

Non-linear mechanics of colloidal gels and attractive glasses

George Petekidis

IESL-FORTH & Department of Materials Science and

Technology - University of Crete,

Heraklion, Crete, Greece

work with Alan Jacob (now in NC State) and Esmaeel Moghimi

Following work with Nick Koumakis (now Edinburgh) John Brady (Caltech), BD simulations Wilson Poon, Rut Besseling (Edinburgh), rheo-confocal

KITP, January 2018

At high ϕ particles

are caged =>

glass (φ>0.58)

HS Colloids: Liquid-solid transition increasing volume fraction

Hard spheres approaching glass transition

Poon, Pusey, Bartsch, ...; Bergenholtz, Cates, Fuchs, Sciortino, Zaccarelli, ...

(i) One yielding for repulsive (HS) glasses
 (ii) <u>Two step</u> in attractive glasses
 & (iii) lower φ gels

Koumakis et al., PRL 2012, PRL 2013, JoR 2016

(ii) attractive glass at $\varphi=0.6$ (Pham et al. EPL, 2006; JoR, 2008)

(iii) attractive gel at φ =0.44 (Koumakis et al. Soft Matter 2011 & 2015; Laurati et al., JCP, 2009 & JoR 2011, 2014; Ballesta et al, Soft Matter 2013; Moghimi et al Soft Matter 2017)

Similar response in oscillatory shear (LAOS)

Rate dependence of gel yielding

 γ_0 or γ

 $Pe_{dep} = \frac{F_{visc}}{F_{dep}} = \frac{12\pi\eta\xi R^{3}\dot{\gamma}}{U_{dep}(2R)} \rightarrow \text{ ratio of viscous to depletion forces } >1 => \text{ clusters break}$ with $\xi = \delta / R$ (attraction range/particle size)

For $F_{visc} = 6\pi\eta R\nu > F_{dep}$ bonds will rupture

 $Pe_{dep} \equiv M_n$ (Mason # for magnetorheological fluids)

a) Tuning colloidal gels by steady and oscillatory shear

Koumakis et al. Soft Matter 2015, Moghimi et. al. Soft Matter 2017

b) Yielding of attractive glasses

(Moghimi et al. in preparation, 2018)

Experimental rheometry - BD simulations

Experiments

Use model colloidal systems: PMMA HSs + depletion attractions

PMMA particles + PB (or PS) linear chains in octadecene (non volatile solvent) or cis-decalin/CHB for imaging ... Strength of attraction: U(2R)/k_BT \approx 0 to -20, Range: size ratio, $\xi \approx 0.1$

Brownian Dynamics simulations (Foss & Brady, J. Rheology, 2000)

<u>BD:</u> No HI, Periodic boundary conditions, Here: Typically ~30000 particles, polydispersity ~10%

$$\mathbf{F}^{\mathbf{P}} = \mathbf{F}^{HS} + \mathbf{F}^{dep}$$

HS part: "Potential free" algorithm

N. Koumakis et al. Soft Matter (2015)

Rheometry:

MCR -501, 302, Anton-Paar Stress controlled rheometers

ARES, Strain controlled

Shear history effects - Thixotropy

Wide range of systems: flocculated suspensions, particle networks, gels, pastes, glasses

Crude oils, waxes, paints, food products, clay minerals (cement, drilling muds), biological systems...

Thixotropic systems: J. Mewis, J. Coll. Int. Sci. 1972, JNNFM. 1979 ... Rheo Acta 2005, Soft Matter 2006 ... etc and many others: Coussot, Buscall, Vermant, Bonn, Denn, Metzner, Beris, ...

Tuning gel heterogeneity by steady shear

Tuning gels by steady shear

Structural characteristics: void volume, # bonds scale with Pe_{dep} for different ranges and strengths of attraction Good agreement between experiments and BD simulations

N. Koumakis et al. Soft Matter 11, 4640, (2015)

Tuning gels by steady shear: Structure and rheology after shear cessation

Higher rates are followed by longer restructuring But eventually create a stronger solid

N. Koumakis et al. Soft Matter, (2015)

BD Simulations: Structure after oscillatory pre-shear

BD simulations, 30k particles

Larger heterogeneity at intermediate strain amplitudes

Steady vs. oscillatory preshear

Experiments

Oscillatory shear creates weaker gels at intermediate Pe <=> more heterogeneous structure?

Higher attraction strengths affected more by preshear

=>Indication of arrested phase separation

Tuning colloidal gels by oscillatory shear

experiments

Nonlinear response:

- Experiments: -two step yielding affected by preshear
- -promoted by intermediate strain amplitude preshear, creating larger heterogeneity

BD Simulations:

weaker effects of preshear due to absence of HI

BD simulations

External deformation fields => induce "memory" in metastable states -<u>Oscillatory pre-shear more efficient</u> in tuning structure and mechanical properties of colloidal gels

Low rates/strain amplitude => large heterogeneities/weak gels

High rates/strain amplitudes ⇒ More homogeneous/stronger gels

<u>-Nonlinear response affected by shear history:</u> Two step yielding promoted by heterogeneity Two step yielding not evident in gels without HI

- Probe the microscopic structural changes during yielding in attractive glasses
- Relate the two step process with specific mechanisms at particle level
 => Probe current hypothesis of bond and cage braking
- Follow structure dynamics and link it with stress during yielding

Repulsive vs. Attractive glass (BD simulations)

Particle localization distance for a HS glass (φ =0.62) Structure: (peak of g(r): δ /R=0.07 Dynamics: plateau of MSD: δ /R=0.24

For attractive glass localization is much less ~ bond range

Start-up shear – Different shear rates (Pe)

Similar gualitative findings in BD simulations and experiments:

- Two step yielding seen in BD, contrary to lower $\boldsymbol{\phi}$ gels
- Both peaks in attractive glass increase with Pe
- 1st peak at around 5% in both experiments and BD
- 2nd peak at same characteristic strain (~100% in experiments, ~30% in BD)

- 1st peak increase in size and shifts to lower strains as range is decreased
- 1st yield strain (y₁) follows attraction range => relates with bonds similar findings in experiments (Koumakis et al, Soft Matter 2011)

Repulsive vs. Attractive glass BD simulations

Follow as a function of strain during start-up shear: a) bond number and b) structural anisotropy (max. g(r) in compression and extension axis)

- 2nd peak follows structural anisotropy as in HS glasses (cage deformation)
- 1st peak relates with bonds: increase (particles come closer due to shear) and then decrease (bond breaking) (however both weak ??)

• Super-diffusive behavior of particles near the first stress peak (1st yield): ballistic motion of particles during bond extension (mainly in extension axis)

• Shear induced diffusive motion beyond the 1st yield point

Follow Dynamics (MSD) during start-up shear

MSD the same for attractive and HS glass beyond corresponding to the length-scale of the 1st stress peak of attractive glass => Attractions are not important beyond this length-scale Then 2nd yield strain => cage deformation & breaking

- Experiments + BD simulations: qualitative agreement on two step yielding (HI are not crucial at such high φ)
- Attractive glasses yield in two steps, first related with bond stretching & breaking (+HS contribution) and second cage breaking (similar to HS glass)
- Particles escape from the bonds through super-diffusive motions (around 1st yield) and exhibit diffusive behavior after the 1st stress overshoot

E. Moghimi and G.P. in preparation (2017)

- Andy Scofield (Edinburgh), synthesis
- John Brady (Caltech), Nick Koumakis (now Edinburgh)
- Wilson Poon, R. Besseling (Edinburgh)

Funding: "Thales" project 'Covisco', "Aristeia II" project "MicroSoft"

MARIE CURIE

Long time shear induced diffusion different in attractive and HS glass at low Pe (<1) => probably due to different structural changes

Transient slip:

Ballesta et al., Soft Matter, 2013

Gels restructuring/ sedimentation => Slip due to detachment from the wall