Particle segregation and rheology of dense granular flows Nico Gray

Johnson *et al* (2012) *J.Geophys. Res.* **117**, F01032

Sand and the second bear had and

- larger particles are should ered to the sides to create levees
- this is an example of a segregation-mobility feedback effect

Mount St Helens, USA, 1980

Coarse rich levee

segregation occurs in many hazardous natural flows

- debris-flows, pyroclastic flows & snow avalanches

and leads to spontaneous flow organization and longer run-out.

Segregation induced finger formation ...

Pouliquen, Delours & Savage (1997), Nature. **386**, 816-817. Woodhouse *et al.* (2012), J. Fluid Mech. **709**, 543-580.

Woodhouse *et al.* (2012), J. Fluid Mech. **709**, 543-580. Kokelaar *et al* (2014) Earth Planet. Sci. Lett. **385**, 172-180.

Gray & Ancey (2011) J. Fluid Mech. 678, 535-558

avalanches very effective at sorting particles by size
 plays a crucial role in large scale pattern formation

CAMBRIDGE

Large

Medium

Surrace avalanche

10 July 2011

Journal of Fluid Mechanics VOLUME 678

Slowly rotating mixture

Kinetic sieving and squeeze expulsion

small particles fall down into gaps
and then force large particles up

u = (u, w)

to create inversely graded layers

Gray & Ancey (2011) J. Fluid Mech. 678, 535-558

Index matched shear box experiments on bi-disperse segregation

35 mm PHYSICAL REVIEW LETTERS

APS

van der Vaart, Gajjar, Epely-Chauvin, Andreini, Gray & Ancey (2015) Phys. Rev Lett. 114, 238001

² Bi-disperse segregation equation for small particle concentration A is

$$\frac{\partial \phi}{\partial t} + \nabla \cdot (\phi \boldsymbol{u}) + \frac{\partial}{\partial z} (-S_r F(\phi)) = \frac{\partial}{\partial z} \left(D_r \frac{\partial \phi}{\partial z} \right)$$

 2 where bulk velocity u, S_r is the segregation rate and D_r is the diRusion

² The segregation ° ux F = F(A) satis es the constraints that

$$\begin{cases} F = 0, & \phi = 0, \\ F = 0, & \phi = 1. \end{cases}$$

- ² Gray & Thornton (2005) $F(\phi_{-}) = \phi^{+}(1 - \phi_{-})$

Bridgwater, Foo & Stephens (1985), *Powder Technol.* **41**, 147-158 Savage & Lun (1988) *J. Fluid Mech.* **189**, 311-335 Dolgunin & Ukolov (1995) *Powder Technol.* **83**, 95-103 Gray & Thornton (2005) *Proc. Roy. Soc. A.* **461**, 1447-1473. -0.25 Gray & Chugunov (2006) *J. Fluid Mech.* **569**, 365-398. Fan & Hill (2011) *New J. Phys.* **13**, 095009. (fluctuation induced) Gray & Ancey (2011) *J. Fluid Mech.* **678**, 535-558. (multiple sizes) Gajjar & Gray (2014) *J. Fluid Mech.* **757**, 297-329. (asymmetry) Gray & Ancey (2015) *J. Fluid Mech.* **779**, 622-668. (size and density)

Cubic flux with γ=0.89 captures slower rise of individual large particles, as well as their enhanced collective motion

Gollick & Daniels (2009) *Phys. Rev E* **80**, 042301. van der Vaart, Gajjar, Epely-Chauvin, Andreini, Gray & Ancey (2015) *Phys. Rev Lett.* **114**, 238001 Gajjar & Gray (2014) *J. Fluid Mech.* **757**, 297-329. Gray (2018) *Annual Review Fluid Mech.* **50**, 407-433.

Transport and accumulation of large particles

- large particles segregate to the surface
- where the velocity is greatest and
- are transported to the flow front where they are
- over run and recirculated by particle size segregation

Johnson et al (2012) J.Geophys. Res. 117, F01032

A depth averaged theory for particle size segregation

- Integrating the segregation-remixing equation w.r.t z
- subject to the no flux and kinematic boundary conditions gives

$$\frac{\partial}{\partial t}(h\bar{\phi}) + \frac{\partial}{\partial x}(h\overline{\phi}\overline{u}) = 0$$

where the integrals evaluated assuming

$$h\bar{\phi} = \int_{b}^{s} \phi^{s} \, dz = \eta$$

Large η Small

i.e. linear velocity with basal slip and sharp segregation

$$h\overline{\phi u} = \int_{b}^{s} \phi^{s} u \, dz = \eta \overline{u} - (1-\alpha)\overline{u}\eta \left(1 - \frac{\eta}{h}\right)$$

• This yields the large particle transport equation

$$\frac{\partial \eta}{\partial t} + \frac{\partial}{\partial x}(\eta \bar{u}) - \frac{\partial}{\partial x}\left((1-\alpha)\bar{u}\eta\left(1-\frac{\eta}{h}\right)\right) = 0.$$

for the evolution of the inversely graded shock interface η.
 Gray & Kokelaar (2010) J. Fluid Mech. 652, 105–137

• Using $\eta = h\bar{\phi}$ this can also be rewritten as

$$\frac{\partial}{\partial t}(h\bar{\phi}) + \frac{\partial}{\partial x}(h\bar{\phi}\bar{u}) - \frac{\partial}{\partial x}\left((1-\alpha)h\bar{u}\bar{\phi}\left(1-\bar{\phi}\right)\right) = 0.$$

Remarkably similar to the segregation equation ...

$$\frac{\partial \phi}{\partial t} + \frac{\partial}{\partial x}(\phi u) + \frac{\partial}{\partial z}(\phi w) - S_{ls}\frac{\partial}{\partial z}(\phi(1-\phi)) = \frac{\partial}{\partial z}\left(D_r\frac{\partial \phi}{\partial z}\right)$$

Large grains transported forwards to form bouldery flow front

• more RESISTIVE larger particles \Rightarrow feedback on bulk flow

Gray & Kokelaar (2010), J. Fluid Mech. 652, 105-137.

Inviscid avalanche model for segregation-mobility induced fingers

• For avalanche thickness h, small particle thickness η and depth-averaged velocity \overline{u} the 2D coupled model is

$$\frac{\partial h}{\partial t} + \operatorname{div}(h\overline{u}) = 0,$$

$$rac{\partial \eta}{\partial t} + \operatorname{div}\left(\eta \overline{u} - (1-lpha)\eta \left(1 - rac{\eta}{h}
ight) \overline{u}
ight) = 0,$$

 $rac{\partial \eta}{\partial t}(h\overline{u}) + \operatorname{div}(h\overline{u} \otimes \overline{u}) + \operatorname{grad}\left(rac{1}{2}gh^2\cos\zeta
ight) = hgS,$

source terms composed of gravity and basal friction

$$S = \begin{pmatrix} \sin \zeta - \mu(\overline{u}/|\overline{u}|) \cos \zeta, \\ - \mu(\overline{v}/|\overline{u}|) \cos \zeta, \end{pmatrix}$$

• coupling through $\overline{\phi} = \eta/h$ dependent friction coefficient

$$\mu = \left(1 - \bar{\phi}\right)\mu^L + \bar{\phi}\mu^S, \quad \mu^L > \mu^S$$

Woodhouse et al. (2012), J. Fluid Mech. 709, 543-580.

h

- The model is hyperbolic
- captures the instability mechanism

 \overline{u}

• and forms large rich lateral levees, BUT

 ϕ

Numerical solutions are grid dependent ...!

- Numerical viscosity is setting the wavelength
- \Rightarrow there is some important missing physics

Woodhouse et al (2012), J. Fluid Mech. 709, 543-580.

cause of problem is that the equations are ill-posed for one value of the concentration, when Fr_c = [(1 - α)|2η₀ - 1|]⁻¹, i.e. linear instability growth rate tends to infinity

 introducing a physically based viscosity can solve the problem, BUT what is that physics? A two-dimensional fully coupled model including rheology

• Adding a two-dimensional depth-averaged $\mu(I)$ -rheology implies a system of conservation laws of the form

$$\frac{\partial h}{\partial t} + \operatorname{div}(h\bar{u}) = 0,$$
$$\frac{\partial \eta}{\partial t} + \operatorname{div}\left(\eta\bar{u} - (1-\alpha)\eta\left(1 - \frac{\eta}{h}\right)\bar{u}\right) = 0,$$
$$\frac{\partial}{\partial t}(h\bar{u}) + \operatorname{div}(h\bar{u}\otimes\bar{u}) + \operatorname{grad}\left(\frac{1}{2}h^2g\cos\zeta\right) = hgS + \operatorname{div}(h\bar{u}\otimes\zeta) + \operatorname{div}(h\bar{u}\otimes\zeta) = hgS + \operatorname{div}($$

where the two-dimensional strain-rate tensor is

$$\overline{D} = \frac{1}{2} \left(\nabla \overline{u} + \nabla \overline{u}^T \right)$$

• the coefficient ν in the viscosity $\nu h^{1/2}/2$ is determined from the friction law

Baker, Barker & Gray (2016) *J. Fluid Mech.* **787**, 367-395. Baker, Johnson & Gray *J. Fluid Mech.* **809**, 168–212.

The depth-averaged mu(I)-rheology is crucial for grid resolved fingers

- We have grid convergence!
- However, still can't bring levees fully to rest
- We don't understand the viscosity of mixtures of grain sizes

The $\mu(I)$ -rheology for liquid-like granular flows

• GDR MIDI (2004) and Jop et al. (2006): proposed constitutive law

$$\tau = \mu(I)p\frac{D}{||D||}$$

where 2nd invariant

$$||\boldsymbol{D}|| = \sqrt{\frac{1}{2}} \operatorname{tr} \boldsymbol{D}^2$$

• If $\mu = \text{const}$ this reduces to Drucker-Prager

• BUT, friction μ is a function of the inertial number I

$$\mu(I) = \mu_1 + \frac{\mu_2 - \mu_1}{I_0/I + 1}, \qquad I = \frac{2||D||d}{\sqrt{p/\rho^*}},$$

• where d is the particle diameter and ρ^* is the intrinsic density.

The depth-averaged $\mu(I)$ -rheology for granular flows

Gray & Edwards (2014) J. Fluid Mech. 755, 503-534.

- Steady-uniform flow has constant inertial number, a lithostatic pressure and Bagnold velocity u

$$I = I_{\zeta}, \qquad p = \rho g(h-z) \cos \zeta.$$

$$u = \frac{2I_{\zeta}}{3d} \sqrt{\Phi g \cos \zeta} \left(h^{3/2} - (h-z)^{3/2} \right).$$

 Depth-averaging the inviscid avalanche equations emerge naturally at first order with basal friction law

$$\mu_b(h,\mathsf{Fr}) = \mu_1 + \frac{\mu_2 - \mu_1}{\beta h/(L\mathsf{Fr}) + 1}, \qquad \mathsf{Fr} > \beta,$$

• This is just Pouliquen & Forterre's (2002) law, where

$$\mathsf{Fr} = rac{|ar{u}|}{\sqrt{gh\cos\zeta}}$$

- Add in small in-plane deviatoric stress correction au_{xx}
- evaulate using the steady-uniform Bagnold solution

$$\tau_{xx} = \mu(I)p\frac{D_{xx}}{||\boldsymbol{D}||} = 2\rho g \sin\zeta \left(h^{1/2}(h-z)^{1/2} - (h-z)\right)\frac{\partial h}{\partial x}.$$

formal depth-integration gives

$$h\overline{ au}_{xx} = rac{1}{3}
ho g \sin\zeta h^2 rac{\partial h}{\partial x}.$$

• Use depth-averaged Bagnold velocity $\bar{u} = \frac{2I_{\zeta}}{5d}\sqrt{\Phi g \cos \zeta} \ h^{3/2}$ to convert to viscous-like term

$$h\bar{\tau}_{xx} = \rho\nu h^{3/2} \frac{\partial\bar{u}}{\partial x}$$

• where angle dependent coefficient ν is determined

$$\nu = \frac{2L\sqrt{g}}{9\beta} \frac{\sin\zeta}{\sqrt{\cos\zeta}} \left(\frac{\mu_2 - \tan\zeta}{\tan\zeta - \mu_1}\right)$$

Gray & Edwards (2014) J. Fluid Mech. 755, 503-534.

(a) cross-slope velocity profiles

Baker, Barker & Gray (2016) J. Fluid Mech. 787, 367-395.

(b) Matches roll-wave cut-off frequency without any fitting parameters

Gray & Edwards (2014) *J. Fluid Mech.* **755**, 503-534. Pouliquen & Forterre (2002) *J. Fluid Mech.* **453**, 133-151. (c) Frictional hysteresis leads to erosion-deposition waves

Pouliquen & Forterre (2002) J. Fluid Mech. 453, 133-151.

Edwards & Gray (2015) J. Fluid Mech. 762, 35-6

similar waves spontaneously develop on erodible beds in the lab

there are static regions between wave crests

Daerr & Douady (1999) Borzsony *et al.* (2008) Takagi *et al* (2011)

Erosion-deposition waves in debris flows

 15th Oct 2000 an unintentional release of 150 000 m³ water led to a debris flow in Fully Switzerland that had regular surges

Edwards *et al.* (2017) Formation of levees, troughs and elevated channels by avalanches on erodible slopes, *J. Fluid Mech.* **823**, 278–315.

Growth

Steady Propagation

Decay

Edwards *et al.* (2017) Formation of levees, troughs and elevated channels by avalanches on erodible slopes, *J. Fluid Mech.* **823**, 278–315.

Edwards *et al.* (2017) Formation of levees, troughs and elevated channels by avalanches on erodible slopes, *J. Fluid Mech.* **823**, 278–315.

PHYSICS TODAY

Edwards *et al.* (2017) Formation of levees, troughs and elevated channels by avalanches on erodible slopes, *J. Fluid Mech.* **823**, 278–315.

Identifying avalanche tipping points BY RACHEL BERKOWITZ