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Discontinuous Shear Thickening

BARNES 1989
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Schematic representation of viscosity versus shear rate for shear-

Fig. 1.
thickening systems, with approximate phase volume as parameter. Also shown
are the loci of ¥, and y,,, the shear rates at the beginning and end of the shear-

thickening region.

Viscosity depends on driving intensity = Non-Newtonian behavior



Discontinuous shear thickening (DST) is ubiquitous
for dense suspensions
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Do all suspensions that exhibit DST also shear jam?
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Jamming = onset of solid-like rigidity & non-zero yield stress



Shear stress

Jamming Phase Transition (for dry particles)
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Shear stress
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Toward a state diagram for frictional suspensions

Shear stress
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Key idea: strong shear stress creates frictional contacts



How do you know a suspension is shear-jammed?

* Prepare suspension with ¢,,, < ¢ < ¢

* Apply shear stress (at rates below the speed of sound so the

liquid doesn’t compress)

* Detect the onset of solid-like rigidity

=» Cannot use steady-state rheology!

=» Look for propagating shear-jamming fronts



Visualizing Shear Jamming Fronts
that convert unjammed fluid into jammed solid

Majumdar et al., PRE (2017) Han et al., Nat. Commun. (2016)

Peters et al., Nature (2016)
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Even easier test for SJ: Pull on the suspension surface

Sayantan Majumdar

 Tensile loading creates jammed, solid-like state E
 Jamming front appears during tensile loading
 Tensile force shoots up when front reaches boundaries



Pull test for shear jamming
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So why do some dense suspension exhibit
DST but not shear jamming (SJ) behavior?



So why do some dense suspension exhibit
DST but not shear jamming (SJ) behavior?
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Scenario:

Particles interact via lubrication (u = 0) if stressis low
Particles interact via friction (u > 0) if stress> threshold stress

Onset of jamming depends on friction: ¢, nset = Po

Ponset = Pm(M) < Pg



Scenario:

* Particles interact via lubrication (u = 0) if stressis low
* Particlesinteract via friction (u > 0) if stress > threshold stress

* Onset of jamming depends on friction: @ nser = Po ©u=0
Ponset = Pm(M) < Pg u>0

What controls the inter-particle friction?



Particle size or geometry are not the deciding factors
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Particle size or geometry are not the deciding factors
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Pulling Force (N)

Adding a chaotrope kills shear jamming...
...but not DST!
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PMMA/ITA particles specifically designed to have surface terminated with COOH groups

Urea couples to COOH =¥ interferes with hydrogen bonding capacity



Deplete hydrogen bonding capacity in cornstarch suspensions

=>» SJ no longer observed...but DST alive & well
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Pulling Force (N)

s this really linked to particle “contacts”?
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Proposed scenario

e

Relaxation

Lubricated contacts Frictional contact H-bonding _ _ _
low stresses or rates Lubrication layer is broken enhances friction ~ >tressis removed; particle-particle
b, is key b, is key between particles H-bonds may be replaced by

solvent-particle bonds

Important: H-bonding is reversible
in protic solvents like water




Proposed scenario

Lubricated contacts Frictional contact H-bonding - Relaxation '
low stresses or rates Lubrication layer is broken enhances friction ~ >tressis removed; particle-particle
b, is key b, is key between particles H-bonds may be replaced by

solvent-particle bonds

* Inter-particle hydrogen bonding enhances contact friction

* This decreases ¢,,(u) & enlarges SJ regime

Conversely:
Reduced hydrogen bonding capacity =» smaller y, larger ¢,,,(u)

7

reduced SJ regime



Experimentally calibrated model
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*

Rescaled Stress (1/7)
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* Move DST-SJ boundary by controlling friction via hydrogen bonding capacity

* At fixed packing fraction: Onset stress for SJ (and also DST) shifts



*

Rescaled Stress (t/7,)
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Pull test = facile method for detecting shear jamming
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Measure frictional interactions directly

Extract friction from lateral
deflection force during slow,
100nm AFM scans near apex

>> scale of molecular interactions

Comtet et al. (Nature Comm 8, 2017):
fast oscillatory probe, few nm amplitude

u=0.53

n=0.3




Open Questions & New Opportunities

* Particle-particle hydrogen bonds vs solvation layers?

* Atomistic modeling of particle-particle hydrogen bonding?

* Hydrogen bonds reversible in protic solvent like water. Individual time
scale for bond formation or breaking ~10-'?s....but collective behavior?

e SJ with small attractive interactions?



Open Questions & New Opportunities

* Particle-particle hydrogen bonds vs solvation layers?

* Atomistic modeling of particle-particle hydrogen bonding?

* Hydrogen bonds reversible in protic solvent like water. Individual time
scale for bond formation or breaking ~10-'?s....but collective behavior?

e SJ with small attractive interactions?

* Design targeted SJ behavior by tailoring particle surface & solvent!



Design surface chemistry & solvent to elicit shear jamming
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Open Questions & New Opportunities

* Particle-particle hydrogen bonds vs solvation layers?

* Atomistic modeling of particle-particle hydrogen bonding?

* Hydrogen bonds reversible in protic solvent like water. Individual time
scale for bond formation or breaking ~10-'?s....but collective behavior?

e SJ with small attractive interactions?

* Design targeted SJ behavior by tailoring particle surface & solvent!

* Similar scenarios for non-aqueous systems?



