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Discussion on u(J) suspension rheology and links to n(l)

Boyer, Guazzelli & Pouliquen (2011) Phys. Rev. Lett. 107, 188301.
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(b) Pressure imposed simple shear experiment
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5 where 7 is the shear stress, PP is pressure supported
by the grains, ny is the viscosity of the suspending
& € fluid, ¢ is the solids volume fraction, « is the shear-

rate and J is the dimensionless viscous number



The u(l)-rheology for dry grains is closely related

GDR MiDi (2004) Eur. Phys. J. E 14, 341-365.
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Simple shear experiment
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where 7 is the shear stress, P is pressure, ¢ is the
solids volume fraction, + is the shear-rate, d is the
particle size, p is the density and [ is the dimen-

r=u(DP, ¢=¢(I), I=

sionlless inertial number



Link to standard suspensions formulations
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At constant volume fraction suspensions scale viscously as
T =ns(dInsy, PP = nn(d)nsy
where the shear and normal viscosities ns and n, diverge at ¢m
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It is simple to show that J(¢) = 1/n,(¢) which can be inverted to
determine ¢(J).The standard suspension laws are equivalent to u(J)

_ N5y

r=u(PP, o=¢()), J=L



The u(l)-rheology has been generalized to tensorial form

Jop, Forterre & Pouliquen (2006) Nature 441, 727-730.
Schaeffer (1987) J. Differ. Equ. 66(1), 19-50.

Cauchy stress decomposed into a pressure p and deviatoric stress 7

o=-pl+rT1
The tensorial form of the incompressible u(I)-rheology is

D
T = HU)PW

where D is the strain-rate, ||D|| is the second invariant

1 2||D
|D|| = y/=trD?  and I = ! Hd,
2 \Vp/p

The p(I)-curve asymptotes to u» as I —s oo i

,LL(I) =)U/]_—|_ M2 — K1

Io/I+ 1

If 4 = constant this reduces to
Drucker-Prager plasticity, which is
always ill-posed (Schaeffer 1987).

What is tensorial form for suspensions? o 1 2
Are there any issues with ill-poseness?



The Cont inuum Sand—Glass

Solver: We apply the Open-source Gerris (Popinet 2003)
http: //gfs.sourceforge.net
(incompressible Navier-Stokes equations using a VOF method) (Popinet 2003, 2009)

5 Vau =0
p (8_2; +- u.Vu) = —Vp+ V.21nD) + pg
Jc
— . = 0
57 V.(cu)
P = C Pair + (1 — C) Pgrains
1 = C Nair = (1 — C) Tgrains

= We chose p,ir << Pgrains
= The free surface is solved in the course of time
= We implement the viscosity:

P
Tgrains — min (lu—y 77ma:1:> )
[ 7|

Lagree, Staron & Popinet 2011



Ihe Continuum Sand—Glass

No slip

We chose the following value for the rheological parameters:
ps = 0.32, pug = 0.60, Iy =04 Staron, Lagree & Popinet 2011
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‘ Well-posed and ill-posed behaviour of the u(l)-rheology
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Barker, Schaeffer, Bohorquez & Gray (2015) J. Fluid Mech. 779, 794-818.
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Outside well-posed region of parameter space solutions blow up
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e Gerris rectangular mesh with no free-surface deformation
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Partial regularization of the u(l)-rheology
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e Theill-posedness condition is used to maximize
region of well-posedness

e For low [ it must pass through zero and rise
logarithmically to connect with the well-posed
intermediate region

e For high I an approximately linear dependence
extends the range of p up to v/2
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Compressible | Dependent Rheology (CIDR)

Barker, Schaeffer, Shearer & Gray (2017) Proc. Roy. Soc. A 473, 20160846.

Assuming ¢ is the solids volume fraction mass and momentum are
(8 + u;0;)¢ + ¢ div u =0

p« (01 + u;j0j)u; = —0ip + 0;7i; + p«0yi
Deviatoric strain-rate tensor

1 1 1
Dij; = E(aj’ﬂli + Oiuy) — §(C”V ©)dij Dij = 5(3;“5 + Oiu;)

D;"' Tiq
Alignment: ) —_Y_ where ||D| = +/DijDi;/2
(D {7l Y
vield Condition: |7 =Y, &, 1)  ||7] = u(D)p

Flow Rule: divu=2f(p, ¢, 1) |D| divu=20



Compressible | Dependent Rheology (CIDR)

Barker, Schaeffer, Shearer & Gray (2017) Proc. Roy. Soc. A 473, 20160846.

The model is ALWAYS WELL-POSED provided

gy I Y of
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and that (a) 0;Y > 0 and 9,f — I0rf/(2p) < 0. One example is
Y(p, ¢, 1) = a(Dp —p?/C(¢)  f(p, ¢, 1) = B(I) — 2p/C(9)

(a) : (D)
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which is I dependent Critical State Soil Mechanics (CSSM).



Compressible | Dependent Rheology (CIDR)

Barker, Schaeffer, Shearer & Gray (2017) Proc. Roy. Soc. A 473, 20160846.
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implies that for isochoric flow

|7l = n(Dp
and steady-uniform CIDR flow is very close to Bagnold flow

But there are also non-local approaches (Bouzid et al. 2013, Kamrin
& Henann 2015, ) and higher gradient theories (Goddard 2017)





