Linking local structure and mechanics in quiescent and sheared glasses

Tanniemola Liverpool School of Mathematics, Bristol

KITP,Santa Barbara, march 2017

Linking local structure and mechanics in quiescent and sheared supercooled liquids

Tanniemola Liverpool

snowcrystals.com

Acknowledgements

R. Pinney, T.B. Liverpool & C.P Royall, J. Chem. Phys. 143, 244507 (2015)
R. Pinney, T.B. Liverpool & C.P Royall, J. Chem. Phys. 145, 234501. (2016)
R. Pinney, T.B. Liverpool & C.P Royall, Phys. Rev. E, in press (2018)

CELEBRATING 350 YEARS

IOP Institute of Physics

- 1. Glasses & supercooled liquids
- 2. Identifying locally favoured structures
- 3. Local structures & relaxation in quiescent systems
- 4. Steady state shear behaviour
- 5. Transients in sheared systems

(atomic) glasses : a primer

 au_{lpha} relaxation of density fluctuations

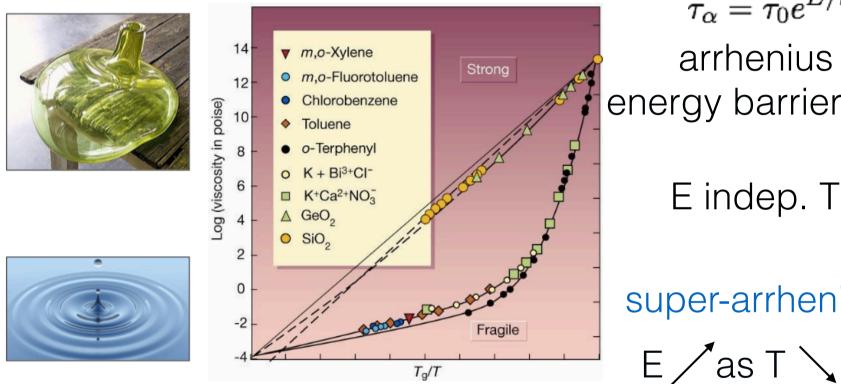
at crystallisation/melting $au_lpha = \sqrt{ma^2/k_BT_m} \sim \mathrm{ps}$

quench -> supercooling-> =glass when $\tau_{\alpha} \geq \tau_{glass} \approx 100 \text{ s}$

 $\begin{array}{ll} \text{Maxwell model -> viscosity} & \eta = G_{\infty}\tau_{\alpha} \\ \\ \text{at crystallisation/melting} & \eta \sim 10^{-1} \text{ Poise} \\ \\ = \text{glass when viscosity} & \eta \geq \eta_{glass} \approx 10^{13} \text{ Poise} \end{array}$

14 orders of magnitude increase

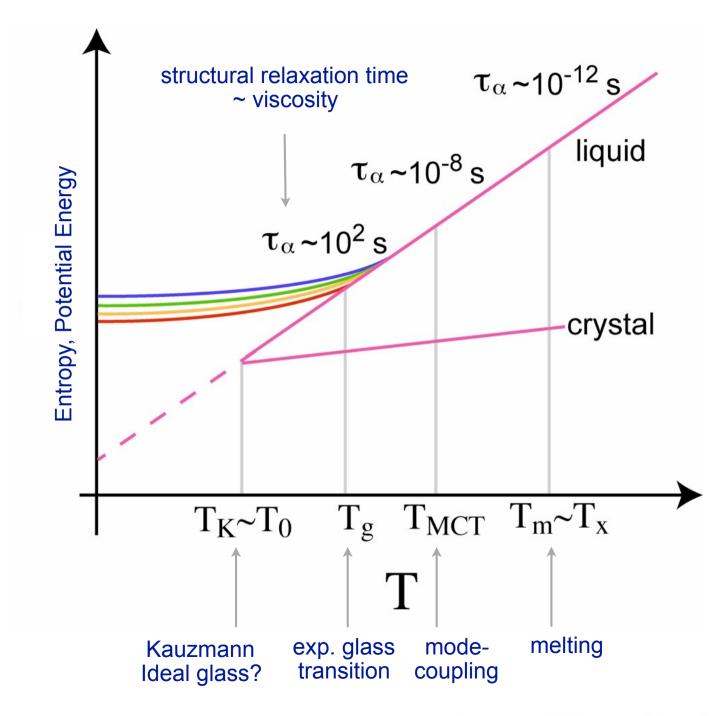
strong v fragile



 $au_{lpha} = au_0 e^{E/k_B T}$ arrhenius energy barriers, E E indep. T super-arrhenius

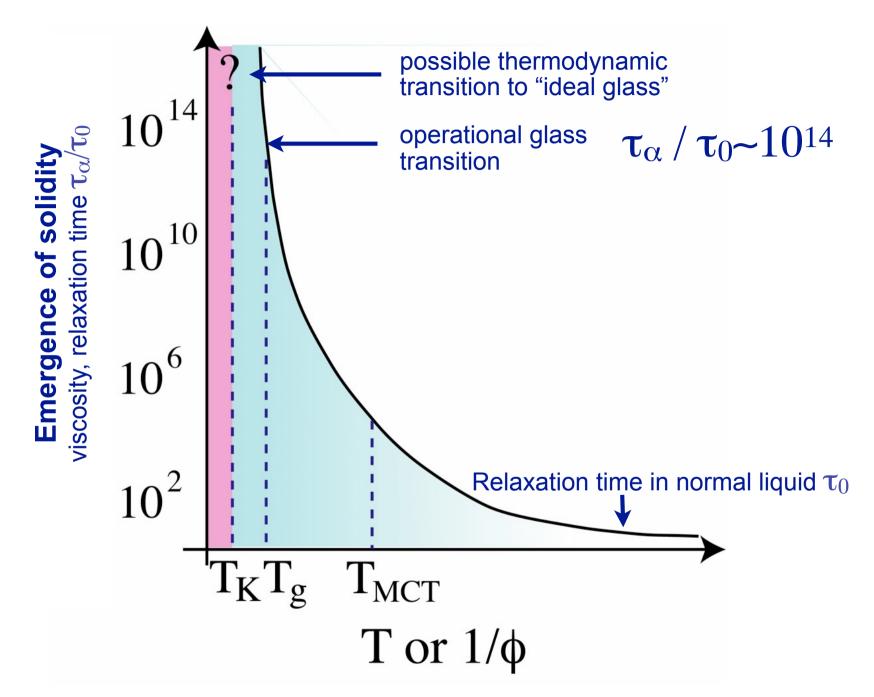
fragile -> complex activation-> collective behaviour

What do we mean by "ideal glass"?



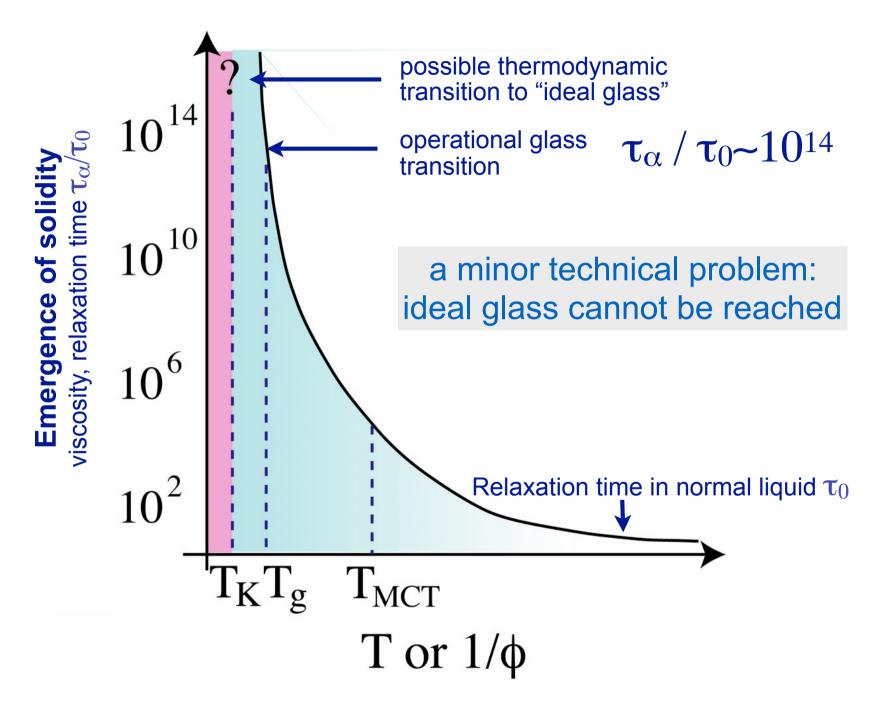
Royall and Williams Phys. Rep. 560 1-75 (2015)

What do we mean by "ideal glass"?



For colloids packing fraction $\phi \sim 1/T$

What do we mean by "ideal glass"?



For colloids packing fraction $\phi \sim 1/T$

molecular dynamics

- NVT/NVE simulations (equilibration/sampling)
- Nosé-Hoover/Nosé-Poincaré thermostat

$$\alpha, \beta \in A, B$$

$$egin{aligned} \mathcal{H} &= \mathcal{T} + \mathcal{V} \ \dot{\mathbf{r}}_i &= rac{\partial \mathcal{H}}{\partial \mathbf{p}_i} \ \dot{\mathbf{p}}_i &= -rac{\partial \mathcal{H}}{\partial \mathbf{r}_i} \end{aligned}$$

 $\frac{12}{11}\sigma_{AB} = \frac{6}{5}\sigma_{BB} = \sigma_{AA}$

$$\mathcal{V} = \sum_{i < j, \alpha, \beta} u_{\alpha\beta} (|\mathbf{r}_i^{\alpha} - \mathbf{r}_j^{\beta}|) \qquad u_{\alpha\beta}(r) = 4\epsilon \left[\left(\frac{\sigma_{\alpha\beta}}{r}\right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{r}\right)^6 \right]$$

$${\cal T} = \sum_{lpha,i} rac{|{f p}_i^lpha|^2}{2m_lpha} \qquad m_A = 2m_B = m$$

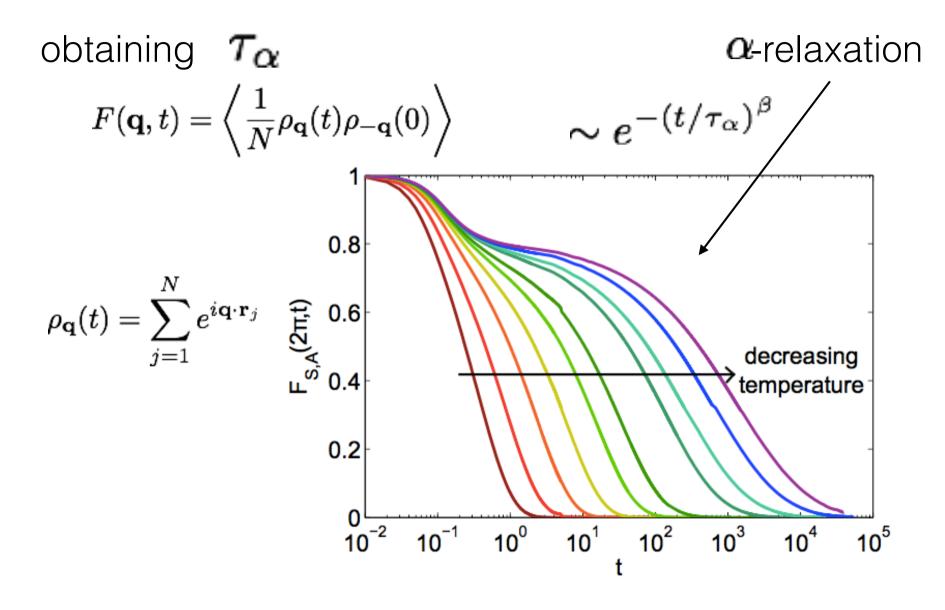
N = 10976, 87808

non-dimensionalisation

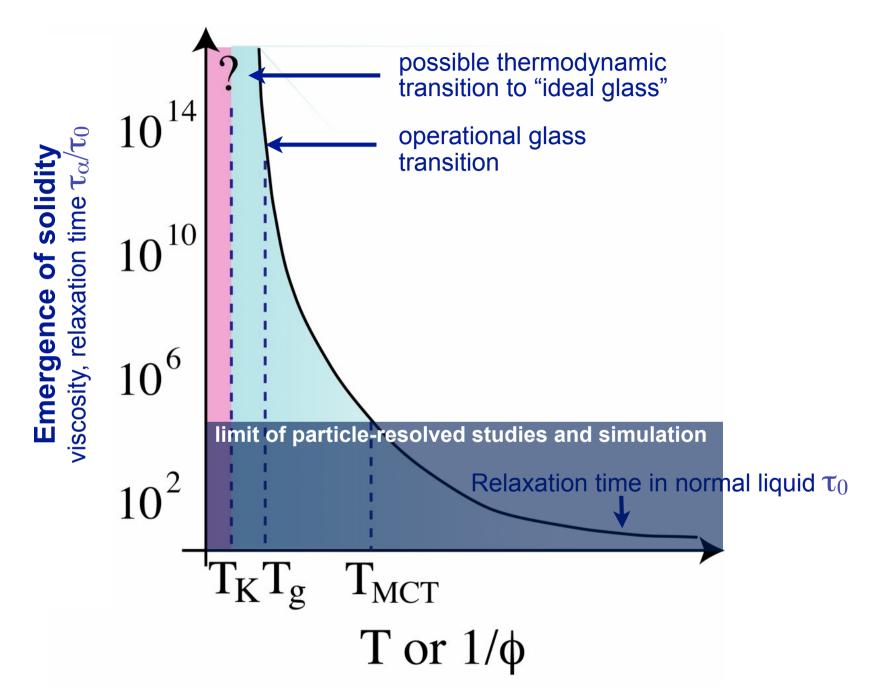
Quantity	Conversion	
mass	$\mathfrak{m}^* = \mathfrak{m}'/\mathfrak{m}$	
length	$r^* = r/\sigma$	
density	$\rho^*=\rho\sigma^3$	
energy	$E^* = E/\varepsilon$	$0.575 \le T \le 2.5$
temperature	$T^* = k_B T/\varepsilon$	
pressure	$P^*=P\sigma^3/\varepsilon$	
time	$t^* = (\varepsilon/m\sigma^2)^{1/2}t$	

start FCC at high T - simulate till random - quench to low T -then equilibrate for 500 alpha relaxation times with NVT -then generate statistical ensembles from NVE

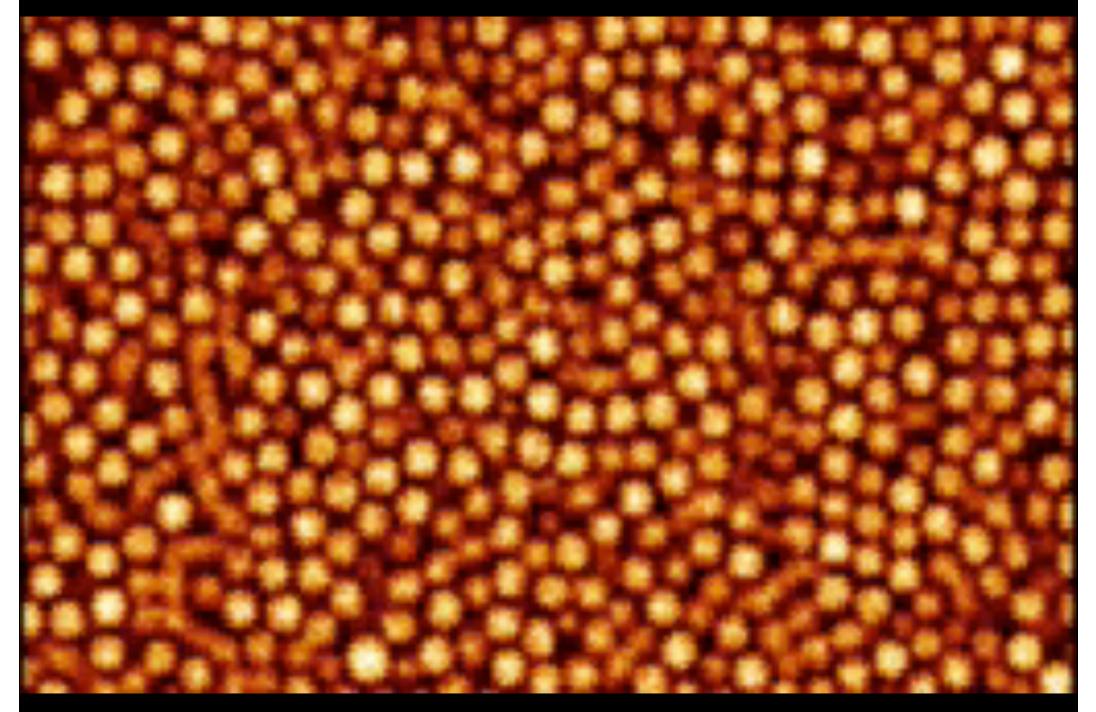
intermediate scattering function



How far can we get with Brute force?

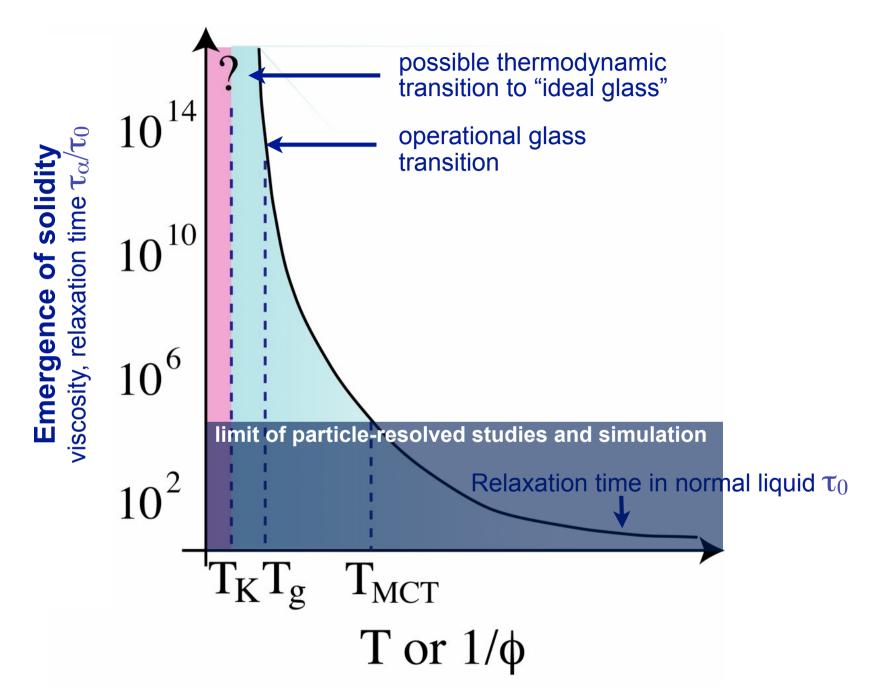


Particle-resolved studies->colloidal particles in microscope



colloidal supercooled liquid near mode coupling transition

How far can we get with Brute force?



Particle-resolved studies->colloidal particles in microscope

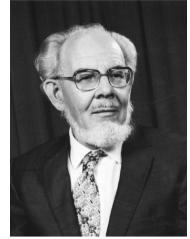
a long time ago ...

Sir F. Charles Frank H Wills Professor, Bristol (1954-1998)

Frank, Proc. R. Soc. 215 43 (1952)

lower minimum energy of 13 LJ particles than FCC/HCP

we can look for other minimum energy clusters

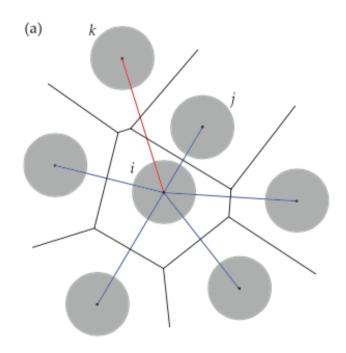


7 G. Frank

Topological Cluster Classification

min. energy clusters, voronoi tessellation, neighbours

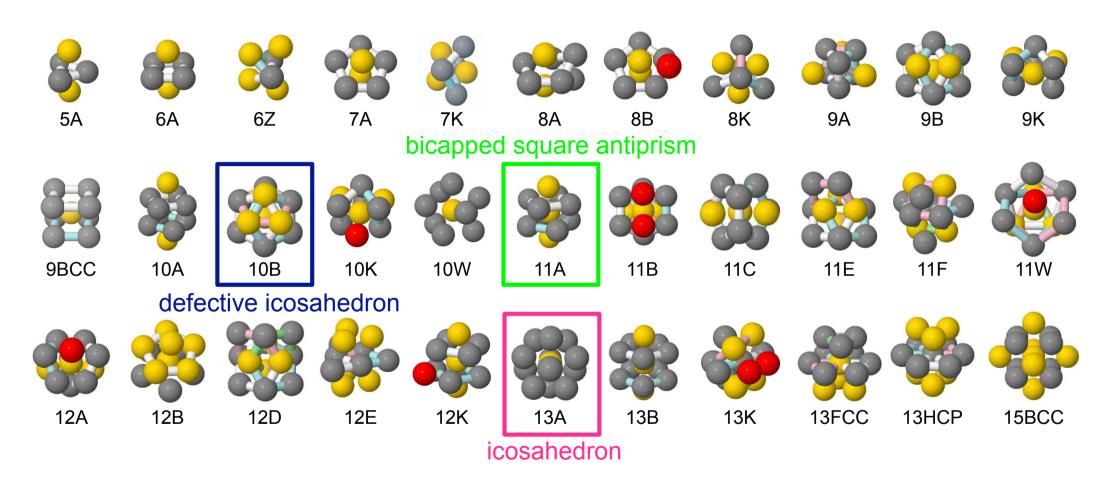
(1) cell has all points closer to particle than any other -> convex polyhedra (2) neighbours if cells share face and line joining centres intersects shared face (3) shortest path rings of 3,4 or 5 particles of neighbours. (4) build clusters out of shortest rings



Malins et al, J. Chem. Phys. 139 234506 (2013); Royall et.al. Nature Materials 7 556 (2008)

The bottom of the (local) energy landscape

break down into local structures

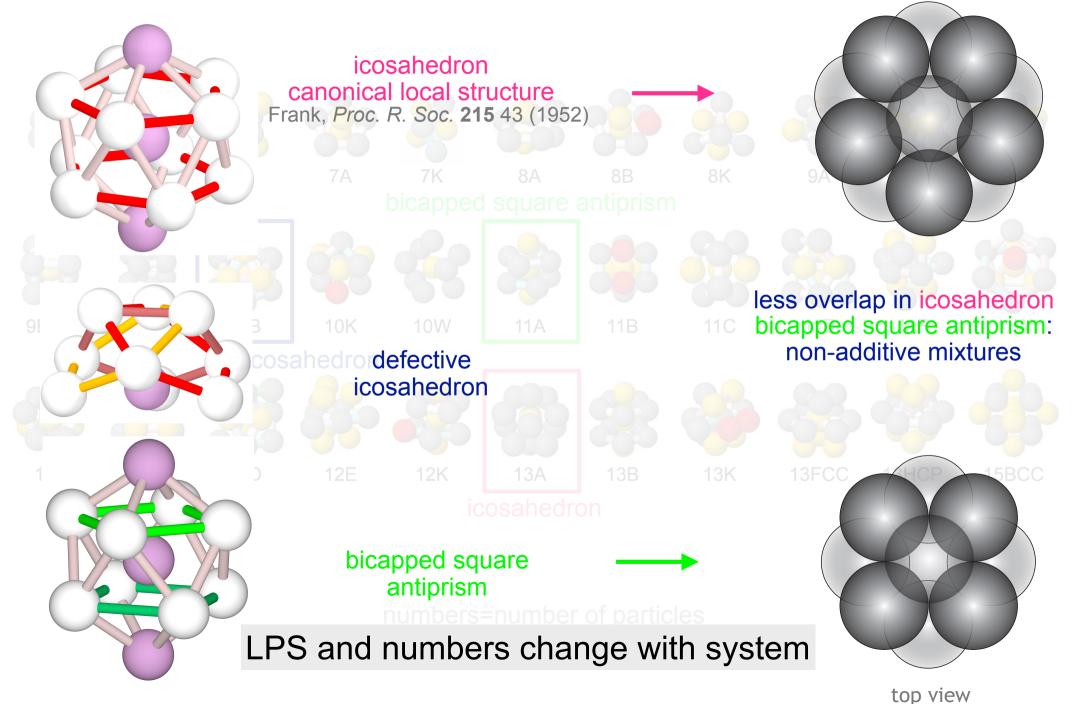


numbers=number of particles letters=different model systems

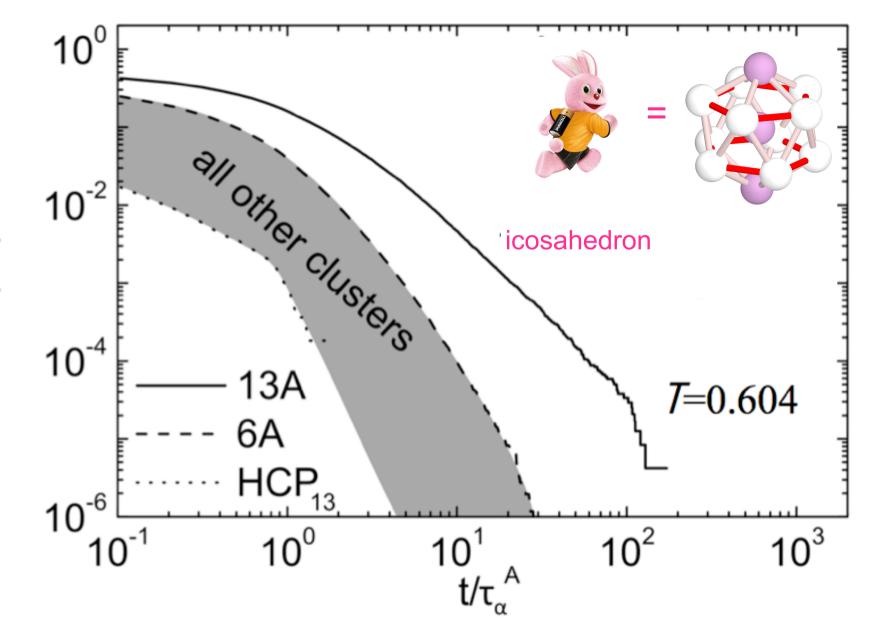
Mossa and Tarjus J. Chem. Phys. **119** 8069 (2003); Doye and Wales J. Chem. Phys. **103**, 4234-4249 (1995) Malins et al, J. Chem. Phys. **139** 234506 (2013); Royall et.al. Nature Materials **7** 556 (2008)

The bottom of the (local) energy landscape

local structures - a Noddy's guide



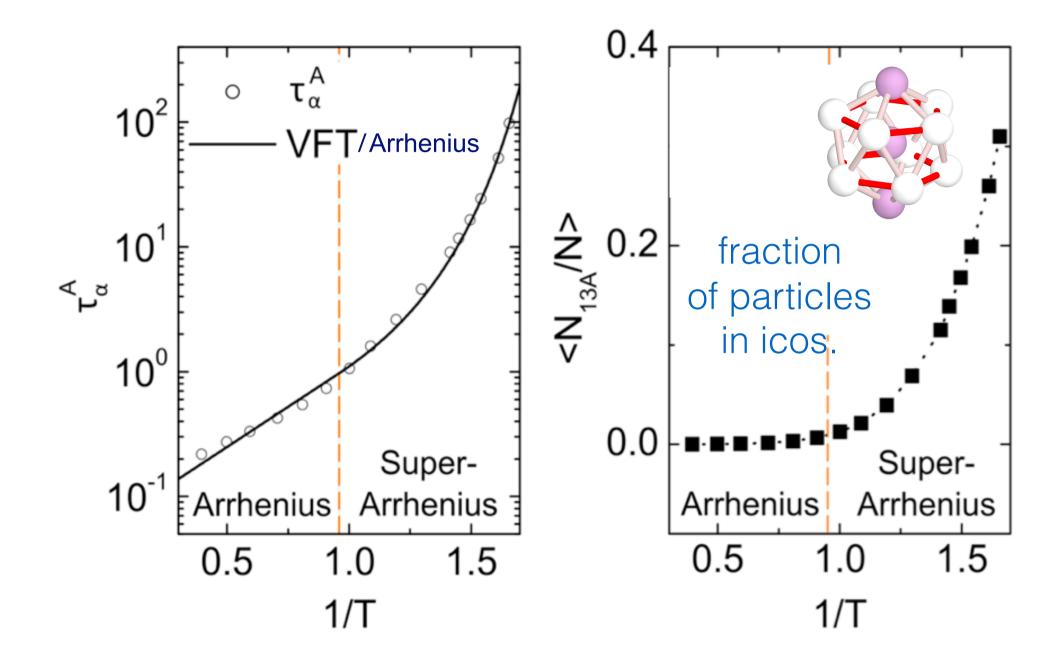
Local structure and emergence of solidity



Wahnstrom Binary Lennard-Jones mixture $\sigma_A=5/6\sigma_B$. Molecular Dynamics simulation Royall and coworkers *J. Chem. Phys.* **138** 12A535 (2013)

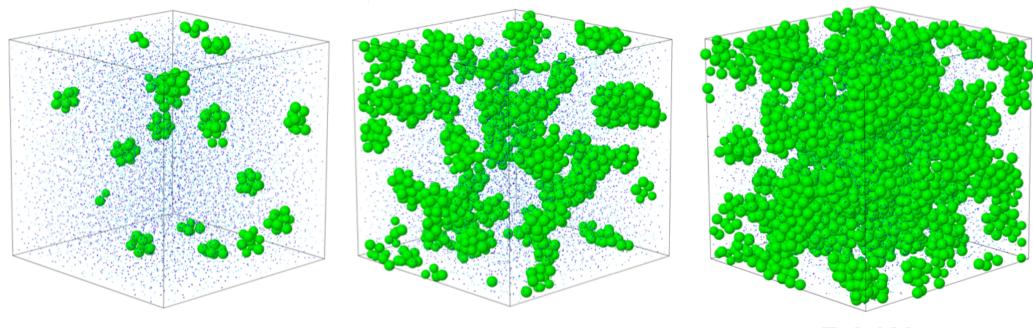
P(l>t)

Local structure and emergence of solidity



Malins et al, J. Chem. Phys. 138 12A535 (2013); Coslovich and Pastore J. Chem. Phys. 127 124504 (2007)

Growth of domains of icosahedra upon cooling



T=1.00

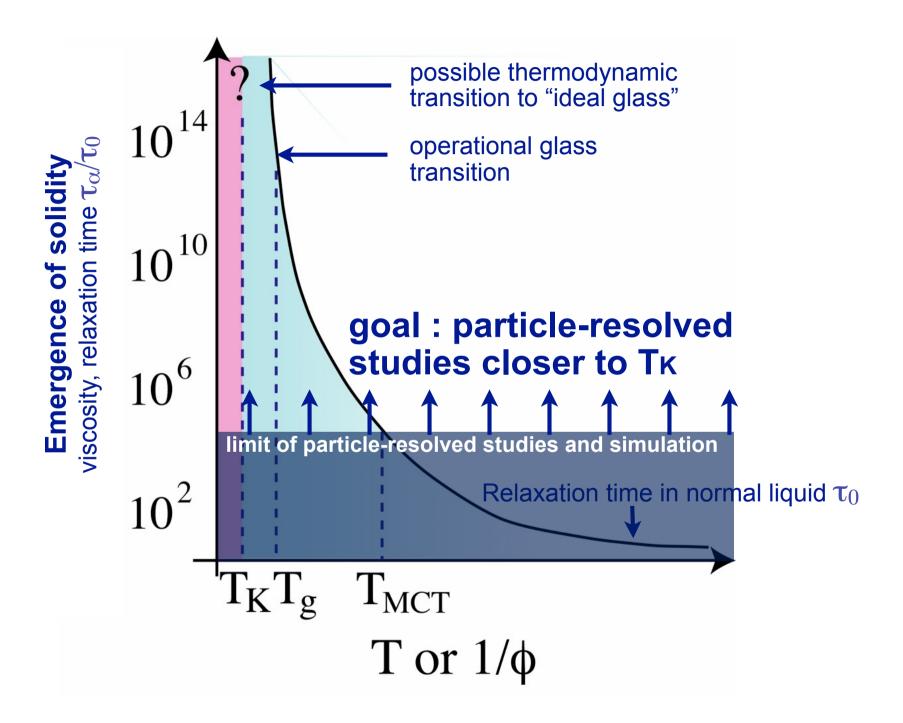
T=0.707

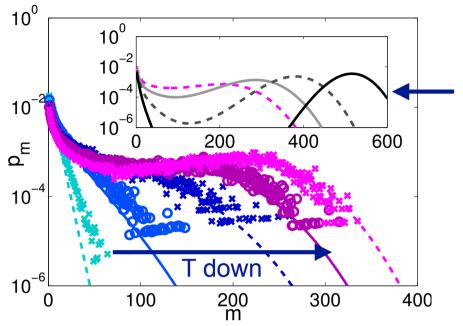
T=0.620

domains larger at lower T.... icosahedra in clusters live longer

Emergence of network of icosahedral (slow) particles. Fractal dimension=2 Malins et al, J. Chem. Phys. **138** 12A535 (2013)

How far can we get with Brute force?





T in range beyond that accessible to simulation

$$T \gg 1 \quad \Rightarrow \quad \tau_{\alpha}^{Arr} = \tau_0 \exp(A/T)$$

 $\tau_0 = 0.11$
 $A = 2.98$

describe distribution of domains of icosahedra of size *m* with population dynamics model

$$\dot{p}_1 = g_0 p_0 + r_2 p_2 - [g_1 + r_1] p_1$$

$$\dot{p}_m = g_{m-1} p_{m-1} + r_{m+1} p_{n+1} - [g_m + r_m] p_n$$

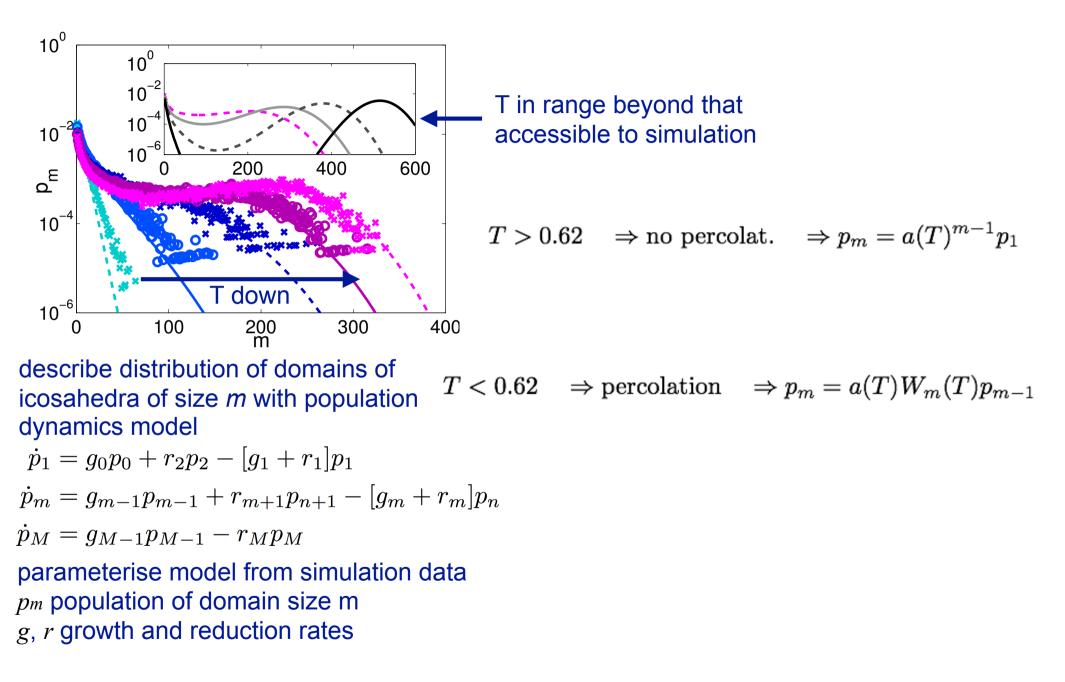
$$\dot{p}_{m} = g_{m-1} p_{m-1} - r_m p_{m+1} - [g_m + r_m] p_n$$

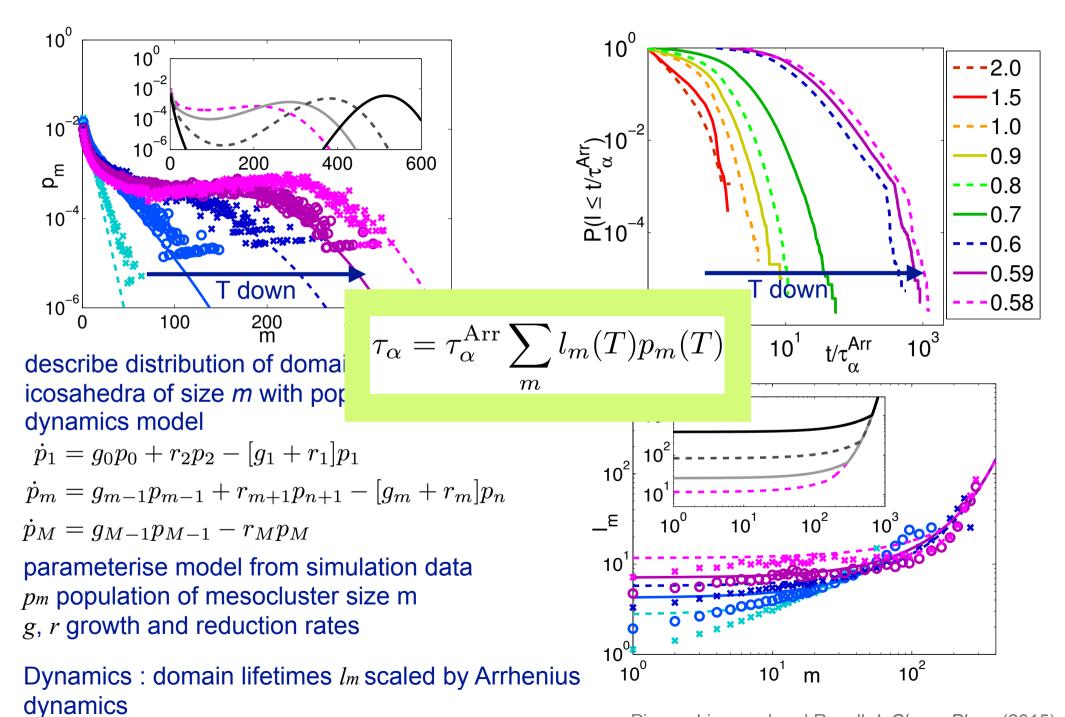
 $\dot{p}_M = g_{M-1}p_{M-1} - r_M p_M$

parameterise model from simulation data *pm* population of domain size m *g*, *r* growth and reduction rates

$$\sum_{i=1}^{M} p_i = \phi$$

Pinney, Liverpool and Royall J. Chem. Phys. (2015)





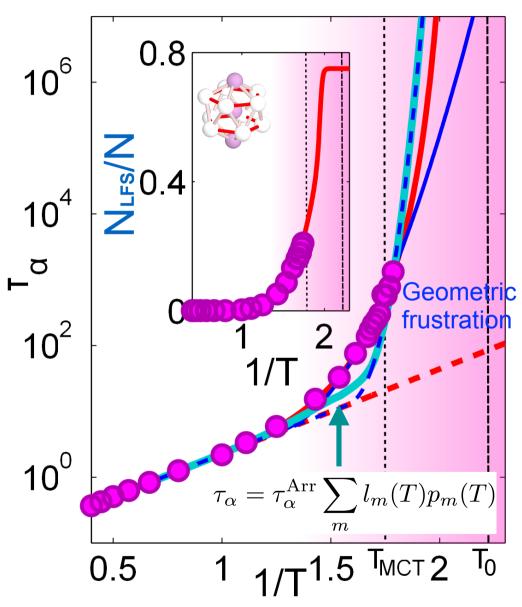
Pinney, Liverpool and Royall J. Chem. Phys. (2015)

No (thermodynamic) transition

Model well-described by geometric frustration

$$\tau_{\alpha}(T) = \tau_{\infty} \exp\left(\Delta E^{*}(T) + E_{\infty}/k_{B}T\right)$$
$$\Delta E(T) = Bk_{B}T_{c}\left(1 - \frac{T}{T_{\text{on}}}\right)^{\psi}$$

Tarjus et al. J. Phys: Condens. Matter 17, R1143 (2005)



VFT

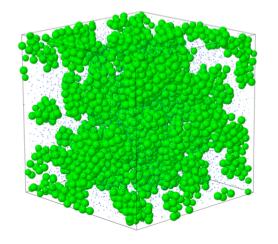
Pinney, Liverpool and Royall J. Chem. Phys. (2015)

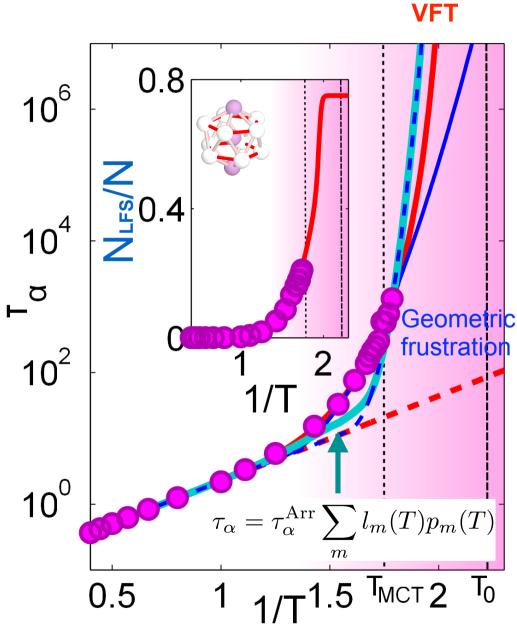
No (thermodynamic) transition

Model well-described by geometric frustration

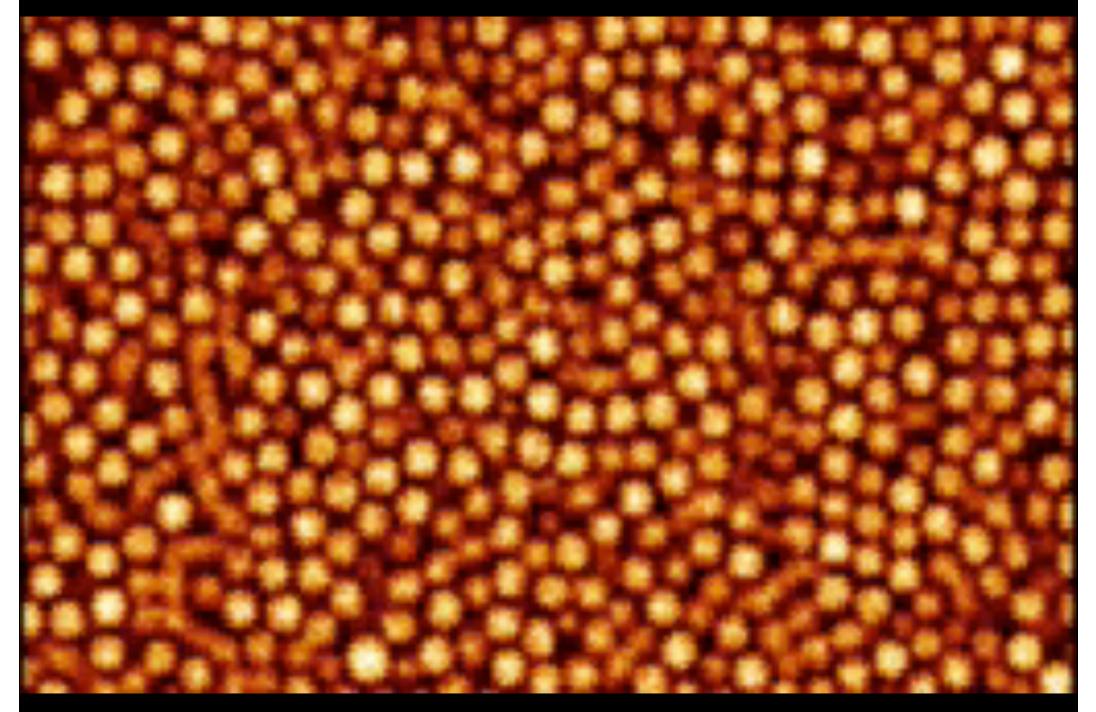
$$\tau_{\alpha}(T) = \tau_{\infty} \exp\left(\Delta E^{*}(T) + E_{\infty}/k_{B}T\right)$$
$$\Delta E(T) = Bk_{B}T_{c}\left(1 - \frac{T}{T_{\text{on}}}\right)^{\psi}$$

Tarjus et al. J. Phys: Condens. Matter 17, R1143 (2005)





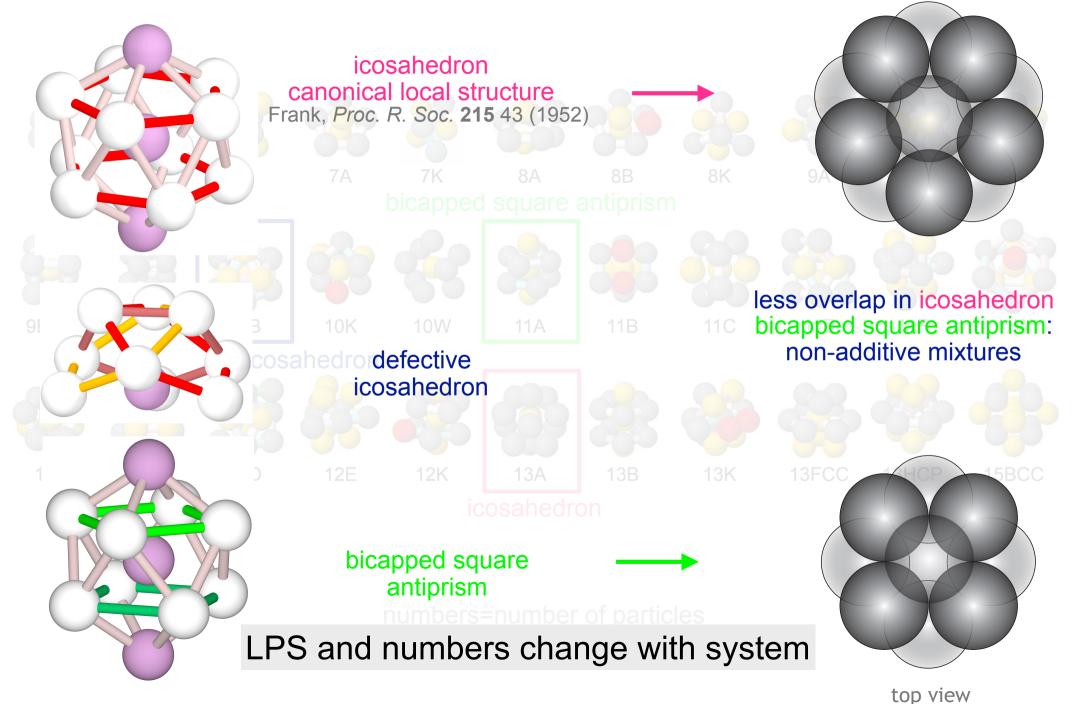
Pinney et al, J. Chem. Phys. (2015)



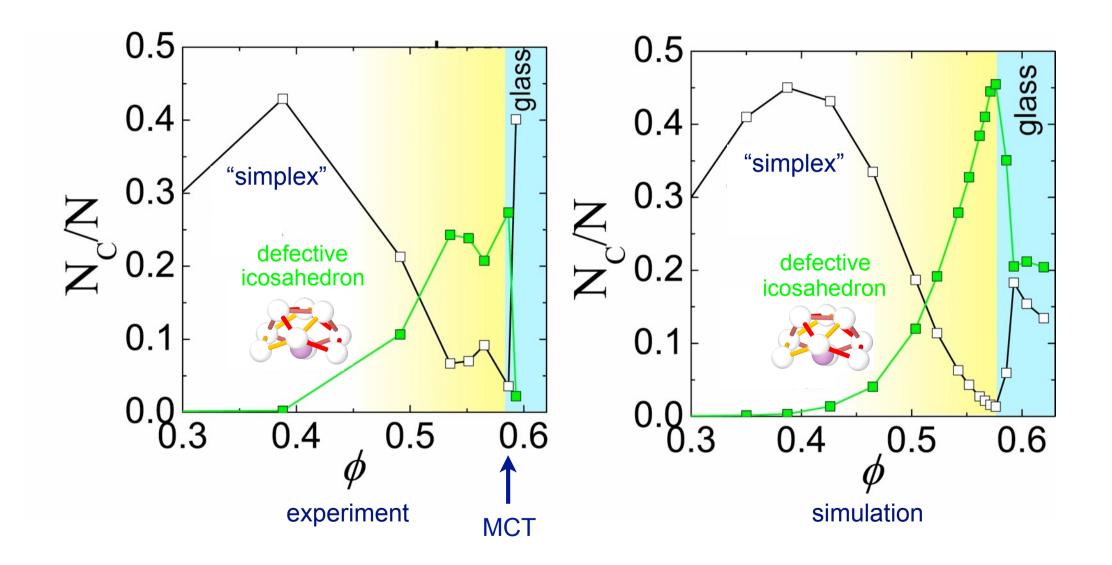
colloidal supercooled liquid near mode coupling transition

The bottom of the (local) energy landscape

local structures - a Noddy's guide

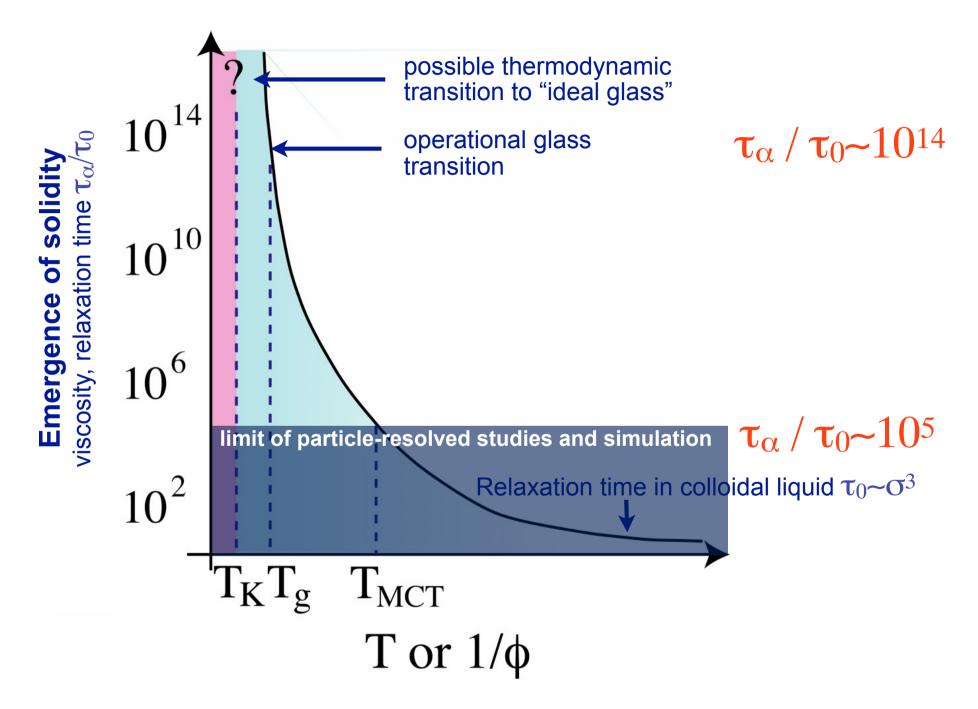


Particle-resolved studies take us to MCT



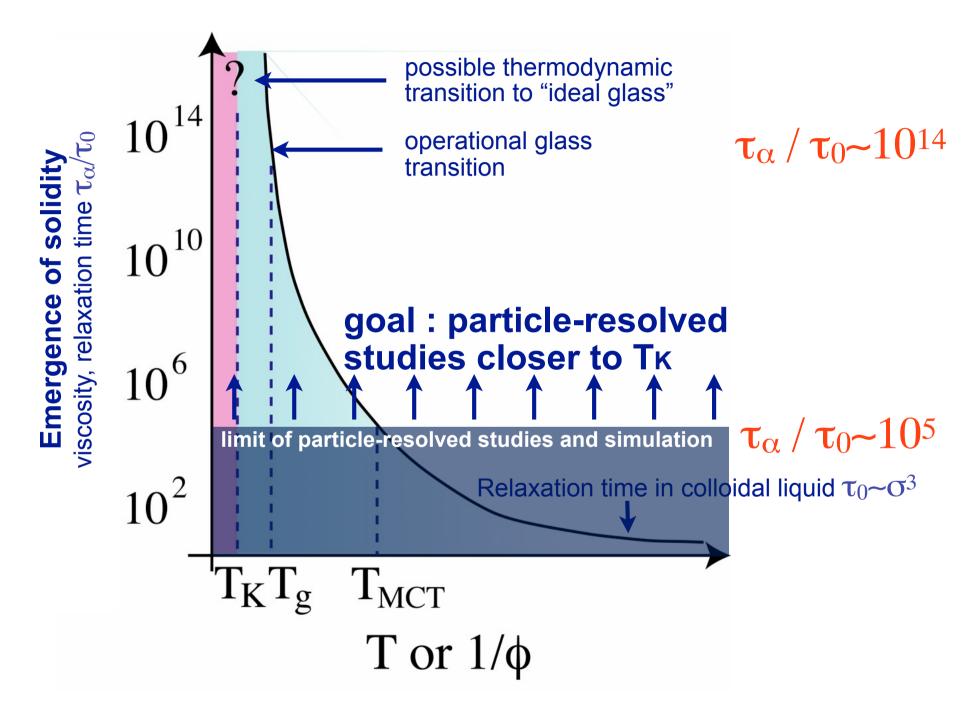
Hard spheres: defective icosahedron is LPS. Falling out of equilibrium (φ=0.58): "simplex" simplex~tetrahedron Royall et al. *J. Non-Cryst. Solids* 407 34-43 (2014)

Another route to deep supercooling



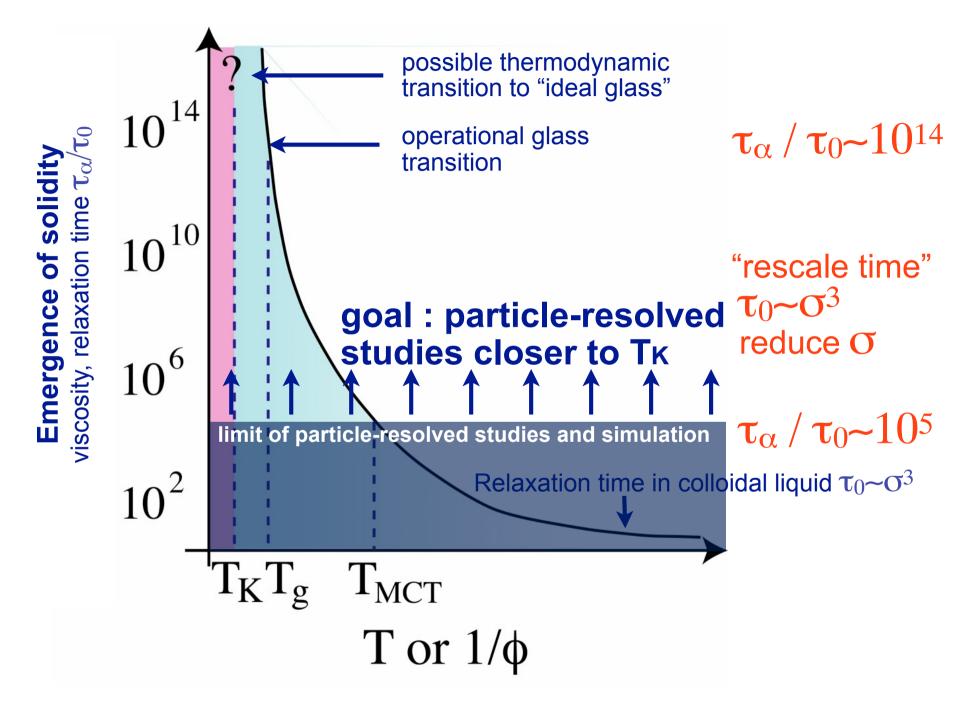
 σ diameter of colloidal particle

Another route to deep supercooling



 σ diameter of colloidal particle

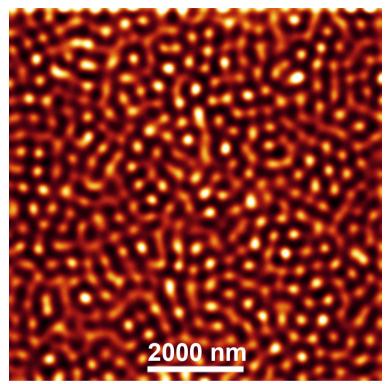
Another route to deep supercooling



 σ diameter of colloidal particle

Super-resolution STED "nanoscopy"

nano-particle resolved studies

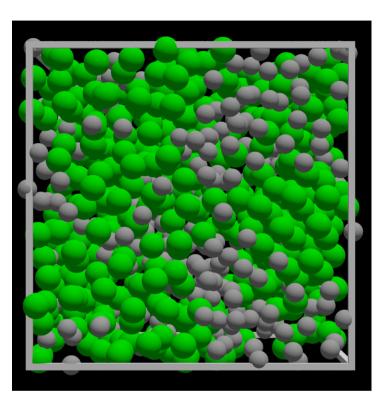


conventional particle-resolved studies typical size ~ 3000 nm diameter

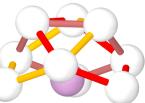
nano-particle-resolved studies 460 nm diameter (so far)

~3 decades deeper supercooling for same experimental time

silica, rhodamine labelled, tetrahydrofurfuryl alcohol solvent STED: "Stimulated Emission via Depletion"

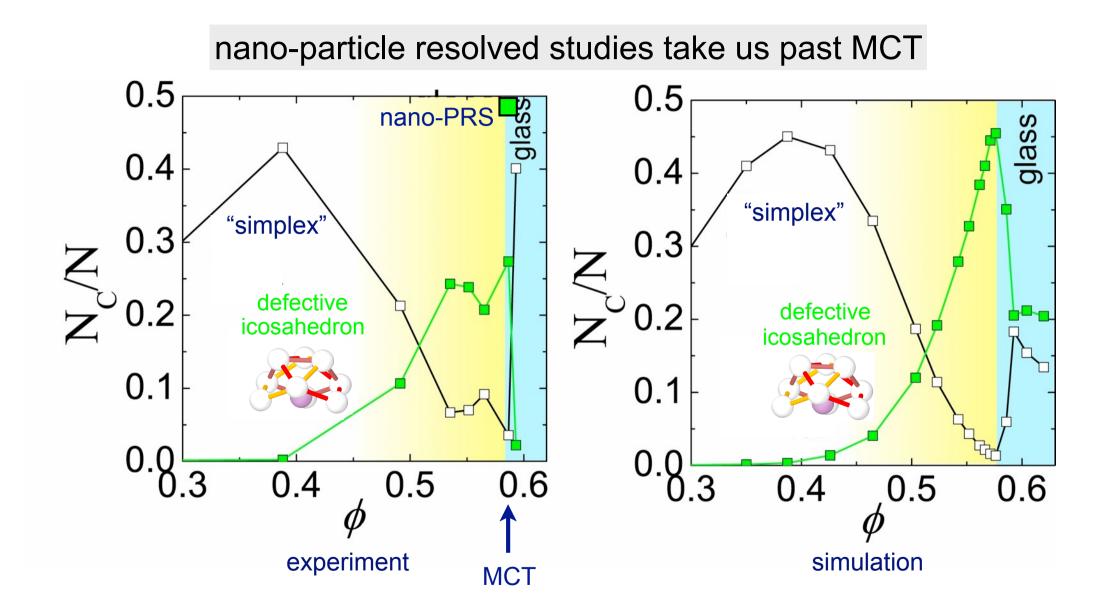


 $\phi \sim 0.59$ 41% of system LFS



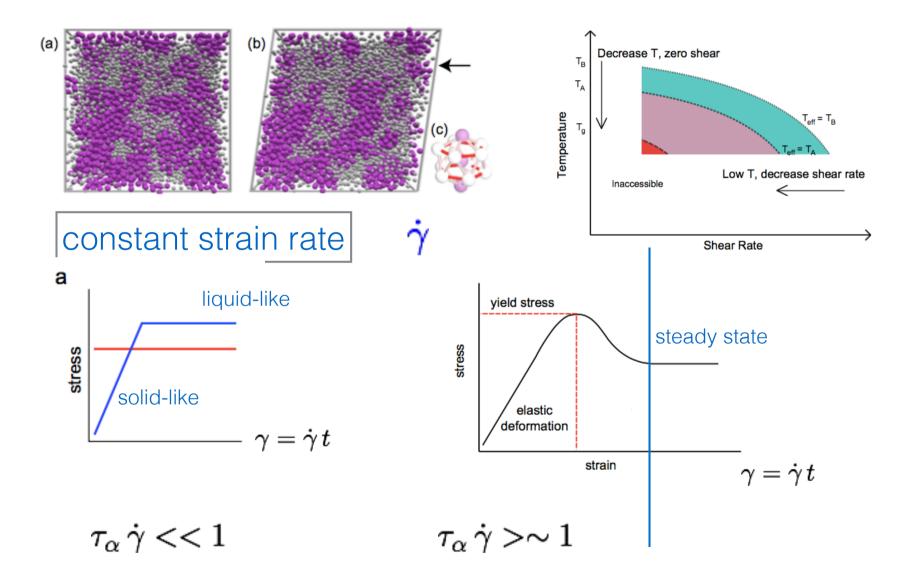
defective icosahedron

Particle-resolved studies take us to MCT



Hard spheres: defective icosahedron is LPS. Falling out of equilibrium (φ=0.58): "simplex" simplex~tetrahedron Royall et al. *J. Non-Cryst. Solids* 407 34-43 (2014)

shearing supercooled liquid what happens to local structure under shear ?



Pinney, Liverpool and Royall J. Chem. Phys. (2016)

SLLOD dynamics

- NVT simulations (equilibration) then SLLOD
- Lees-Edwards PBC
- Wahnström model

$$egin{aligned} \mathcal{H} &= \mathcal{T} + \mathcal{V} \ \dot{\mathbf{r}}_i &= rac{\partial \mathcal{H}}{\partial \mathbf{p}_i} + ec{x} \dot{\gamma} y_i \ \dot{\mathbf{p}}_i &= -rac{\partial \mathcal{H}}{\partial \mathbf{r}_i} - ec{x} \dot{\gamma} p_{y,i} \end{aligned}$$

$$10^{-5} \le \dot{\gamma} \le 0.25$$
 for $0.56 \le T \le 0.8$
 $2.5 \times 10^{-6} \le \dot{\gamma} \le 10^{-5}$ for $0.3 \le T \le 0.5$

N = 10976

Pinney, Liverpool and Royall J. Chem. Phys. (2016)

steady-state shear

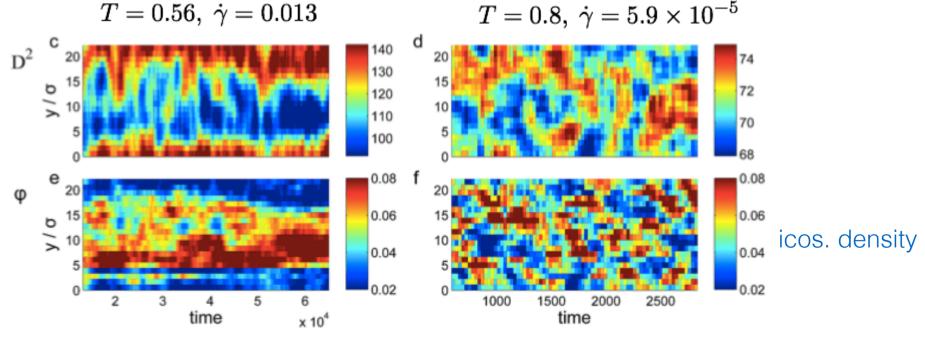
• yield at $\gamma \simeq 0.1$, steady state $\gamma > 1$ M. L. Falk and J. S. Langer, Phys. Rev. E 57, 7192 (1998)

- inhomogeneous flow profile
- non affine deformation parameter

 $D(r)\uparrow \dot{\gamma}(r)\uparrow$

$$D^{2}(\tau, t) = \sum_{n=1}^{N} \mathbf{R}_{n} \cdot \mathbf{R}_{n}^{T},$$
$$\mathbf{R}_{n} = \left(\mathbf{r}_{n}(t) - \mathbf{r}_{0}(t)\right) - \left(\mathbf{X}\mathbf{Y}^{-1}\right) \cdot \left(\mathbf{r}_{n}(\tau) - \mathbf{r}_{0}(\tau)\right),$$
$$\mathbf{X} = \sum_{n=1}^{N} \left(\mathbf{r}_{n}(t) - \mathbf{r}_{0}(t)\right) \left(\mathbf{r}_{n}(\tau) - \mathbf{r}_{0}(\tau)\right),$$

$$\mathbf{Y} = \sum_{n=1}^{N} \left(\mathbf{r}_n(\tau) - \mathbf{r}_0(\tau) \right) \left(\mathbf{r}_n(\tau) - \mathbf{r}_0(\tau) \right).$$



Pinney, Liverpool and Royall J. Chem. Phys. (2016)

"banding"/"effective T"

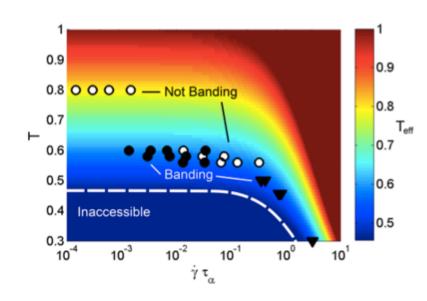
$$S_{h} = D_{av}^{2} + \frac{D_{max}^{2} - D_{av}^{2}}{A},$$

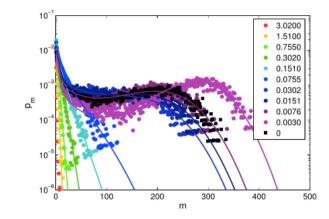
$$S_{l} = D_{av}^{2} - \frac{D_{av}^{2} - D_{min}^{2}}{A},$$

 $D^2 > S_h \implies \text{high eff. } T \text{ band}$

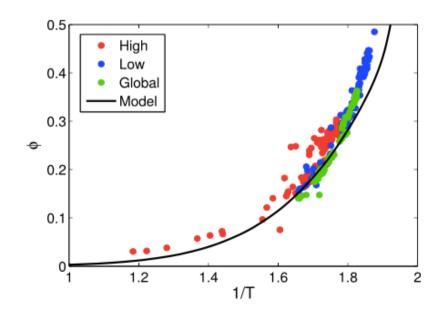
 $D^2 < S_l \implies \text{low eff. } T \text{ band}$

 $T_{
m eff}/T_{
m true}\simeq 0.271 \dot{\gamma} au_{lpha}+1$



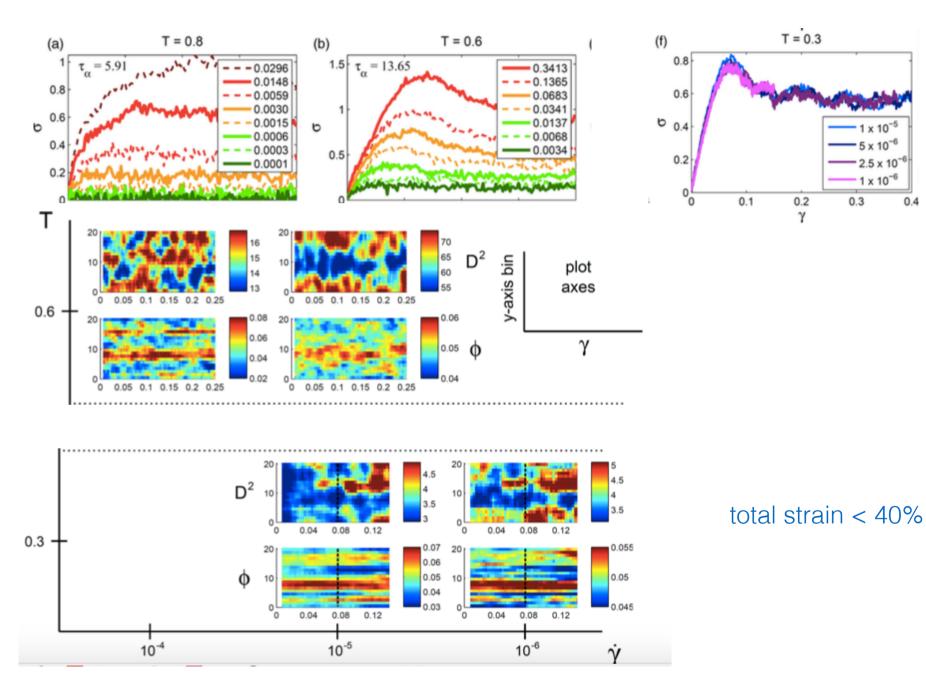


property of whole distribution



Pinney, Liverpool and Royall J. Chem. Phys. (2015)

transient shear

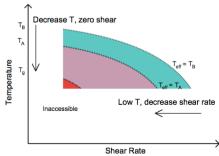


Pinney, Liverpool and Royall Phys. Rev. E (2018)

summary/perspectives

- hierarchy of mechanics : interparticle potential

 locally favoured structures -> mesoclusters
 of LFS -> percolation of mesoclusters -> ultra
 slow dynamics & inhomogeneous deformation
- suggests **both** a diverging length-scale and dynamic heterogeneity
- at the mesocluster level an equivalence of T and shear rate



perspectives

- a gross simplification but surprisingly successful why ?
- only most favoured structure, what about the others ?
- mean-field mesocluster model
- quantifying how the LFS link together to form mesoclusters
- can athermal systems be described by the limit T -> 0 at finite strain rate ?