]

Matter content: depends only on N_a , $m_{ab} = f_a \cdot f_b$

Rep. (+ c.c.)	# hypermultiplets
Adjoint U(N _a)	1
(N_a, \bar{N}_b)	$(-2 - (f_a - f_b)^2)$
(N_a, N_b)	$(-2 - (f_a + f_b)^2)$
Antisym. $U(N_a)$	$(-2-4f_{a}^{2})$
(<i>N</i> _a , 2 <i>M</i>)	$(-2 - f_a^2)$
Neutral	20

Anomalies: F^4 , R^4 cancel (e.g. $n_H - n_V + 29n_T = 273$) [Green/Schwarz/West, Intriligator, Honecker]

So for this class of models

 N_a , m_{ab} parameterize 6D physics Tadpole + SUSY: $\sum_a N_a m_{aa} = -24$, m_{ab} neg. semidefinite

Question: Up to these constraints, what N_a , m_{ab} possible?

Answer: A, "Anything goes"

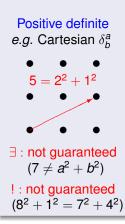
Furthermore, realization of given N_a , $m_{ab} \sim$ unique up to duality — Some discrete redundancy (generalize Banerjee/Sen dyon #'s)

Key: Nikulin results on lattice embeddings

Embedding theorems: vector (1D lattice) embeddings as example

Given lattice Λ with $\langle x, y \rangle \in \mathbb{Z}$, desired norm ν

Existence: $\exists x \in \Lambda : \langle x, x \rangle = \nu$? Uniqueness: Is such an *x* unique (up to Λ automorphisms?)



Even unimodular

e.g. E₈ root lattice

$$E_8 = \{(x_1, \dots, x_8) : \\ \sum x_i \in 2\mathbb{Z}, \\ x_i \in \mathbb{Z} \text{ or } \mathbb{Z} + 1/2 \ \forall i \}$$

 \exists : Guaranteed!

!: not guaranteed (e.g. $\nu = 14 \Rightarrow 2x$'s w/ $\langle x, x \rangle = 14$) Even unimodular indefinite signature rank \geq 4 + | sig. |

e.g.
$$\Gamma^{2,2} = U \oplus U$$
,

 $\exists : \text{Guaranteed} \\ ((1, x, 0, 0)^2 = 2x)$

- ! : Guaranteed unique (Wall's theorem)
 - -!primitive ($x \neq nx'$) -! to automorphism

Nikulin's theorem

Let \mathcal{M} be an even lattice of signature (t_+, t_-) and let \mathcal{L} be an even, unimodular lattice of signature (l_+, l_-) . There exists a unique primitive embedding $\eta : \mathcal{M} \hookrightarrow \mathcal{L}$, provided the following conditions hold:

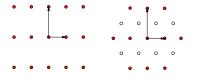
1
$$l_{+} - t_{+} > 0$$
 and $l_{-} - t_{-} > 0$.
2 $l_{+} + l_{-} - t_{+} - t_{-} \ge 2 + l(A(\mathcal{M})_{p}) \forall$ primes $p \ne 2$.
3 $l_{+} + l_{-} - t_{+} - t_{-} \ge l(A(\mathcal{M})_{2});$ if = then $A(\mathcal{M}) \cong \mathbb{Z}_{2}^{3} \oplus A'$.

Definitions:

 $A(\mathcal{M}) = \mathcal{M}^*/\mathcal{M}, \ A(\mathcal{M})_p$ = subgroup of elements of order p^k (any k) $I(A(\mathcal{M})_p) =$ # generators of $A(\mathcal{M})_p$ primitive: $\eta(\mathcal{M}) = \text{Span}(\eta(\mathcal{M})) \cap \mathcal{L}$

Note: $l(\mathcal{A}(\mathcal{M})_p) \leq t_+ + t_$ so when $l_+, l_- = 3, 19, t_+ = 0, \Rightarrow$ always OK for $t_- \leq 10$ Some consequences of Nikulin's theorem (after some fiddling with special cases)

- For every N_a , m_{ab} satisfying tadpole + SUSY, $m \Rightarrow \Lambda$ embeds into $\Gamma^{3,19}$, $m, \Lambda \rightarrow f \rightarrow \Omega, J$ ("Anything goes")
- $\Lambda \hookrightarrow \Gamma^{3,19}$ can be primitive in all cases except $(-2)^{12}$.
- Redundancy from overlattices w/ discrete embeddings (generalizes Banerjee & Sen dyon invariants)



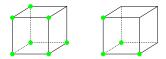
Result: separatesConstraints (tadpole, SUSY, $N, m \rightarrow 6D$ physics)Freedom (any $N, m : \sum_a N_a m_{aa} = -24, m \le 0)$

Example of lattice embeddings

Kummer lattice $K \subset \Gamma^{3,19}$ from orbifold

Basis E_i , i = 1, ..., 16, $\{\sum_{i \in H} \frac{1}{2}E_i : H \text{ affine hyperplane in } \mathbb{Z}_2^4\}$ inner product $\langle E_i, E_j \rangle = -2\delta_{ij}$

can embed $(-2)^{11}$



can embed $(-2)^{12}$ but not in primitive fashion!

Application: find all models w/ $SU(3) \times SU(2) \subset G$

- Straightforward (ignoring possible enhancement of G)
- $N_1 = 3, N_2 = 2$

$$m = \begin{pmatrix} m_{11} & m_{12} \\ m_{12} & m_{22} \end{pmatrix} = \begin{pmatrix} A & B \\ B & C \end{pmatrix}$$
$$A < 0, \ C < 0, \ 3A + 2B \ge -24, \ AC - B^2 > 0$$

71 models. # "quarks" in $(3,2) + (3,\bar{2})$ is $(-4 - 2m_{11} - 2m_{22}) \ge 4$

Point: just plug in values for desired quantities.

No extra info needed about rest of model (unlike IBM toroidal orientifold models-next part)

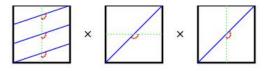
Comments on K3 rank 16 models

- For e.g. SO(32 N) × SU(N), construction gives all anomaly-allowed #'s of hypers in allowed rep's
- These are special points in moduli space.
 Turning on nonabelian fluxes → reduces rank, more general
- For complete analysis need to include enhancement from small instantons on shrinking cycles [Aspinwall/Morrison, Intriligator]

3. Intersecting Brane Models

Intersecting Brane Models in IIA

Well known, simple models



 $T^6/Z_2 \times Z_2$ orientifold well studied, $\Rightarrow \supset$ SM gauge group, 3 gens. [Blumenhagen/Körs/Lüst(/Görlich/Ott), Ibáñez/Marchesano/Rabadan, Aldazabal/Franco/Ibáñez/Rabadan/Uranga, Cvetic/Shiu/Uranga, Cvetic/Li/Liu, Cremades/Ibanez/Marchesano, Kumar/Wells, March./Shiu]

Systematically studied:

Blumenhagen/Gmeiner/Honecker/Lüst/Weigand (Computer search)

Douglas/Taylor, Rosenhaus/Taylor (Complete analysis)

IBM on $T^6/Z_2 \times Z_2$

Winding numbers on each torus

Tadpoles: $P = n_1 n_2 n_3$, $Q = -n_1 m_2 m_3$, $R = -m_1 n_2 m_3$, $S = -m_1 m_2 n_3$ Cancellation: $\sum_a P_a = \sum_a Q_a = \sum_a R_a = \sum_a S_a = 8$ SUSY conditions (when P, Q, R, S > 0):

$$\frac{1}{P} + \frac{J}{Q} + \frac{\kappa}{R} + \frac{J}{S} = 0, \qquad P + \frac{1}{j}Q + \frac{1}{k}R + \frac{1}{l}S > 0.$$

3 kinds of branes (up to S_4 symmetry):

a:
$$- + + +$$
, **b**: $+ + 00$, **c**: $+ 000$

moduli + a branes (negative tadpoles) make problem tricky.

Blumenhagen et al. [hep-th/]

Fix moduli $\vec{U} = (\hat{h}, \hat{j}, \hat{k}, \hat{l}) \in \mathbb{Z}^4$ $(j = \hat{j}/\hat{h}, k = \hat{k}/\hat{h}, l = \hat{l}/\hat{h}),$

Scan over $U = |\vec{U}|$, fixed $|\vec{U}| \rightarrow p.d.$ condition \rightarrow finite solutions

- Scanned to U = 12, found $\sim 10^8$ models, complexity exponential
- Seemed found most models, decreasing tail
- G components, # generations \sim random

Douglas/Taylor [hep-th/0606109]

• Proved finite # total solutions, analytic bounds on a-brane combos

Rosenhaus/Taylor (to appear)

- Completed construction of all a-brane combinations (99,479)
- Allows construction of models w/ desired features
- \bullet Confirmed \sim random distribution
- "Diversity in tail"

Example: consider $H = SU(3) \times SU(2) \times U(1) \subset G$ (distinct U(1))

- For each of 10⁵ a-brane combinations, add b's, c's

- Find all 3 + 2 + 1 combos (~ 13.4 M)
- Of these, for \sim 12.9M moduli fixed, typical $U \sim$ 1000

Explanation:

- More diverse 3 + 2 + 1 combos w/ large negative tadpole from a's
- \bullet Large negative tadpole \rightarrow large moduli
- Fewer ways to complete models at large moduli w/ "extra" sector

Generations: # "quarks" $\sim \mathcal{O}(10)$, no suppression of 3 generations.

Conclusions

K3 Magnetized Brane Models

- \bullet Nikulin theorem \Rightarrow simple math. characterization of model space
- Only constraints SUSY, tadpole, $N_a, m_{ab} \rightarrow$ 6D physics
- $\sum N_a m_{aa} = -24, m \le 0 \Rightarrow$ exists lattice embedding
- Models unique up to dualities, discrete redundancy from overlattices
- Direct construction of models w/ desired properties

IBM on $T^6/\mathbb{Z}_2 \times \mathbb{Z}_2$

- Completed analysis of allowed negative tadpole (a-brane) combos
- Allows direct construction of models w/ desired properties
- "Diversity is in the tail" of this landscape slice

Further Directions

- Extend analysis of 6D *N* = 1 SUSY models (nonabelian bundles, gauge enhancement, discrete *B*, bundles w/o v.s.)
- Apply K3 results, lattice embedding theorems in other contexts (less SUSY, lower dimensions, ...)
- Find more general theoretical structure
 ⇒ finite # IBM SUSY models
- Consider IBM/MBM on more general Calabi-Yau manifolds (proof of finite # solutions, ...)