Landau Theory for Stresses in Dense Frictional

Suspensions

Statistical Mechanics with Friction

Kabir Ramola, Jetin Thomas, Bulbul Chakraborty Romain Mari,Abhi Singh, Jeff Morris

Suspension + Granular Rheology

- A "universal" relationship between the macroscopic friction coefficient and the viscous number
-When a suspension is sheared at constant volume, the shear and normal viscosities can be expressed in terms of the friction coefficient and the viscous number:

$$
\eta=\frac{\mu(I)}{I} \quad \eta=\frac{\mu}{I(\mu)}
$$

A theory for the macroscopic friction coefficient $\mu(\sigma, \phi)_{2}$

Stress Space

2D Systems: Force Tilings

Forces at contacts can have normal and tangential components. Impose force balance on every grain, and use Newton's third law

Force Moment Tensor

$$
\begin{gathered}
\hat{\Sigma}=\sum_{i j} \vec{r}_{i j} \otimes \vec{f}_{i j} \\
\hat{\Sigma}=\left(\begin{array}{cc}
L_{y} \Gamma_{y x} & L_{y} \Gamma_{y y} \\
-L_{x} \Gamma_{x x} & -L_{x} \Gamma_{x y}
\end{array}\right)
\end{gathered}
$$

Force Tilings Constructed from DST Simulations

Shape can Fluctuate

$$
\begin{gathered}
\mu=\frac{\tau}{P}=\frac{\sqrt{\left(N_{1}\right)^{2}+4 \sigma^{2}}}{2 P} \\
P=\frac{\Gamma_{\mathrm{yx}}-\Gamma_{\mathrm{xy}}}{2} \\
N_{1}=\Gamma_{\mathrm{yx}}+\Gamma_{\mathrm{xy}}
\end{gathered}
$$

For now, we have set normal stress difference to zero, then area of the box, A, is the single shape parameter.

$$
A=\sigma^{2}\left(\frac{1}{\mu^{2}}-1\right)
$$

Point Patterns: Vertices of Force tilings

$(0.76,1)$

$(0.8,1)$

The set of points is represented by "height vectors" : $\left\{\vec{h}_{i}\right\}$

Pair Correlation Functions

Can these microscopic correlations lead to changes in $\mu(\sigma, \phi)$

Stress Anisotropy from Data

Figure: Observed $\mu=\tau / P$ from the data.

Constructing a Thermal Ensemble

- Using the pair correlations we can construct a potential

$$
\begin{equation*}
V_{2}^{\phi}(\vec{h})=-\log \left(\frac{g_{2}(\vec{h})}{g_{2}(|\vec{h}|)}\right) \tag{1}
\end{equation*}
$$

that induces an anisotropy in the interactions based on the observed correlation functions.

- The ensemble of configurations that are sampled in the non-equilibrium dynamics are assumed to obey a statistical mechanical description, with each configuration \mathcal{C} occurring with a probability $p(\mathcal{C}) \propto \exp (-V(\mathcal{C}))$.

Statistical Mechanics

- Shear stress sets the pressure scale (and Area): we control this by a Lagrange multiplier $f_{p}^{*}(\sigma)$.
- The partition function of the system is given by

$$
\begin{align*}
Z_{\sigma, \phi}= & \frac{1}{N!} \int_{0}^{\infty} d A \exp \left(-N f_{p}^{*}(\sigma) A\right) \times \\
& \underbrace{\int_{A} \prod_{i=1}^{N} d \vec{h}_{i} \exp \left(-\sum_{i, j} V_{2}^{\phi}\left(\vec{h}_{i}-\vec{h}_{j}\right)\right)}_{\exp \left(-\epsilon_{\phi}(A)\right)} \tag{2}
\end{align*}
$$

where the positions \vec{h}_{i} are confined to be within the box defined by $A \equiv\left(\vec{\Gamma}_{x}, \vec{\Gamma}_{y}\right)$.

Testing the Potentials

Figure: a) Observed pair correlation functions at $\sigma_{x y}=2$, at packing fractions $\phi=0.76,0.785,0.79$. b) Potentials constructed using the pair correlation functions (c) A comparision with pair correlations from Monte Carlo simulations.

Sampling the Energy Function

- We perform a Monte Carlo sampling of the energy function

$$
\begin{equation*}
\exp \left(-\epsilon_{\phi}(A)\right)=\int_{A} \prod_{i=1}^{N} d \vec{h}_{i} \exp \left(-\sum_{i, j} V_{2}^{\phi}\left(\vec{h}_{i}-\vec{h}_{j}\right)\right) ; \quad A=\sigma^{2}\left(\frac{1}{\mu^{2}}-1\right) . \tag{3}
\end{equation*}
$$

Figure: Sampled Energy Function for $\mathrm{N}=512$.

Free Energy Function

- The free energy of the system is then given by

$$
\begin{equation*}
\mathcal{F}_{\sigma, \phi}=-\log Z_{\sigma, \phi} . \tag{4}
\end{equation*}
$$

- The free energy per particle is given by

$$
\begin{equation*}
f(\mu)=f_{p}^{*}(\sigma) \sigma^{2}\left(\frac{1}{\mu^{2}}-1\right)-\log \left[\sigma^{2}\left(\frac{1}{\mu^{2}}-1\right)\right]+\epsilon_{\phi}(\mu) / N \tag{5}
\end{equation*}
$$

Free Energy Function

Figure: Free Energy per particle, $N=3000, f_{p}^{*}=0.002$.

Variation of μ with ϕ

Figure: Variation of μ with ϕ at different imposed shear stresses.

Rheology from μ

- We can use μ to predict the viscosity

$$
\begin{equation*}
\eta=\frac{\mu}{\left(\mu-\mu_{c}\right)^{2}} \tag{6}
\end{equation*}
$$

Figure: Predicted viscosity at different packing fractions ϕ. With $\mu_{c} \approx 0.385$.

Improving the Theory

- We can improve the interaction potential.
- We can include normal stress fluctuations.
- Finally, we can measure the autocorrelations in the components of the stress tensor and directly predict the viscosity.

