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Q:  Can there be friction between colloids? Does it Matter?
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Shear Thickening Mechanisms

Wagner, Brady Phys. Today 2009

‘Hydroclusters’ ‘Friction’

Seto et al PRL 2013

VS

gradient direction. Stokesian dynamics simulations, however,
demonstrate that hydrodynamic forces become larger at high
shear rates (Pe ≫ 1) than do interparticle forces that drive
Brownian motion. So when the particles are driven close to-
gether by applied shear stresses, lubrication hydrodynamics
strongly couple the particles’ relative motion. The result is a
colloidal dispersion that has a microstructure significantly

different from the one near equilibrium, and hence, the energy
dissipation increases. In hindsight, that should not be surpris-
ing given Batchelor’s calculation of closed trajectories.

In both semidilute and concentrated dispersions, the
strong hydrodynamic coupling between particles leads to the
formation of hydroclusters—transient concentration fluctua-
tions that are driven and sustained by the applied shear field.
Here again, the analogy to traffic collisions disrupting or-
ganized, low-dissipation flow may be helpful. Unlike the
seemingly random microstructure observed close to equilib-
rium, however, this microstructure is highly organized and

30 October 2009    Physics Today www.physicstoday.org

The flow of particles suspended in an incompressible Newtonian
fluid is a challenging fluid-mechanics problem that can be han-
dled analytically for a single sphere and semianalytically for two
spheres. For three or more particles, though, it requires a numer-
ical solution to the Stokes equation—the Navier–Stokes equa-
tion without inertia. Solution strategies range from brute-force
finite-element calculations, to more elegant boundary integral
methods, to coarse-grained methods, such as smoothed-
particle hydrodynamics or lattice Boltzmann techniques, for rep-
resenting the fluid. The method of Stokesian dynamics17 starts
with the Langevin equation for N-particle dynamics,

in which the tensor M is a generalized mass, a 6N × 6N mass and
moment-of-inertia matrix; U is the 6N-dimensional particle trans-
lational and rotational velocity vector; and the 6N-dimensional
force and torque vectors represent the interparticle and external
forces FP (such as gravity), hydrodynamic forces FH acting on the
particles due to their motion relative to the fluid, and stochastic
forces FB that give rise to Brownian motion. The stochastic forces
are related to the hydrodynamic interactions through the 
fluctuation–dissipation theorem. 

In Stokes flow the hydrodynamic forces
and torques are linearly related to the par-
ticle translational and rotational velocities
as FH = −R · U, where R is the configura-
tion-dependent hydrodynamic resistance
matrix. In the Stokesian dynamics method,
the necessary matrices are computed by
taking advantage of the linearity of the
Stokes equations and their integral solu-
tions. Long-range many-body hydro -
dynamic effects are accurately computed

by a force-multipole expansion and combined with the exact,
analytic lubrication hydrodynamics to calculate the forces.

Armed with that method, one can predict the colloidal
microstructure associated with a particular shear viscosity. Take,
for instance, a concentrated colloidal dispersion whose particles
occupy nearly half the volume. If the positions of those particles
are represented as dots, the figure illustrates how the hydro -
dynamic forces affect their probable locations around some
arbitrary test particle (black). The three panels differ only in the
shear rate, represented by the Péclet number Pe, the ratio of the
shear and diffusion rates.

At low Péclet number (0.1), the distribution of neighboring
particles is isotropic, which is typical of a concentrated liquid.
Red indicates the most probable particle positions as nearest
neighbors and green the least probable. At Pe = 1, significant
shear distortion appears in neighbor distributions, such that
particles are convected together along the compression axes
(135° and −45°) relative to the shear flow. At high Péclet num-
bers, the shear-thickening regime, particles aggregate into
closely connected clusters, which is manifest as yet greater
anisotropy in the microstructure. Particles are more closely
packed and thus occupy a narrower region (red) around the test
particle than at lower Péclet numbers, indicative of being
trapped by the lubrication forces.18

Box 3. Stokesian dynamics

Pe = 0.1 Pe = 1 Pe = 1000

M • ,= F + F + FP H B
dU
dt

SHEAR STRESS OR SHEAR RATE

V
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Figure 2. The change in microstructure of a colloidal disper-
sion explains the transitions to shear thinning and shear thick-
ening. In equilibrium, random collisions among particles make
them naturally resistant to flow. But as the shear stress (or,
equivalently, the shear rate) increases, particles become organ-
ized in the flow, which lowers their viscosity. At yet higher
shear rates, hydrodynamic interactions between particles dom-
inate over stochastic ones, a change that spawns hydroclusters
(red)—transient fluctuations in particle concentration. The dif-
ficulty of particles flowing around each other in a strong flow
leads to a higher rate of energy dissipation and an abrupt in-
crease in viscosity. 
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Mechanisms?
Hydrodynamics ( i.e. hydroclusters) 
Frictional interactions (i.e dilatantcy, granularity)

Real- space configuration of hydroclusters
Cheng, et al., science 333, 1276-1279 (2011)

www.sciencemag.org    SCIENCE    VOL 333    2 SEPTEMBER 2011 1231

PERSPECTIVES

changes on the other. An emerging picture 

is that changes in the suspension viscosity 

resulting from viscous-drag-mediated parti-

cle rearrangements are typically small com-

pared with viscosity changes found when 

interparticle interactions introduce addi-

tional stress scales into the problem. It is 

therefore instructive to represent the rheo-

logical response by a sum of stress contribu-

tions, such that each regime is dominated by 

a different source of stress (see the fi gure).

Shear thinning results when there is a 

stress dominating at low shear rates that does 

not increase with shear rate as fast as the 

Newtonian viscous stress. Besides entropic 

stresses studied by Cheng et al., any source of 

a nearly constant stress results in an arbitrarily 

strong shear thinning, because in the zero 

shear rate limit the viscosity becomes infi nite. 

These other sources of stress include interpar-

ticle attractions ( 5), repulsions from an elec-

trostatic potential ( 6), steric (solid particle) 

repulsion ( 7,  8), gravitational pressure ( 9,  10), 

and attractions from induced electric or mag-

netic dipoles ( 11). In contrast, the viscosity 

decrease from viscous-mediated layer forma-

tion is relatively small ( 12). In line with this, 

Cheng et al. argue that layering alone can-

not be primarily responsible for the observed 

shear thinning. Strong shear thinning can 

occur in suspensions with particle structures 

that are either loosely connected (attractive 

forces) or random (entropic forces). On the 

other hand, random particle arrangements can 

be found along with either strong (entropic) or 

weak (viscous) shear thinning. These exam-

ples demonstrate that large changes in the vis-

cosity do not necessarily correspond to 1-to-1 

changes in structure.

In the shear-thickening regime, the vis-

cous-drag-mediated interactions involving 

hydroclusters similarly result in a relatively 

mild viscosity increase, typically less than 

50% ( 1,  3). On the other hand, strong shear 

thickening in concentrated suspensions such 

as cornstarch and water can result in a nearly 

discontinuous jump in viscosity of a few 

orders of magnitude. This has been attributed 

to frictional particle contacts that form when 

dense particle arrangements begin to dilate 

and push against boundaries ( 10). Therefore, 

as was the case for shear thinning, dramatic 

shear thickening can be attributed to the 

introduction of a new stress scale, in this case 

the stiffness of the boundary.

One intriguing outstanding issue concerns 

whether there is any connection between the 

weak viscous and strong frictional mecha-

nisms for shear thickening. A possible sce-

nario is that the hydroclusters eventually 

become large enough that they span the sys-

tem and jam. If the boundaries exert suffi -

cient stress to frustrate dilation, then this, in 

turn, could lead to stronger shear thickening. 

The ability to track individual particles as 

demonstrated by Cheng et al. opens up the 

possibility to investigate such a connection. 
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   T
he number of people on Earth contin-

ues to increase, although it is likely to 

peak at between 9 and 10 billion later 

in this century ( 1). Not only will there be 

more people, but they will be wealthier and 

will demand a more varied diet. This increas-

ing pressure to produce more food comes at 

a time when productive land is being lost to 

urbanization and to the net negative effects 

of climate change ( 2). In the face of these 

threats, conservationists have long debated 

how best to preserve biodiversity. Some argue 

that the priority should be “land sharing”—

simultaneously using agricultural landscapes 

for less-intensive cultivation (sacrifi cing crop 

yields) and conservation. Others favor “land 

sparing,” or maximizing agricultural out-

puts from some land in order to allow other 

land to be set aside for conservation ( 3,  4). 

On page 1289 of this issue, Phalan et al. ( 5) 

draw on surveys of biodiversity in landscapes 

in Ghana and India to provide some valuable 

hard data to inform this discussion.

Phalan et al. studied tropical landscapes 

that consisted of a mosaic of habitats, includ-

ing natural forests, mixed woodlands and 

farmlands, and more intensively managed 

farmlands. In each study area, they identi-

fi ed a set of 1-km2 squares that included the 

full range of habitats. Then they estimated 

the population densities of selected bird and 

tree species, as well as the agricultural yields, 

within each square. This enabled them to con-

struct “density-yield” curves for each species 

(see the fi gure). They found that some spe-

cies were “losers”; their population densities 

always declined when land was converted 

from forest to agriculture. Others were “win-

Food and Biodiversity
ECOLOGY

H. Charles J. Godfray

Density-yield curves help evaluate whether land sharing or land sparing most benefi ts biodiversity.
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not generate overlaps—vanishes with δz≡ zc − z, where
zc ¼ 2d in d dimensions. This causes the viscosity (and the
correlation length [30]) to diverge as [31]

P ¼ A0η0γ
:
δz−α; (6)

where A0 is a constant and α≃ 2.7. In frictional packings,
counting soft modes is slightly more involved; nonetheless,
these must be present for a system of hard particles to flow,
and it is found numerically that at the critical state ϕm the
number of soft modes is just zero [32]. Both facts suggest
that the loss of soft modes again causes the viscosity
divergence. We shall thus assume that Eq. (6) is valid for all
packings, so long as δz represents the actual number of soft
modes per particle. Theoretically the dependence
of δz on ϕ is not derived, but follows empirically from
the observed divergences for rough and smooth particles
(with constants Ar;s) as

δzr ¼ Arðϕm − ϕÞβr=α (7)

δzs ¼ Asðϕ0 − ϕÞβs=α. (8)

Any given packing has a definite z; but the number of
soft modes, δz, depends on the fraction, fðpÞ, of frictional
contacts. The problem of counting soft modes is somewhat
subtle for spherical particles, but we expect the rheology of
spherical and aspherical particles to display only minor
differences [33]. For aspherical grains the number of soft
modes simply decreases as the number of constraints
increases. The latter should increase linearly with the
number of frictional contacts, leading to

δz ¼ fðpÞδzr þ ð1 − fðpÞÞδzs. (9)

Equations (6)–(9) are closed. For simplicity we assume
(in qualitative accord with the empirical results) that
Ar ¼ As ¼ A, and α ¼ βr ¼ βs ¼ 2. This gives results
completely equivalent to (3), (4), with λ ¼ A0η0=A2.
(From now on we choose rescaled units where λ ¼ 1.)
As already made clear, details of the crossover function
fðpÞ are unimportant unless its decay to unity at large p is
very slow.
Results and discussion.—We next present numerical

results for a suitably bland choice, fðpÞ ¼ 1 − expð−pÞ.
The resulting flow curves Pðγ: Þ are shown in Fig. 1.
A key finding is the onset of DST at a packing fraction
ϕDST ≈ 0.55, distinctly below ϕm ¼ 0.58. As ϕ approaches
ϕDST from below, the slope of the flow curves become more
and more pronounced for p ∼ 1, implying a growing CST.
In our model, which neglects inertia, at higher γ

:
this crosses

over to a second Newtonian regime of high viscosity. At
ϕDST the slope is vertical, and for ϕDST < ϕ < ϕm, the flow
curve is sigmoidal, signaling hysteretic DST between upper
and lower branches of finite viscosity. The maximal extent

of hysteresis is delineated by two strain rates γ
:þ > γ

:−

where dγ
:
=dP ¼ 0. For ϕ → ϕm, we find γ

:− → 0. At this
point, the upper branch of the sigmoid disappears, signify-
ing complete jamming. For ϕ ≥ ϕm material is flowable
at low stress, but completely jammed for p ≫ 1. One may
still observe a discontinuous (and possibly hysteretic)
thickening at γ

:þ, but the thickened state must flow
inhomogeneously.
Figure 2 shows a phase diagram of the various flow

regimes. Inside the solid (blue) curve, there is hysteresis
and flow can depend on strain-rate history. Several features
of this diagram do not depend on the details of f:
(a) near ϕDST the hysteresis zone narrows to a cusp, with
γ
:þ − γ

:− ∝ ðϕ − ϕDSTÞ3=2, as expected from a saddle node
bifurcation; (b) on the approach to complete jamming,
γ
:− vanishes at least as ðϕm − ϕÞ2, and for f0ð0Þ > 0
as ðϕm − ϕÞ3 (modulo logarithmic corrections); (c) γ

:þ

vanishes only at ϕ0 beyond which homogeneous flow is
impossible even at infinitesimal γ

:
.

In the presence of noise, jumps can occur before the
relevant stability limit is reached: the hysteretic regime in
Fig. 2 represents the maximum possible. (Noise-induced
nucleation might recover a single-valued but discontinuous
curve as dγ

:
=dt → 0, but this limit could in turn prove

experimentally inaccessible [34].) Note also that at DST,
where Iv jumps downward and p up, one expects a jump in
the stress ratio μ ¼ σ=P which depends on the full form of
μðIv; pÞ. (However numerics support that μ weakly
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φ=0.472
0.508
0.544
0.554
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Growing φ

FIG. 1 (color online). Log-log plot of flow curve pðγ: Þ from
(3, 4) with λ ¼ 1, ϕ0 ¼ 0.64 and ϕm ¼ 0.58, for various ϕ. For
small ϕ, the behavior is near Newtonian. As ϕ increases, CST
becomes pronounced; its onset pressure p≃ 1 barely depends on
ϕ (unlike the corresponding strain rate). The dashed line is for
ϕ ¼ ϕDST. For ϕDST < ϕ < ϕm, DST is predicted with hysteresis
between two flowing, unjammed states. For ϕ > ϕm (dotted
lines) homogeneous flow can only occur at small strain rates.
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represents
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possible. (N

oise-induced
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not generate
overlaps—

vanishes
w
ith

δz≡
z
c −

z, w
here

z
c ¼

2d
in
d
dim

ensions. This causes the viscosity
(and

the

correlation
length

[30]) to
diverge

as
[31]

P
¼
A
0 η

0 γ :
δz −

α;

(6)

w
here

A
0 is a

constant and
α≃

2.7. In
frictional packings,

counting
soft m

odes is slightly
m
ore involved; nonetheless,

these m
ust be present for a system

of hard
particles to

flow,

and
it is

found
num

erically
that at the

critical state
ϕ
m
the

num
ber of soft m

odes is
just zero

[32]. Both
facts

suggest

that
the

loss
of

soft
m
odes

again
causes

the
viscosity

divergence. W
e shall thus assum

e that Eq. (6) is valid
for all

packings, so
long

as δz represents the actual num
ber of soft

m
odes

per
particle.

Theoretically
the

dependence

of
δz

on
ϕ
is
not

derived, but
follow

s
em

pirically
from

the
observed

divergences
for

rough
and

sm
ooth

particles

(w
ith

constants
A
r;s ) asδz

r ¼
A
r ðϕ

m −
ϕÞ β

r =α

(7)

δz
s ¼

A
s ðϕ

0 −
ϕÞ β

s =α.

(8)

A
ny

given
packing

has
a
definite

z; but the
num

ber of

soft m
odes, δz, depends on

the
fraction, fðpÞ, of frictional

contacts. The
problem

of counting
soft m

odes is som
ew
hat

subtle for spherical particles, but w
e expect the rheology

of

spherical
and

aspherical
particles

to
display

only
m
inor

differences
[33]. For aspherical grains

the
num

ber of soft

m
odes

sim
ply

decreases
as

the
num

ber
of

constraints

increases.
The

latter
should

increase
linearly

w
ith

the

num
ber of frictional contacts, leading

to

δz ¼
fðpÞδz

r þ
ð1 −

fðpÞÞδz
s .

(9)

Equations
(6)–(9)

are
closed.

For
sim

plicity
w
e
assum

e

(in
qualitative

accord
w
ith

the
em

pirical
results)

that

A
r ¼

A
s ¼

A,
and

α
¼
β
r ¼

β
s ¼

2.
This

gives
results

com
pletely

equivalent
to

(3),
(4),

w
ith

λ ¼
A
0 η

0 =A
2.

(From
now

on
w
e
choose

rescaled
units

w
here

λ ¼
1.)

A
s
already

m
ade

clear, details
of

the
crossover

function

fðpÞ are
unim

portant unless its decay
to
unity

at large
p
is

very
slow.

Results
and

discussion.—
W
e
next

present
num

erical

results
for

a
suitably

bland
choice, fðpÞ ¼

1 −
expð−pÞ.

The
resulting

flow
curves

Pðγ :Þ
are

show
n
in

Fig.
1.

A
key

finding
is
the

onset of
D
ST

at a
packing

fraction

ϕ
D
ST ≈

0.55, distinctly
below

ϕ
m ¼

0.58. A
s ϕ

approaches

ϕ
D
ST from

below, the slope of the flow
curves becom

e m
ore

and
m
ore

pronounced
for p

∼
1, im

plying
a
grow

ing
CST.

In
our m

odel, w
hich

neglects inertia, at higher γ :
this crosses

over to
a
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N
ew
tonian

regim
e
of

high
viscosity. A

t

ϕ
D
ST the slope is vertical, and

for ϕ
D
ST <

ϕ
<
ϕ
m , the flow

curve is sigm
oidal, signaling

hysteretic D
ST
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upper

and
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viscosity. The

m
axim
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of
hysteresis

is
delineated

by
tw
o
strain
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γ :þ

>
γ :−

w
here

dγ :=dP
¼
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ϕ
→

ϕ
m , w

e
find

γ :−
→

0. A
t this

point, the
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sigm

oid
disappears, signify-

ing
com

plete
jam

m
ing. For

ϕ
≥
ϕ
m
m
aterial
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flow
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stress, but com

pletely
jam

m
ed

for p
≫
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m
ay

still
observe

a
discontinuous

(and
possibly

hysteretic)

thickening
at

γ :þ
,
but

the
thickened

state
m
ust

flow

inhom
ogeneously.

Figure
2
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s
a
phase
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various

flow
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solid
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flow
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of

f:

(a) near
ϕ
D
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bifurcation;
(b)
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at
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odulo
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corrections);
(c)
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only

at
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0 beyond
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hom
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is

im
possible

even
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increase defines a new transition, from the shear-thinning
liquid regime to a jammed state. Jamming appears at
lower stress (or strain) when the volume fraction in-
creases. At high concentration of particles, the liquid
domain disappears, and it becomes impossible to distin-
guish between the gel and the jammed phase. Within
experimental uncertainties, the boundary between liquid
and jammed states does not change when the size of the
particle varies [Fig. 1(a)] and cannot be rescaled the same
way as the stress at the gel/liquid boundary was. This
implies that the stress at which jamming transition occurs
does not rely upon thermal fluctuations on the length
scale of the particles, but that jamming is essentially a
geometrical transition, governed by the free volume of
the suspension.

Let us now apply a constant shear rate. In the ‘‘liquid’’
phase, the stress is well defined and fluctuates around
a mean value, with Gaussian noise of small ampli-
tude [Fig. 2(a)]. Then, when one reaches the transition
shear rate between the liquid and the jammed states, the
stress distribution is no longer Gaussian but assumes an
extreme-value distribution statistics. Nevertheless, the
probability distribution function of the stress exhibits a
well-defined maximum. The most probable stress value
continuously increases as _!! is increased while the ampli-
tude of the fluctuations increases [Fig. 1(b)]. It thus exists
a well-defined low-viscosity branch of flow from which
fluctuations develop. The amplitude of the largest fluctu-
ations may be 10 times higher than the most probable
stress value. The stress distribution function exhibits a
very long power-law tail [Fig. 2(b), from _!! ! 190 to
780 s"1]. At higher strain rates, the fluctuations are cut
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FIG. 2. (a) Time evolution of stress for four different imposed
shear rates (from bottom to top: 80, 190, 1000, and 2200 s"1

(right axis)] of 700 nm particles at a volume fraction of 43%.
For _!! ! 1000 s"1, we indicate the mean stress value and the
width of the Gaussian noise. (b) Probability distribution func-
tions of stress for different shear rates (left to right: 80, 190,
480, 780, 1000, 1200, 1400, 2200 s"1). The fit of the Gaussian
fluctuations is indicated on the 190 and 1000 s"1 curves
(dashed line).
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FIG. 1. (a) Dynamic phase diagram for five particle sizes
[400 nm (!), 700 nm ("), 1 "m (#), 1:5 "m ($), and
2:5 "m (%)]. Filled symbols delimit the gel from the liquid
states, whereas hollow symbols define the liquid from jammed
phases boundary. Inset: boundary between the gel and liquid
states, in adimensional stress units, #a3=kBT. (b) Stress, #, vs
shear rate, _!!, for a suspension of 700 nm particles at $ ! 43%.
Filled symbols are mean stress values, and hollow symbols are
stress most probable values (they cannot be distinguished from
each other for _!! # 300 s"1). The line is a power-law fit of the
average stress in the liquid regime, leading to # / _!!0:63.
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Fig. 2. figure

(a) Snapshots of the stress field at three consecutive time points. (b) Line profiles of g(x), the normalized two-dimensional
autocorrelation of ‡x(r̨) along the velocity direction at two values of the rheometer gap Inset: Profiles of g(y), the the
autocorrelation along the vorticity direction. (c) Evolutions of the average temporal cross-correlation, g(x, ”t) at di�erent time
lags (‡ = 1000 Pa, h = 100 µm). (d) Propagation velocity of high stress regions scaled by the velocity of the top boundary (h
= 100 µm).

propagating in velocity direction. The stresses within these
regions are approximately an order of magnitude larger than
applied stress. The average local viscosity calculated from
BSM matches fairly well with the bulk viscosity (Supplemen-
tary Fig. 6). We visualized the motion of the suspension in
this regime with tracer particles with an excitation/emission
di�erent from the fiduciary beads on the PDMS surface. We
find that the tracer particles intermittently become motion-
less, indicating that a localized portion in the suspension has
jammed into a fully solid (non-sheared) state. These localized
motionless regions often span the system height as shown in a
representative movie of the suspension 50 µm above the bot-
tom boundary at a radius where the gap is 100 µm (SI Video
7). The motionless regions are of finite extent, and therefore
are accompanied by complex flow fields in the surrounding
suspension. Interestingly, we observe a large degree of slip at
the top plate while jammed region remain static, suggesting a
fracture plane is formed at the top of the solid phase.

The existence of a fully jammed solid-like phase is reminis-
cent of the behavior of W-C model, where at su�ciently high
concentrations the strain rate goes to zero above a critical
stress(12). The fact that the boundary stresses associated with
that solid phase are motionless indicates that the boundary
slip observed at lower concentrations is eliminated, presumably
due to the dilatancy of the fully jammed suspension. This
behavior is consistent with the protrusion observed in colloidal
as well granular suspensions on the free surface near the outer
open boundary during shear thickening(14). These observa-
tions highlight the importance of the boundaries during the
transition to DST, and to the complexity of the spatiotemporal
dynamics in this regime.

5. Discussion

Based on our boundary stress microscopy measurements, the
suspension behavior can be divided into three di�erent regimes
(i) 0.3 < „ < 0.52, (ii) 0.52 Æ „ < 0.57 and (iii) „ Ø 0.57.
In regime (i) the boundary stresses are uniform and the bulk
shear thickening exponent — < 0.5. In regime (ii), propagating
regions of high stress appear with a frequency and intensity
that increases with applied stress and concentration, and that
increase accounts the observed shear thickening. Regime (iii) is
characterized by the appearance of very high non-propagating
boundary stresses, indicative of fully jammed regions.

The high stress regions in regime (ii) show nearly Newto-
nian apparent viscosities ÷H , although it is important to note
that ÷H , like the average viscosity reported from macroscopic
rheology, is calculated from average quantities. If, for example,
the shear rate within the high viscosity phase is highly non-
uniform in the gradient direction, ÷H would not characterize
a true local viscosity. Nonetheless, the behavior in regime (ii),
where regions of the suspension transition abruptly to a high
viscosity phase, is reminiscent of the bifurcation between low
viscosity and high viscosity branches described in the W-C
model, representing states with di�erent fractions of frictional
contacts created when the stress between particles exceeds the
critical stress necessary to overcome the repulsive forces that
stabilize the suspension. Because the value of „ at which the
viscosity diverges depends on the fraction of frictional contacts,
an instability arises in certain regimes due to positive feedback
between the increased local stress and viscosity resulting from
the added frictional contacts between particles. Our results
are consistent with a model where the high stress state appears
intermittently in localized clusters with a size determined by

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
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• Shear Thickening — frictional /dilatant 

• Phase separation process — low/high viscosity 

• Surface Stress Reveals Intermittency 

• The Boundary Reveals New Rheology  
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