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Colloidal non-ergodic states:

Glasses- Gels

Gels

Arrested phase separation

Attractive glasses
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Pham et al., Science, 2002

Poon, Pusey, Bartsch, ...; Bergenholtz, Cates, Fuchs, Sciortino, Zaccarelli, ...



Yielding during start-up shear

(i) One yielding for repulsive (HS) glasses (i) Hs glass at 9=0.6

(ii) Two step in attractive glasses o0 Y F
& (iii) lower ¢ gels e .‘eizaege, Py ‘. &
00 “° eeo

Koumakis et al., PRL 2012, PRL 2013, JoR 2016

(ii) attractive glass at ¢=0.6
(Pham et al. EPL, 2006; JoR, 2008)
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10° / 1 = Repulsive Glass |
- = | Attractive Gel (iii) attractive gel at ¢=0.44
== Attractive Glass | (Koumakis et al. Soft Matter 2011 & 2015;
o Laurati et al., JCP, 2009 & JoR 2011, 2014;
10 10 10 Ballesta et al, Soft Matter 2013; gecme mmns
Y (%) Moghimi et al Soft Matter 2017) 4

Similar response in oscillatory shear (LAOS)




Rate dependence of gel yielding
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A simplified picture
N. Koumakis and GP, Soft Matter (2011) ) ) )
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with £ =6/ R (attraction range/particle size)

Pe,, =M, (Mason # for magnetorheological fluids)



a) Tuning colloidal gels by steady and
oscillatory shear

Koumakis et al. Soft Matter 2015,
Moghimi et. al. Soft Matter 2017

b) Yielding of attractive glasses

(Moghimi et al. in preparation, 2018)




Techniques:

Experimental rheometry - BD simulations

Experiments Brownian Dynamics simulations
(Foss & Brady, J. Rheology, 2000)

Use model colloidal systems:
PMMA HSs + depletion attractions

PMMA particles + PB (or PS) linear chains in
octadecene (non volatile solvent)

or cis-decalin/CHB for imaging ...

Strength of attraction: U(2R)/kgT= 0 to -20,
Range: size ratio, £¢=0.1

BD: No HI, Periodic boundary conditions,
Here: Typically ~30000 particles, polydispersity ~10%

Rheometry: = HS d
F* =F™ +F™
MCR -501, 302, Anton-Paar
Stress controlled rheometers HS part: “Potential free” algorithm
ARES , Strain controlled AX HS Attractive part :
o F* =6znR Ugept | AO depletion
i Cone+plate (rough to avoid slip) At !
: o® ' » I
JJ ;. Rheo-Confocal F, - _d_U 2R (1+)
: P dr

N. Koumakis et al. Soft Matter (2015)



Tuning colloidal gels by steady and oscillatory shear

Shear history effects - Thixotropy
Wide range of systems: flocculated suspensions, particle networks, gels, pastes, glasses

Crude oils, waxes, paints, food products, clay minerals (cement, drilling muds), biological systems...

Thixotropic systems: J. Mewis, J. Coll. Int. Sci. 1972, JNNFM. 1979 ... Rheo Acta 2005, Soft Matter 2006 ...etc

and many others: Coussot, Buscall, Vermant, Bonn, Denn, Metzner, Beris, ...
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Tuning gel h
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Tuning gels by steady shear
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Structural characteristics: void volume, # bonds
scale with Peg,, for different ranges and strengths of attraction

Good agreement between experiments and BD simulations

N. Koumakis et al. Soft Matter 11, 4640, (2015)



Tuning gels by steady shear:
Structure and rheology after shear cessation
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Higher rates are followed by longer restructuring

But eventually create a stronger solid N. Koumakis et al. Soft Matter, (2015)



Tuning gels by oscillatory shear

BD Simulations: Structure after oscillatory pre-shear

Structure at rest

BD simulations, 30k particles

Larger heterogeneity at intermediate strain amplitudes

Moghimi et al. Soft Matter (2017)




Steady vs. oscillatory preshear

Experiments

00d e T T Effect of attraction strength
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Oscillatory shear creates weaker gels at intermediate Pe
<=> more heterogeneous structure?

Higher attraction strengths affected more by preshear

=>Indication of arrested phase separation
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Tuning colloidal gels by oscillatory shear

experiments )
P Nonlinear response:

Experiments:
-two step yielding affected by preshear
-promoted by intermediate strain amplitude preshear,

creating larger heterogeneity

@ 7=0.15%]

c (Pa)

BD Simulations:
weaker effects of preshear due to absence of HI

BD simulations
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Tuning colloidal gels by shear
Conclusions

External deformation fields => induce "memory” in metastable states

-Oscillatory pre-shear more efficient in tuning structure and
mechanical properties of colloidal gels

Oscillatory

Low rates/strain amplitude e e
=> large heterogeneities/weak gels AR o

High rates/strain amplitudes
— More homogeneous/stronger gels

-Nonlinear response affected by shear history:
Two step yielding promoted by heterogeneity
Two step yielding not evident in gels without HI




Attractive vs. repulsive glasses

Probe the microscopic structural changes during yielding in attractive
glasses

Relate the two step process with specific mechanisms at particle level
=> Probe current hypothesis of bond and cage braking

Follow structure - dynamics and link it with stress during yielding

Attractive glass I 0
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Repulsive vs. Attractive glass (BD simulations)

Structure at rest Dynamics at rest

(pair correlation function) Mean Square Displacements (MSD) @
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Particle localization distance for a HS glass (9=0.62)

Structure: (peak of g(r): 8/R=0.07
Dynamics: plateau of MSD: 8/R=0.24

For attractive glass localization is much less ~ bond range



Repulsive vs Attractive glass

Start-up shear — Different shear rates (Pe)

Experiments
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Similar qualitative findings in BD simulations and experiments:

Two step yielding seen in BD, contrary to lower ¢ gels

Both peaks in attractive glass increase with Pe
Ist peak at around 57% in both experiments and BD

2" peak at same characteristic strain (~1007% in experiments, ~30% in BD)




Repulsive vs Attractive glass

Start up shear for different range of attractions

BD simulations
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« 15t peak increase in size and shifts to lower strains as range is decreased

« Istyield strain (y,) follows attraction range => relates with bonds
similar findings in experiments (Koumakis et al, Soft Matter 2011)



Repulsive vs. Attractive glass
BD simulations

Repulsive
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Attractive glass (BD simulations)

Follow as a function of strain during start-up shear: a) bond number and
b) structural anisotropy (max. g(r) in compression and extension axis)
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« 2nd peak follows structural anisotropy as in HS glasses (cage deformation)

15t peak relates with bonds: increase (particles come closer due to
shear) and then decrease (bond breaking) (however both weak ??)




Repulsive vs. Attractive glass
BD simulations

Follow Dynamics (MSD) during start-up shear

1 N . . 2 .
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 Super-diffusive behavior of particles near the first stress peak (15 yield):
ballistic motion of particles during bond extension (mainly in extension axis)

+ Shear induced diffusive motion beyond the 1t yield point



Repulsive vs Attractive glass

Follow Dynamics (MSD) during start-up shear
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MSD the same for attractive and HS glass beyond corresponding to the
length-scale of the 1st stress peak of attractive glass =»>
Attractions are not important beyond this length-scale

Then 2" yield strain => cage deformation & breaking



Attractive glasses: Conclusions

Experiments + BD simulations: qualitative agreement on
two step yielding (HI are not crucial at such high o)

Attractive glasses yield in two steps, first related with
bond stretching & breaking (+HS contribution) and second
cage breaking (similar to HS glass)

Particles escape from the bonds through super-diffusive
motions (around 15" yield) and exhibit diffusive behavior
after the 1s* stress overshoot

E. Moghimi and G.P. in preparation (2017)
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Long time shear induced diffusion different in attractive and HS glass

at low Pe (<1) => probably due to different structural changes
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Slip of colloidal gels

Flow curve: with serrated plates=> no slip
Normal or coated plates => slip at low rate 5
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$=0.45, and c,=0.5c* (contact potential Uy= -24 kgT)

Ballesta et al., Soft Matter, 2013
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Transient slip:
Gels restructuring/ sedimentation =>
Slip due to detachment from the wall




