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Given a many-body system (designer quantum system), 
what are the efficient ways to characterize and measure 

quantum states?
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| ih | = | "#ih#" || i = | "#i
Separable state:

| i = 1

2
(| "#i � | #"i)

Entangled state:

Tr2(| ih |) = | "ih" |

pure state

Tr2(| ih |) =
1

2
(| "ih" |+ | #ih# |)

mixed state

purity           of the partially traced system (or in general entropy 
of it), tells us about the entanglement in the original system 

Tr(⇢2)



Extension to many-body systems

S(2) = �lnTr⇢2
purity Renyi entropy:

(Area Law)

(Volume Law)



 Entanglement Spectrum
Entanglement Hamiltonian

Entanglement Hamiltonian 
Wavefunction:

Li and Haldane   PRL (2008)     FQHE
Pollmann et al. PRB  (2010)    Haldane phase
A. Chandran, V. Khemani, and S. L. Sondhi, PRL (2014) How powerful?
N. Laflorencie Physics Report 643, 1-59 (2016) Recent review

Entanglement Spectrum:
Schmidt Eigenvalues:

Entanglement “energy” 

Also Nielsen PRL (1999): entanglement transformation



Daley, Pichler, Schachenmayer,  Zoller, PRL (2012)
Abanin Demler PRL (2012)
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Figure 4. Entanglement in the ground state of the Bose-Hubbard model. We study the Mott insulator to superfluid transition with four
atoms on four lattice sites in the ground state of the Bose-Hubbard model, Eq. (4). a. As the interaction strength U/J

x

is adiabatically reduced
the purity of the subsystem A (green and blue, inset), Tr(⇢2

A

), become less than that of the full system (red). This demonstrates entanglement in
the superfluid phase, generated by coherent tunneling of bosons across lattice sites. In terms of the second-order Rényi entanglement entropy,
S2(A) = � log Tr(⇢

2
A

), the full system has less entropy than its subsystems in this state. In the Mott insulator phase (U/J

x

� 1) the full
system has more Rényi entropy (and less purity) than the subsystems, due to the lack of sufficient entanglement and a contribution of classical
entropy. The circles are data and the solid lines are theory calculated from exact diagonalization. The only free parameter is an added offset,
assumed extensive in system size and consistent with the average measured entropy in the full system. b. Second-order Rényi entropy of all
possible bi-partitioning of the system. For small U/J

x

, all subsystems (data points connected by green and blue lines) have more entropy
than the full system (red circles), indicating full multipartite entanglement [45] between the four lattice sites. The residual entropy in the Mott
insulating regime is from classical entropy in the experiment, and extensive in the subsystem size. Right: The values of all Renyi entropies of
the particular case of U/J

x

⇡ 1 are plotted, to demonstrate spatial multipartite entanglement in this superfluid.

beam splitter operation alone, suggesting significantly higher
purity for the many-body state. The measured entropy is thus
a sum of an extensive classical entropy due to the imperfec-
tions of the beam splitter and any entanglement entropy.

Our site resolved measurement simultaneously provides in-
formation about all possible spatial partitionings of the sys-
tem. Comparing the purity of all subsystems with that of the
full system enables us to determine whether a quantum state
has genuine spatial multipartite entanglement where every site
is entangled with each other. Experimentally we find that this
is indeed the case for small U/J

x

(Fig. 4b). In the super-
fluid phase, all possible subsystems have more entropy than
the full system, demonstrating full spatial multipartite entan-
glement between all four sites [33, 45]. In the Mott phase
(U/J

x

� 1), the measured entropy is dominated by extensive
classical entropy, showing a lack of entanglement.

By measuring the second-order Rényi entropy we can cal-
culate other useful quantities, such as the associated mutual
information I

AB

= S2(A) + S2(B) � S2(AB). Mutual in-
formation exhibits interesting scaling properties with respect
to the subsystem size, which can be key to studying area laws
in interacting quantum systems [51]. In some cases, such as
in the ‘data hiding states’ [52], mutual information is more
appropriate than the more conventional two point correlators
which might take arbitrarily small values in presence of strong
correlations. Mutual information is also immune to present
extensive classical entropy in the experiments, and hence is
practically useful to experimentally study larger systems. In
our experiments (Fig. 5a), we find that for the Mott insula-

tor state (U/J
x

� 1), the entropy of the full system is the
sum of the entropies for the subsystems. The mutual informa-
tion I

AB

⇡ 0 for this state, consistent with a product state in
the presence of extensive classical entropy. At U/J

x

⇡ 10,
correlations between the subsystems begin to grow as the sys-
tem adiabatically melts into a superfluid, resulting in non-zero
mutual information, I

AB

> 0.
It is instructive to investigate the scaling of Rényi entropy

and mutual information with subsystem size [13, 51] since
in larger systems they can characterize quantum phases, for
example by measuring the central charge of the underlying
quantum field theory [11]. Figure 5b shows these quantities
versus the subsystem size for various partitioning schemes
with a single boundary. For the atomic Mott insulator the
Rényi entropy increases linearly with the subsystem size and
the mutual information is zero, consistent with both a product
state and classical entropy being uncorrelated between vari-
ous sites. In the superfluid state the measured Rényi entropy
curves are asymmetric and first increase with the system size,
then fall again as the subsystem size approaches that of the full
system. This represents the combination of entanglement en-
tropy and the linear classical entropy. This non-monotonicity
is a signature of the entanglement entropy, as the entropy for a
pure state must vanish when the subsystem size is zero or the
full system. The asymmetry due to classical entropy is absent
in the mutual information.

The mutual information between two subsystems comes
from the correlations across their separating boundary. For
a four site system, the boundary area ranges from one to three

Nature 528, 77 (2015)
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Measuring entanglement entropy in a 
quantum many-body system
Rajibul Islam1, Ruichao Ma1, Philipp M. Preiss1, M. Eric Tai1, Alexander Lukin1, Matthew Rispoli1 & Markus Greiner1

Entangled quantum objects1 are correlated in ways that reject the 
principle of local realism. In few-level quantum systems, entangled 
states have been investigated extensively as a means of studying the 
foundations of quantum mechanics2 and as a resource for quantum 
information applications3. Recently, it was realized that the concept of 
entanglement has broad impact in many areas of quantum many-body 
physics, ranging from condensed matter4 to high-energy field theory5 
and quantum gravity6. In this general context, entanglement is most 
often quantified by the entropy of entanglement1 that arises in a sub-
system when the information about the remaining system is ignored. 
This entanglement entropy exhibits qualitatively different behaviour 
from that of classical entropy and has been used in theoretical physics  
to probe various properties of many-body systems. In condensed 
matter physics, for example, the scaling behaviour7 of entanglement 
entropy allows phases to be distinguished that cannot be characterized 
by symmetry properties, such as topological states of matter8–10 and 
spin liquids11,12. Entanglement entropy can be used to probe quan-
tum criticality13 and non-equilibrium dynamics14,15, and to determine 
whether efficient numerical techniques for computing many-body 
physics exist16.

Despite the growing importance of entanglement in theoretical 
physics, current condensed matter experiments do not have a direct 
probe with which to detect and measure entanglement. Synthetic 
quantum systems such as cold atoms17,18, photonic networks19, and 
some microscopic solid state devices20 have unique advantages: in such 
systems control and detection of single particles are possible, they pro-
vide experimental access to relevant dynamical time scales, and they 
are isolated from the environment. In these systems, specific entan-
gled states of few qubits, such as the highly entangled Greenberger–
Horne–Zeilinger (GHZ) state21 have been experimentally created and 
detected using witness operators22. However, entanglement witnesses 
are state specific. For arbitrary states, an exhaustive method of recon-
structing the entire quantum state by tomography23 can be used to 
measure entanglement. This has been accomplished in small systems 
of photonic qubits24 and trapped ion spins25, but there is no known 
way to perform tomography for systems involving itinerant delocal-
ized particles. With multiple copies of a system, however, one can use 
quantum many-body interference to quantify entanglement even in 
itinerant systems15,26,27.

In this work, we take advantage of the precise control and readout 
afforded by our quantum gas microscope28 to prepare and interfere two 
identical copies of a four-site Bose–Hubbard system. This many-body 
quantum interference enables us to measure quantities that are not 
directly accessible in a single system (without tomography), for exam-
ple, quadratic functions of the density matrix15,26,27,29–32. Such non-
linear functions can reveal entanglement1. In our system, we directly 
measure the quantum purity, Rényi entanglement entropy, and mutual 
information to probe the entanglement in site occupation numbers.

Bipartite entanglement
To detect entanglement in our system, we use a fundamental property 
of entanglement between two subsystems (bipartite entanglement): 
ignoring information about one subsystem results in the other becom-
ing a classical mixture of pure quantum states. This classical mixture 
in a density matrix ρ can be quantified by measuring the quantum 
purity, defined as Tr(ρ2). For a pure quantum state the density matrix 
is a projector and Tr(ρ2) = 1, whereas for a mixed state Tr(ρ2) <  1.  
In the case of a product state, the subsystems A and B of a many-body 
system AB described by a separable wavefunction | ψAB〉  (Fig. 1)  
are individually pure as well, that is, ρ ρ ρ( )= ( )= ( )=Tr Tr Tr 1A

2
B
2

AB
2 . 

Here the reduced density matrix of A is ρA =  TrB(ρAB), where  
ρAB =  | ψAB〉 〈ψAB|  is the density matrix of the full system. TrB indicates 
tracing over or ignoring all information about the subsystem B. For an 
entangled state, the subsystems become less pure compared to the full 
system as the correlations between A and B are ignored in the reduced 
density matrix, ρ ρ ρ( )= ( )< ( )= .Tr Tr Tr 1A

2
B
2

AB
2   Even if the many-body 

state is mixed ( ρ( )<Tr 1AB
2 ), it is still possible to measure entanglement 

between the subsystems1. It is sufficient33 to prove this entanglement by 
showing that the subsystems are less pure than the full system, that is:

ρ ρ

ρ ρ

( )< ( )

( )< ( ) ( )

Tr Tr
Tr Tr 1

A
2

AB
2

B
2

AB
2

These inequalities provide a powerful tool with which to detect entan-
glement in the presence of experimental imperfections. Furthermore, 
quantitative bounds on the entanglement present in a mixed many-
body state can be obtained from these state purities34.

Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between 
quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse 
fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. 
This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of 
spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using 
quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms 
in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly 
measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for 
using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

© 2015 Macmillan Publishers Limited. All rights reserved

• cold atoms on optical lattices

Recent experimental developments

➡ Challenges:  

✓ Estimating a function from its moments is not usually efficient 

  H. Song, et al. PRB (2012), I. Klich and Levitov PRL (2009)

• circuit-QED • Ion traps 

JILA, JQI, 
Innsbruck

Google

✓ Full quantum state tomography is very difficult, if not impossible



Goal: Find the spectrum of the density matrix

Reminder: To find spectrum of the Hamiltonian, we access e�iHt

Spectroscopy of density matrix 

Ramsey Spectroscopy

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, PRL (2009).

M. Knap, A. Kantian, T. Giamarchi, I. Bloch,4,5 M. Lukin, and E. Demler PRL (2013)

M. Beverland, J. Haah, G. Alagic, G.Campbell, A. M. Rey, and A. Gorshkov (2016) 



Solution: If we have access to e�i⇢t , then we can find the spectrum of ⇢

⇢1 ⇢1

⇢2 ⇢2
= ⇢2⇢1 = ⇢1⇢2

tr2{e�i✏S⇢1 ⌦ ⇢2 e
i✏S} = ⇢1 � i✏[⇢2, ⇢1] +O(✏2)

Spectroscopy of density matrix 

Trick one: Global SWAP between two copies simulates the evolution by 
the density matrix:  S. Lloyd et al.   Nat. Phys. 10, 631 (2014) 

⇢1
⇢2



S =
Y

j2A

Sj

➡ Requirements:  

✓ We need a global SWAP operator                   , specifically 

✓ We do NOT want to use a Q-Fourier transform to get the spectrum

Trick two: controlled global SWAP can be achieved by dispersive coupling 
and the spectrum can be measured by a Ramsey scheme

Hdis = �|0ih0|
X

j2A
n̂j,2

A dispersive Hamiltonian leads to 
parity operation: 

ei✏S

Trick three: infinitesimal rotation of the ancilla and SWAP, gives ei✏S

U
✏

= exp(�i✏(|0ih1|+ |1ih0|)),

⇢1
⇢2

â1 $ â2 ei
⇡
2 (â†

1â2+â†
2â1)SWAP:

can be decomposed into tunneling and 

parity measurement 

â1,2 ! 1p
2
(â1 ± â2) ei⇡â

†
2â2 Uc�phase = |1ih1|⌦ I + |0ih0|⌦ (�1)

P
j2A n̂j,2



ancilla

(a) (c)

(b)
• elementary step: conditional 

Ω

Ω |±i ª |0i±|1i

ancilla

Density matrix spectroscopy 

(a) (c)

(b)

n copies

read 
out

hZ in = 1
2

tr{e°i 2tnΩΩ+Ωei 2tnΩ}

Z = |0ih0|° |1ih1|
population difference

first system acts as ‘Hamiltonian' 
for second system

n≤ 'time'

conventional Ramsey:
hZi = tr{⇢e�iHt}



Summary of protocol

(I)  Initialize identical copies and the ancilla 
(II) Stroboscopic application of

(a) tunneling between two copies for beamsplitter operation
(b) controlled-phase operation  
(c) single qubit rotation on ancilla 

(III) Measurement of ancilla in Z basis 
fourier transform give the eigenstates 

2

(a) (c)

(b)

FIG. 1. (a) Circuit representation of the protocol to determine
the spectrum of a density operator ⇢. It consists of n strobo-
scopic steps (operations) that each involve an ancilla system
and two copies of the state under investigation. (b) Construc-
tion of the stroboscopic step, U

step

, from these elementary
operations. Note that it di↵ers from the one in Eq. (2) by
an additional swap, U

step

= SU 0
step

. This additional swap en-
sures that all processes involve only neighbouring copies (see
Appendix). (c) Each step can be constructed from three ba-
sic operations, tunnel coupling between neighbouring copies
(blue), a controlled (dispersive) phase shift for atoms in the
lattice based on the state of the ancilla system (green), and
rotations of the ancilla qubit (red). For a description of these
operations we refer to the main text [Eqs. (4), (5), and (7);
see also Fig. 2].

of system 1, which is not generated by a Hamiltonian,
but instead by the density operator of the second sys-
tem, ⇢

2

. Below we show how one can reduce the required
unitary U

S

(✏) = e�i✏S to a set of simpler operations that
can be implemented in state-of-the-art experiments with
cold atoms.

The central idea is now to repeatedly perform the op-
eration U

S

(✏) and obtain a stroboscopic evolution of ⇢
1

with ⇢
2

according to Eq. (1), using a new copy of ⇢
2

in
each step. Therefore, after n steps, we obtain the map:
⇢
1

! E
⇢

2

(⇢
1

) = e�in✏⇢

2⇢
1

ein✏⇢2 . Thus, ⇢
2

takes the role
of a Hamiltonian for system 1, which evolves “for a time”
t
n

= n✏. Monitoring this evolution allows us to access the
spectral properties of ⇢

2

, e.g., via quantum phase estima-
tion using an ancillary quantum computer [34]. Here we
use a simple Ramsey technique instead and employ an
ancillary system (with basis states |0i and |1i) to control
the application of U

S

(✏) [cf. Fig. 1(a)]:

U 0
step

= |�ih�|⌦ U
S

(�✏) + |+ih+|⌦ U
S

(+✏), (2)

where |±i = (|0i ± |1i)/p2. For an ancilla initially pre-
pared in the state |0i, the measurement of the operator
Z = |0ih0| � |1ih1| after n such controlled stroboscopic
steps gives hZi

n

= 1

2

tr{e�i2tn⇢2⇢
1

+ ⇢
1

ei2tn⇢2}. This ex-
pression is valid for small time steps, such that t

n

✏ ⌧ 1.
For the general expression we refer to the appendix. In
particular, for ⇢

1

= ⇢
2

⌘ ⇢ one gets:

hZi
n

= tr{⇢ cos(2t
n

⇢)} =
X

↵

�
↵

cos(2t
n

�
↵

). (3)

The set of eigenvalues of ⇢, {�
↵

}, can thus be extracted
by a simple Fourier transform of the measurement signal
for di↵erent n. Note that the choice of ⇢

1

= ⇢
2

= ⇢ is not
fundamental, but it is a natural one for an experimental
implementation and renders the protocol sensitive to the
largest eigenvalues.
The basic building block of this protocol is the uni-

tary U
S

(✏) = e�i✏S on the joint system of 1 and 2. We
note that the recently implemented schemes to measure
the Renyi entropy of cold atoms [28, 29] require a mea-
surement of the expectation value of the swap operator
S. For a many-body system, S, can be decomposed into
a product of local swap operators, such that a measure-
ment is possible by local operations only [25, 26, 41].
Here we aim for a more ambitious goal, since we want
to apply a unitary that is generated by the global swap
operator. This is a non-trivial task since S, and there-
fore U

S

, are highly non-local. Remarkably, the protocol
outlined above can nevertheless be implemented with op-
erations relying only on experimental tools already avail-
able in cold atom experiments as discussed below, such as
controlled tunnelling between neighbouring lattice sites
[28], local addressability of individual sites [35, 36] and
dispersive interactions based on the Rydberg blockade
mechanism [37].

III. COLD ATOM IMPLEMENTATION

While the protocol discussed above is completely gen-
eral, we now present an implementation thereof in ex-
periments with cold atoms in optical lattices. For con-
creteness, we consider bosons in a one-dimensional opti-
cal lattice described by a Bose-Hubbard model [42], but
the protocol equally applies to two dimensional systems.
We are interested in the entanglement (spectrum) be-
tween di↵erent lattice sites, i.e., the motional degrees of
freedom of the system. A realisation of the above Ramsey
interferometer with cold atoms consists of the following
steps:
(I) Preparation: n + 1 identical copies of the many-

body state ⇢ are prepared. Such copies are naturally
realized in experiments with cold atoms in optical lat-
tices [28], e.g,. in parallel 1D tubes. Once the states
are produced, we freeze the motion along each lattice for
the duration of the whole protocol by rapidly increasing
the lattice depth and turning o↵ interactions between the
atoms, e.g., via Feshbach resonances [43]. In addition, an
atom, whose internal states represent the ancilla qubit,
is trapped in a separate lattice site, close to one of the
tubes (Fig. 2). We initialize the ancilla atom in a stable
state, representing |0i, and use a highly excited Rydberg
state to represent |1i.
(II) Stroboscopic steps: A single run of the protocol

consists of n stroboscopic steps. The kth step (k =
1 . . . n) involves only the ancilla atom and the atoms in
the two adjacent lattices k and k + 1 (Fig. 1). We la-
bel the sites in each lattice by j = 1, . . .M , and the

Spectrum via Fourier Transform
Degeneracy from weights 



Detecting topological degeneracy and entanglement gap of 
the Haldane phase

FM AF

a b

cold atom realization: extended-Bose-Hubbard model
e.g. Ferlaino’s group Science (2016) 




Minimum number of resets (stroboscopic steps)
to detect 4-fold degeneracy:  ~50-100 

Ramsey signal and Fourier transform

Signal decay due to 1st-order Trotter approximation



k k+1 k+2 k+3k-2 k-1(c) copy

control atom

(b)

control 
atom

lattice 
atom(s)

control 
atom

lattice 
atom(s)

Experimental realizations: atoms optical lattice

copies are different chains:

control-phase gate by Rydberg dipole blockade
Saffman, Walker, Molmer RMP (2010)

copy k copy k+1

Tunneling :

j,l

the fully blocked regime, for |V (c)

j

| � |�| � |⌦|pNA
4

drop out in this regime. By applying H
e↵

for a time
t
phase

= ⇡�/⌦2, one obtains the unitary given in Eq. (5).
Such Rydberg-blockade-based gates have already been
studied and demonstrated experimentally [39, 43, 46].
We point out that the AC-Stark laser field has to be ap-
plied in a site-resolved way [41, 42] only to the sites in A
of copy k. (c) The third operation is a simple single-qubit
rotation,

U
✏

= exp(�i✏(|0ih1|+ |1ih0|)), (7)

as realized by addressing the control atom with a res-
onant laser of Rabi frequency ⌦

c

for a time t
✏

= ✏/⌦
c

[Fig. 2(c)]. The rotation angle ✏ ⌧ 1 determines the
stroboscopic step size.

Combining these operations one obtains a single stro-
boscopic step by U

step

= U
BS

U
c�phase

U
✏

U
c�phase

U
BS

[see
Fig. 1(c)], as can be shown using S2 = 1 [53, 54]. Note
that this operation di↵ers from the one given in Eq. (2)
by an additional swap, U

step

= (1⌦S)U 0
step

. This swap is
convenient since it guarantees that in each stroboscopic
step a new (unused) copy is coupled to the state that
is propagated according to Eq. (1) while involving only
neighboring copies (see Appendix A) .

(iii) Measurement of the ancilla atom in the Z basis,
with outcomes ±1.

The average over many runs gives hZi
n

, and the eigen-
values of the density operator can be extracted via a
Fourier transform of Eq. (3) over the simulated time t

n

.
Note that one can choose any subset of modes A by ad-
dressing the corresponding sites with the ac-Stark laser in
step (ii-b). In particular, the addressability allows mea-
suring the spectrum of any reduced state ⇢A, as well as
the spectrum of the entire state ⇢.

We note that in systems with a conserved quantum
number, such as the total number of atoms, it can be
useful to access the ES in a quantum-number-resolved
way [55]. In fact, our protocol can be easily adjusted to
measure the ES in di↵erent number sectors [56], via a
preselection of the copies by measuring the total number
of atoms in subsystem B in all n copies before step (i).
Beyond the conceptual asset of obtaining richer informa-
tion about the entanglement structure, this also has the
advantage of increasing the spectral resolution, as dis-
cussed below and pointed out in calculations of ES from
quantum Monte Carlo simulations [57].

We further point out that our protocol is not limited
to the implementation of the controlled phase shift using
an ancilla atom and the Rydberg blockade mechanism.
Alternatively one can place the atoms in an optical cavity
[58, 59] and use di↵erent photon number states as ancil-
lary system. The di↵erent ac-Stark shift experienced by
the atoms allows us to implement the controlled phase
gate [60].

While in the above discussion we focussed on a one-
dimensional setting, it is easy to see that the proto-
col equally applies to other configurations such as two-
dimensional systems. Instead of preparing several copies
in one-dimensional tubes, in step (i) the copies are, in this

(a)

(b)

(c)

FIG. 3. Entanglement spectrum of the extended 1D Hub-
bard model supporting symmetry-protected topological or-
der in the ground state. (a) Optical lattice with a two-site
unit cell corresponding to the Hamiltonian (8). The Hub-
bard parameter alternate between even and odd sites t

2j ⌘ t,
t
2j�1

⌘ t0, and analogously for "j and Vj . (b) In the hard-
core boson regime, this can be mapped to an alternating-
bond spin-1/2 Heisenberg model (9), with J = t/2 = V/4
and J 0 = t0/2 = V 0/4 (see Appendix C). The strong antifer-
romagnetic bond (red) favors the formation of a spin-singlet
dimer in the small J 0/J limit. (c) ES �↵ of a bipartite split
of regions A and B, and corresponding entanglement energies
⇠↵ = �ln(�↵) (inset) (J

0/J = 0.1, on N = 8 sites), for one of
the four degenerate ground states of Eq. (9).

case, created in two-dimensional (2D) layers as indicated
in Fig. 2(d). All other steps are identical to the ones de-
scribed above. Experimentally, site-resolved addressing
is more challenging in this 2D setting, as it involves also
layer-resolved addressing. This could be achieved, for ex-
ample, by combining quantum gas microscopes with in-
dividual addressing techniques using magnetic-field gra-
dients [61]. Probing the ES in such 2D systems would
allow us to diagnose, e.g., topological order in realiza-
tions of fractional quantum Hall states with cold atoms
[62, 63].

IV. ILLUSTRATION FOR THE HALDANE
CHAIN

In the following we illustrate this protocol on the ex-
ample of a Hubbard model. Here, we focus on an analysis
of the simplest model in one dimension with symmetry-
protected topological (SPT) order [49] and show that
the protocol presented in Sec. III allows us to determine
the largest eigenvalues of the ES, especially its gap and
topological degeneracies. In particular, we consider an
extended Bose-Hubbard model with nearest-neighbor in-
teractions:

H = �
X

j

t
j

(a†
j

a
j+1

+ a†
j+1

a
j

) + "
j

n
j

+

+
X

j

Un
j

(n
j

� 1) + V
j

n
j

n
j+1

, (8)

where n
j

= a†
j

a
j

. As illustrated in Fig. 3(a), we consider
a superlattice with a two-site unit cell with the hopping
amplitude t

j

and the on-site potential "
j

. The interact-

AC-Stark shift 



copy 1
copy 2

copy 3
. . . 

control atom
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1. Measurement Protocol for the Entanglement Spectrum

Hannes Pichler*, Guanyu Zhu*, Alireza Seif*, Peter Zoller and M.H. arXiv:1605.08624 (2016)

2. Measurement of scrambling, out-of-time-order correlators
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How fast a single spin get entangled to the rest of the system 
and the quantum information is scrambled?

Spreading of logical qubit in the Heisenberg picture:

J. Maldacena, S. H. Shenker, D. Stanford (2015)

h|[O2(t), O1(0)]|2i

C = hO2(t)O1(0)O2(t)O1(0)i

= 2[1�Re(C)]
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FIG. 1: (a) Illustration of the Ramsey interferometry protocol. The interferometry starts from the left, with the initial state | iS ⌦ | 0a i. The
Hadamard rotation splits the time evolution of the many-body state | iS into two branches, conditioned by the ancilla. The time evolution
conditioned by ancilla state | 0a i (| 1a i) is forward (backward) in the beginning. After applying the ⌧x operations, the ancilla states on the
two branches interchange, and so are the directions of time evolution. The red dashed lines show the canceled time evolution. Conditional
operations O1 and O2 on either branch are applied. A final measurement of the ancilla in the x- and y-basis gives the real and imaginary part
of the OTO correlator. We emphasize that the actual experimental time always goes from left to right. (b) The quantum circuit description of
the same protocol.

average ‘hi’ could be with respect to a certain initial state
| iS or an ensemble average over a thermal density matrix
⇢S=
P

S
e��H

Z | iS S h |, where Z is the partition function. For
the sake of convenience, we will focus on average with re-
spect to a given pure state | iS . If one is interested in average
with respect to a thermal ensemble, one can still work with a
pure state that is obtained by time-evolving an initial finite-
energy density pure state with respect to H [56]. Assuming
that the system is generic (non-integrable), the pure state av-
erage is then expected to match the thermal ensemble average
at a temperature determined by the energy density of the state
[56–58].

In the Schrodinger picture, the correlator corresponding to
a particular initial state can be written as

S h |eiHtO2e�iHtO1eiHtO2e�iHtO1| iS .
To measure this correlator, we apply the following Ramsey
interferometry protocol as illustrated in Fig. 1:

1. Start with the many-body system in the state | iS with
respect to which we wish to measure the OTO cor-
relator. Thus, the coupled system can expressed as
| iS ⌦ | 0a i.

2. Apply a Hadamard gate, i.e. a ⇡/2-rotation (pulse)
around the y-axis to the ancilla state:
The coupled system is thus prepared in the superposed
state 1p

2
| iS ⌦ [| 0a i + | 1a i]. From now on, the evolu-

tion of the many-body system split into two branches,
conditioned by the ancilla state | 0a i and | 1a i respec-
tively.

3. Apply a conditional operation

CO1,1 = O1 ⌦ | 1a ih 1a | + IS ⌦ | 0a ih 0a |, (4)

so that O1 is applied only to the lower branch of the in-
terferometer conditioned by the ancilla state | 1a i. The
coupled system forms an entangled state

1p
2

[O1| iS ⌦ | 1a i + | iS ⌦ | 0a i].

4. Let the system evolve with total Hamiltonian Htot for
time t according to Utot(t) represented in Eq. (3). The
coupled system is now in an entangled state of evolv-
ing forward and backward in time conditioned by the
photon number, namely

1p
2

[e�iHtO1| iS ⌦ | 1a i + eiHt | iS ⌦ | 0a i]. (5)

5. Apply a conditional-O2 on the lower (| 1a i) branch:

CO2,1 = O2 ⌦ | 1a ih 1a | + IS ⌦ | 0a ih 0a |. (6)

6. In order to reverse the ‘arrow of time’ in both branches,
we simply apply a ⌧x operator (⇡-pulse around the x-
axis) to flip the ancilla. Then we let the coupled system
evolve for a period of 2t and reach the state

1p
2

[e2iHtO2e�iHtO1| iS ⌦ | 0a i + e�2iHteiHt | iS ⌦ | 1a i].

One needs to measure the overlap: 



Goal: Measure the many-body state overlap

Solution: Couple an ancilla and perform Ramsey interferometry, under 
forward and backward propagation in time.


 • Simulate the forward and backward propagation by changing the parameters of 
the quantum simulator  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widely used as control-phase gate [31, 36–39] for quantum
information processing and quantum simulation [40], and has
been used to measure time-ordered correlation functions [41].
Meanwhile, theoretical proposals suggest that such an ancilla
can be used as a quantum switch that performs a many-body
Ramsey interferometer [42, 43] to extract useful information
of the quantum system, such as entanglement entropy [44] and
spectrum [45]. In this paper, the ancilla, in addition to playing
the role of the quantum clock, has the added benefit of being
the probe of the system. Specifically, we show how the OTO
could be obtained by measuring the same ancilla.

The primary advantage of our protocol utilizing a quantum
clock for both control and readout of the many-body states is
its robustness against statistical errors, such as imperfect ro-
tation, in each shot of the experiments. In particular, our pro-
tocol involves only one copy of many-body system and our
quantum clock does not modify the many-body Hamiltonian
in-situ, which is in contrast to a previous proposal of mea-
suring the same correlator using a classical switch to change
the sign of the Hamiltonian [14] and a recent proposal using
two copies of many-body systems [15]. Our protocol is less
sensitive to the potential errors which can make the forward
and backward propagation asymmetric in the protocol of [14]
or errors which make lead to non-identical copies in the pro-
tocol of Ref.[15]. These errors can make extracting of func-
tional dependence of the OTO correlator, including extracting
physical quantities such as the Lyapunov exponent or the but-
terfly velocity [46, 47] challenging. In addition, we are also
able to construct a local Hamiltonian, which is more physical
from condensed matter and quantum field theoretic viewpoint,
and which may also exhibit richer behavior of quantum chaos,
such as the recent discovery of the power-law scrambling in
many-body localized systems [48–52], and faster scrambling
near quantum phase transitions of a Bose Hubbard model[53].

We also provide simple examples of embedding such an
ancilla in cavity-QED systems, for both a non-local all-to-all
coupled spin models and a local XY-spin or extended Bose-
Hubbard model. In the non-local model, qubits (spins) are
interacting with each other mediated by a passive cavity bus,
which is itself dispersively coupled to another ancilla cav-
ity in order to control the sign of the Hamiltonian. To re-
alize the local model, local cavities/resonators are coupled
by intermediate qubits, which are themselves coupled to a
global cavity. When integrating out the qubit degrees of free-
dom and with proper choosing of parameters, the e↵ective
Hamiltonian has an overall sign controlled by the state of the
global cavity. Such models can be realized with recently de-
veloped experimental platforms such as circuit-QED network
[22–25, 27, 28, 54] and qubit/atomic array in a 3D cavity [29].

The outline of our paper is as follows. In Sec. II, we present
our general protocol of measuring the OTO correlator with a
quantum clock. In Sec. III, we show how such a quantum
clock could be embedded in a physical model. In Sec. IV, we
discuss the implementation of the protocol with circuit-QED
systems. In Sec. V, we analyze the stability of our protocol
against imperfections. We present the generalization of ap-
proach for extended Bose-Hubbard model and disordered spin
chains in Sec. VI. We provide the conclusion and outlook in

Sec. VII. In Appendix ??, we list the complete sequence of
gates in the protocol. We show the details of the experimen-
tal realization of the local model which we construct in the
main text with a circuit-QED network or a qubit array in a 3D
cavity in Appendix A. In Appendix B, we compare the numer-
ical diagonalization of the original and second-order e↵ective
Hamiltonian. Finally, in Appendix C, we provide a complete
formula of the second-order dispersive Hamiltonian we men-
tion in Sec. III without integrating out the qubits.

II. GENERAL SCHEME

We consider a many-body system governed by Hamiltonian
H and couple it globally to an ancilla qubit ⌧z, with the total
Hamiltonian being

Htot = ⌧
z ⌦ H. (1)

With the cavity-QED implementation, the ancilla qubit can
also be realized with the global cavity photon mode as
⌧z=1�2a†a, if the cavity photon state is restricted in the 0-
and 1-photon subspace. Hence the total Hamiltonian of the
coupled system can also be expressed as

Htot = (1 � 2a†a) ⌦ H. (2)

From now on, we call both the cavity and the ancilla qubit
as ‘ancilla’ without further specification, since they play the
same role and one can use either them for the protocol.

In Eq. (1) and (2), the ancilla only dresses the many-body
system H, and does not exchange excitations (photons) with
the many-body system. Crucially, if the H we consider is a
local Hamiltonian, the ancilla does not mediate long-range in-
teraction between the particles/spins in the many-body system
and preserves the locality of H.

The only thing that the ancilla does is to control the overall
sign of the many-body Hamiltonian H quantum coherently. If
the cavity contains no photon, namely the ancilla is in state
| 0a i [55], the overall sign is ‘+’; if the cavity contains one
photon, namely the ancilla is in state | 1a i, the overall sign is
‘�’. If we consider the dynamics of the coupled system, we
can express the evolution operator as

Utot(t) = e�iHtott = e�iHt ⌦ | 0a ih 0a | + eiHt ⌦ | 1a ih 1a |. (3)

This means that the many-body system H evolves forward in
time if the cavity contains no photon, and backward in time
if the cavity contains one photon. Namely the cavity pho-
ton number a†a or the ancilla qubit ⌧z acts a binary ‘quantum
clock’ that controls the ‘arrow of time’. More interestingly
since the ‘clock’ is quantum, the system can be in a parallel
superposition of evolving both forward and backward in time,
for example when we prepare the ‘clock’ being in the super-
position state 1p

2
(| 0a i + | 1a i).

Now we discuss a general protocol to measure the out-
of-time-order (OTO) correlator hO2(t)O1(0)O2(t)O1(0)i intro-
duced earlier, where O1 and O2 are certain operators, and
O(t) = eiHtOe�iHt is the Heisenberg evolved operator. The

Important benefit: Calibration and benchmarking

H
tot

= (1� 2a†a)⌦H
• Using the ancilla as a quantum clock to change the arrow of time. 
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FIG. 1: (a) Illustration of the Ramsey interferometry protocol. The interferometry starts from the left, with the initial state | iS ⌦ | 0a i. The
Hadamard rotation splits the time evolution of the many-body state | iS into two branches, conditioned by the ancilla. The time evolution
conditioned by ancilla state | 0a i (| 1a i) is forward (backward) in the beginning. After applying the ⌧x operations, the ancilla states on the
two branches interchange, and so are the directions of time evolution. The red dashed lines show the canceled time evolution. Conditional
operations O1 and O2 on either branch are applied. A final measurement of the ancilla in the x- and y-basis gives the real and imaginary part
of the OTO correlator. We emphasize that the actual experimental time always goes from left to right. (b) The quantum circuit description of
the same protocol.

average ‘hi’ could be with respect to a certain initial state
| iS or an ensemble average over a thermal density matrix
⇢S=
P

S
e��H

Z | iS S h |, where Z is the partition function. For
the sake of convenience, we will focus on average with re-
spect to a given pure state | iS . If one is interested in average
with respect to a thermal ensemble, one can still work with a
pure state that is obtained by time-evolving an initial finite-
energy density pure state with respect to H [56]. Assuming
that the system is generic (non-integrable), the pure state av-
erage is then expected to match the thermal ensemble average
at a temperature determined by the energy density of the state
[56–58].

In the Schrodinger picture, the correlator corresponding to
a particular initial state can be written as

S h |eiHtO2e�iHtO1eiHtO2e�iHtO1| iS .
To measure this correlator, we apply the following Ramsey
interferometry protocol as illustrated in Fig. 1:

1. Start with the many-body system in the state | iS with
respect to which we wish to measure the OTO cor-
relator. Thus, the coupled system can expressed as
| iS ⌦ | 0a i.

2. Apply a Hadamard gate, i.e. a ⇡/2-rotation (pulse)
around the y-axis to the ancilla state:
The coupled system is thus prepared in the superposed
state 1p

2
| iS ⌦ [| 0a i + | 1a i]. From now on, the evolu-

tion of the many-body system split into two branches,
conditioned by the ancilla state | 0a i and | 1a i respec-
tively.

3. Apply a conditional operation

CO1,1 = O1 ⌦ | 1a ih 1a | + IS ⌦ | 0a ih 0a |, (4)

so that O1 is applied only to the lower branch of the in-
terferometer conditioned by the ancilla state | 1a i. The
coupled system forms an entangled state

1p
2

[O1| iS ⌦ | 1a i + | iS ⌦ | 0a i].

4. Let the system evolve with total Hamiltonian Htot for
time t according to Utot(t) represented in Eq. (3). The
coupled system is now in an entangled state of evolv-
ing forward and backward in time conditioned by the
photon number, namely

1p
2

[e�iHtO1| iS ⌦ | 1a i + eiHt | iS ⌦ | 0a i]. (5)

5. Apply a conditional-O2 on the lower (| 1a i) branch:

CO2,1 = O2 ⌦ | 1a ih 1a | + IS ⌦ | 0a ih 0a |. (6)

6. In order to reverse the ‘arrow of time’ in both branches,
we simply apply a ⌧x operator (⇡-pulse around the x-
axis) to flip the ancilla. Then we let the coupled system
evolve for a period of 2t and reach the state

1p
2

[e2iHtO2e�iHtO1| iS ⌦ | 0a i + e�2iHteiHt | iS ⌦ | 1a i].ilarly, one can extract the imaginary part by measuring
, since h⌧yi f = Im[h L |R i].
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FIG. 1: (a) Illustration of the Ramsey interferometry protocol. The interferometry starts from the left, with the initial state | iS ⌦ | 0a i. The
Hadamard rotation splits the time evolution of the many-body state | iS into two branches, conditioned by the ancilla. The time evolution
conditioned by ancilla state | 0a i (| 1a i) is forward (backward) in the beginning. After applying the ⌧x operations, the ancilla states on the
two branches interchange, and so are the directions of time evolution. The red dashed lines show the canceled time evolution. Conditional
operations O1 and O2 on either branch are applied. A final measurement of the ancilla in the x- and y-basis gives the real and imaginary part
of the OTO correlator. We emphasize that the actual experimental time always goes from left to right. (b) The quantum circuit description of
the same protocol.

average ‘hi’ could be with respect to a certain initial state
| iS or an ensemble average over a thermal density matrix
⇢S=
P

S
e��H

Z | iS S h |, where Z is the partition function. For
the sake of convenience, we will focus on average with re-
spect to a given pure state | iS . If one is interested in average
with respect to a thermal ensemble, one can still work with a
pure state that is obtained by time-evolving an initial finite-
energy density pure state with respect to H [56]. Assuming
that the system is generic (non-integrable), the pure state av-
erage is then expected to match the thermal ensemble average
at a temperature determined by the energy density of the state
[56–58].

In the Schrodinger picture, the correlator corresponding to
a particular initial state can be written as

S h |eiHtO2e�iHtO1eiHtO2e�iHtO1| iS .
To measure this correlator, we apply the following Ramsey
interferometry protocol as illustrated in Fig. 1:

1. Start with the many-body system in the state | iS with
respect to which we wish to measure the OTO cor-
relator. Thus, the coupled system can expressed as
| iS ⌦ | 0a i.

2. Apply a Hadamard gate, i.e. a ⇡/2-rotation (pulse)
around the y-axis to the ancilla state:
The coupled system is thus prepared in the superposed
state 1p

2
| iS ⌦ [| 0a i + | 1a i]. From now on, the evolu-

tion of the many-body system split into two branches,
conditioned by the ancilla state | 0a i and | 1a i respec-
tively.

3. Apply a conditional operation

CO1,1 = O1 ⌦ | 1a ih 1a | + IS ⌦ | 0a ih 0a |, (4)

so that O1 is applied only to the lower branch of the in-
terferometer conditioned by the ancilla state | 1a i. The
coupled system forms an entangled state

1p
2

[O1| iS ⌦ | 1a i + | iS ⌦ | 0a i].

4. Let the system evolve with total Hamiltonian Htot for
time t according to Utot(t) represented in Eq. (3). The
coupled system is now in an entangled state of evolv-
ing forward and backward in time conditioned by the
photon number, namely

1p
2

[e�iHtO1| iS ⌦ | 1a i + eiHt | iS ⌦ | 0a i]. (5)

5. Apply a conditional-O2 on the lower (| 1a i) branch:

CO2,1 = O2 ⌦ | 1a ih 1a | + IS ⌦ | 0a ih 0a |. (6)

6. In order to reverse the ‘arrow of time’ in both branches,
we simply apply a ⌧x operator (⇡-pulse around the x-
axis) to flip the ancilla. Then we let the coupled system
evolve for a period of 2t and reach the state

1p
2

[e2iHtO2e�iHtO1| iS ⌦ | 0a i + e�2iHteiHt | iS ⌦ | 1a i].
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FIG. 1: (a) Illustration of the Ramsey interferometry protocol. The interferometry starts from the left, with the initial state | iS ⌦ | 0a i. The
Hadamard rotation splits the time evolution of the many-body state | iS into two branches, conditioned by the ancilla. The time evolution
conditioned by ancilla state | 0a i (| 1a i) is forward (backward) in the beginning. After applying the ⌧x operations, the ancilla states on the
two branches interchange, and so are the directions of time evolution. The red dashed lines show the canceled time evolution. Conditional
operations O1 and O2 on either branch are applied. A final measurement of the ancilla in the x- and y-basis gives the real and imaginary part
of the OTO correlator. We emphasize that the actual experimental time always goes from left to right. (b) The quantum circuit description of
the same protocol.

average ‘hi’ could be with respect to a certain initial state
| iS or an ensemble average over a thermal density matrix
⇢S=
P

S
e��H

Z | iS S h |, where Z is the partition function. For
the sake of convenience, we will focus on average with re-
spect to a given pure state | iS . If one is interested in average
with respect to a thermal ensemble, one can still work with a
pure state that is obtained by time-evolving an initial finite-
energy density pure state with respect to H [56]. Assuming
that the system is generic (non-integrable), the pure state av-
erage is then expected to match the thermal ensemble average
at a temperature determined by the energy density of the state
[56–58].

In the Schrodinger picture, the correlator corresponding to
a particular initial state can be written as

S h |eiHtO2e�iHtO1eiHtO2e�iHtO1| iS .
To measure this correlator, we apply the following Ramsey
interferometry protocol as illustrated in Fig. 1:

1. Start with the many-body system in the state | iS with
respect to which we wish to measure the OTO cor-
relator. Thus, the coupled system can expressed as
| iS ⌦ | 0a i.

2. Apply a Hadamard gate, i.e. a ⇡/2-rotation (pulse)
around the y-axis to the ancilla state:
The coupled system is thus prepared in the superposed
state 1p

2
| iS ⌦ [| 0a i + | 1a i]. From now on, the evolu-

tion of the many-body system split into two branches,
conditioned by the ancilla state | 0a i and | 1a i respec-
tively.

3. Apply a conditional operation

CO1,1 = O1 ⌦ | 1a ih 1a | + IS ⌦ | 0a ih 0a |, (4)

so that O1 is applied only to the lower branch of the in-
terferometer conditioned by the ancilla state | 1a i. The
coupled system forms an entangled state

1p
2

[O1| iS ⌦ | 1a i + | iS ⌦ | 0a i].

4. Let the system evolve with total Hamiltonian Htot for
time t according to Utot(t) represented in Eq. (3). The
coupled system is now in an entangled state of evolv-
ing forward and backward in time conditioned by the
photon number, namely

1p
2

[e�iHtO1| iS ⌦ | 1a i + eiHt | iS ⌦ | 0a i]. (5)

5. Apply a conditional-O2 on the lower (| 1a i) branch:

CO2,1 = O2 ⌦ | 1a ih 1a | + IS ⌦ | 0a ih 0a |. (6)

6. In order to reverse the ‘arrow of time’ in both branches,
we simply apply a ⌧x operator (⇡-pulse around the x-
axis) to flip the ancilla. Then we let the coupled system
evolve for a period of 2t and reach the state
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FIG. 1: (a) Illustration of the Ramsey interferometry protocol. The interferometry starts from the left, with the initial state | iS ⌦ | 0a i. The
Hadamard rotation splits the time evolution of the many-body state | iS into two branches, conditioned by the ancilla. The time evolution
conditioned by ancilla state | 0a i (| 1a i) is forward (backward) in the beginning. After applying the ⌧x operations, the ancilla states on the
two branches interchange, and so are the directions of time evolution. The red dashed lines show the canceled time evolution. Conditional
operations O1 and O2 on either branch are applied. A final measurement of the ancilla in the x- and y-basis gives the real and imaginary part
of the OTO correlator. We emphasize that the actual experimental time always goes from left to right. (b) The quantum circuit description of
the same protocol.
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| iS or an ensemble average over a thermal density matrix
⇢S=
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Z | iS S h |, where Z is the partition function. For
the sake of convenience, we will focus on average with re-
spect to a given pure state | iS . If one is interested in average
with respect to a thermal ensemble, one can still work with a
pure state that is obtained by time-evolving an initial finite-
energy density pure state with respect to H [56]. Assuming
that the system is generic (non-integrable), the pure state av-
erage is then expected to match the thermal ensemble average
at a temperature determined by the energy density of the state
[56–58].

In the Schrodinger picture, the correlator corresponding to
a particular initial state can be written as

S h |eiHtO2e�iHtO1eiHtO2e�iHtO1| iS .
To measure this correlator, we apply the following Ramsey
interferometry protocol as illustrated in Fig. 1:

1. Start with the many-body system in the state | iS with
respect to which we wish to measure the OTO cor-
relator. Thus, the coupled system can expressed as
| iS ⌦ | 0a i.

2. Apply a Hadamard gate, i.e. a ⇡/2-rotation (pulse)
around the y-axis to the ancilla state:
The coupled system is thus prepared in the superposed
state 1p
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| iS ⌦ [| 0a i + | 1a i]. From now on, the evolu-

tion of the many-body system split into two branches,
conditioned by the ancilla state | 0a i and | 1a i respec-
tively.

3. Apply a conditional operation

CO1,1 = O1 ⌦ | 1a ih 1a | + IS ⌦ | 0a ih 0a |, (4)

so that O1 is applied only to the lower branch of the in-
terferometer conditioned by the ancilla state | 1a i. The
coupled system forms an entangled state
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[O1| iS ⌦ | 1a i + | iS ⌦ | 0a i].

4. Let the system evolve with total Hamiltonian Htot for
time t according to Utot(t) represented in Eq. (3). The
coupled system is now in an entangled state of evolv-
ing forward and backward in time conditioned by the
photon number, namely

1p
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[e�iHtO1| iS ⌦ | 1a i + eiHt | iS ⌦ | 0a i]. (5)

5. Apply a conditional-O2 on the lower (| 1a i) branch:

CO2,1 = O2 ⌦ | 1a ih 1a | + IS ⌦ | 0a ih 0a |. (6)

6. In order to reverse the ‘arrow of time’ in both branches,
we simply apply a ⌧x operator (⇡-pulse around the x-
axis) to flip the ancilla. Then we let the coupled system
evolve for a period of 2t and reach the state
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FIG. 1: (a) Illustration of the Ramsey interferometry protocol. The interferometry starts from the left, with the initial state | iS ⌦ | 0a i. The
Hadamard rotation splits the time evolution of the many-body state | iS into two branches, conditioned by the ancilla. The time evolution
conditioned by ancilla state | 0a i (| 1a i) is forward (backward) in the beginning. After applying the ⌧x operations, the ancilla states on the
two branches interchange, and so are the directions of time evolution. The red dashed lines show the canceled time evolution. Conditional
operations O1 and O2 on either branch are applied. A final measurement of the ancilla in the x- and y-basis gives the real and imaginary part
of the OTO correlator. We emphasize that the actual experimental time always goes from left to right. (b) The quantum circuit description of
the same protocol.

average ‘hi’ could be with respect to a certain initial state
| iS or an ensemble average over a thermal density matrix
⇢S=
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Z | iS S h |, where Z is the partition function. For
the sake of convenience, we will focus on average with re-
spect to a given pure state | iS . If one is interested in average
with respect to a thermal ensemble, one can still work with a
pure state that is obtained by time-evolving an initial finite-
energy density pure state with respect to H [56]. Assuming
that the system is generic (non-integrable), the pure state av-
erage is then expected to match the thermal ensemble average
at a temperature determined by the energy density of the state
[56–58].

In the Schrodinger picture, the correlator corresponding to
a particular initial state can be written as
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To measure this correlator, we apply the following Ramsey
interferometry protocol as illustrated in Fig. 1:

1. Start with the many-body system in the state | iS with
respect to which we wish to measure the OTO cor-
relator. Thus, the coupled system can expressed as
| iS ⌦ | 0a i.

2. Apply a Hadamard gate, i.e. a ⇡/2-rotation (pulse)
around the y-axis to the ancilla state:
The coupled system is thus prepared in the superposed
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tion of the many-body system split into two branches,
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FIG. 1: (a) Illustration of the Ramsey interferometry protocol. The interferometry starts from the left, with the initial state | iS ⌦ | 0a i. The
Hadamard rotation splits the time evolution of the many-body state | iS into two branches, conditioned by the ancilla. The time evolution
conditioned by ancilla state | 0a i (| 1a i) is forward (backward) in the beginning. After applying the ⌧x operations, the ancilla states on the
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the same protocol.
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From the above equation, we can see clearly see that the
cavity frequency is controlled by the ancilla photon state.
For convenience, we introduce the ancilla-dependent detun-
ing �b,na=�b � ⌘na for both sectors.

We now treat V perturbatively in the dispersive regime
(g j ⌧ |�b,na |) for both ancilla sectors, and integrate out the
coupling cavity and finally project to the nb = 0 sector. The
resulting e↵ective Hamiltonian [18, 19, 21, 62] up to the sec-
ond order in perturbation theory [63] is
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The first term at the second order is the so-called ‘quantum-
bus’ interaction, i.e., the flip-flop interaction mediated by the
virtual photon in the coupling cavity bus [21, 62]. The second
term represents the Lamb shift induced by the cavity bus. The
prefactors of both terms depend on the detuning �b,na , which
is controlled by the ancilla state | na i. In order to reverse the
sign of these prefactors, we chose the cross-Kerr nonlinearity
⌘ such that �b,1 = ��b,0 = ��b, which leads to the condition:

⌘ = 2(✏ � !b) ⌘ 2�b. (12)

When enforcing this condition, the e↵ective Hamiltonian in
the rotating frame with frequency ✏ can be written as
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Here, the e↵ective Hamiltonian has exactly the form sug-
gested in Eq. (2), and the ‘arrow of time’ is controlled by the
ancilla photon number a†a = 0 or 1 as desired. As shown
above, the Hamiltonian controlled by the ancilla is an all-to-
all coupled XY model in the presence of external field (corre-
sponding to the Lamb shift term). One can also easily realize
disorder in the coupling strengths. Additional ZZ-interaction
arises in the fourth-order perturbation [36, 64] [and the em-
bedding of the ancilla is also realized once Eq. (12) is satis-
fied]:

VZZ = (1 � 2a†a)
X

j< j0

2g2
jg

2
j0

�3
b

�z
j�

z
j0 . (14)

The ZZ-interaction strength can be made stronger than this
if one uses the transmon qubits [66], where the third-level of

transmon contribute significantly to the ZZ interaction [36].
Finally, we note that the presence of the Lamb shift is cru-
cial for implementing the controlled operations mentioned in
Sec. II, as will be explained in detail in Sec. IV.

B. Local model

Now we discuss the realization of local lattice models. We
present a generic cavity-QED array implementation, which
can be realized with, e.g., circuit-QED network and super-
conducting qubit array in a 3D cavity. The central idea is to
use a global cavity as the ancilla, which enables both quantum
switching of the ‘arrow of time’ and readout of the OTO corre-
lator. The e↵ective target Hamiltonian H we obtain is a spin-
1/2 XY spin model. We also generalize to an extended Bose-
Hubbard model and models with spatial disorders in Sec.VI.

The scheme is illustrated in Fig. 3: the blue boxes represent
local cavities associated with photon operators b j, which play
the role of active degrees of freedom. These local cavities are
coupled by intermediate qubits (red circles, associated with
Pauli operators �z

j, j+1) which are passive degrees of freedom
and will be eventually integrated out. Note that this is di↵er-
ent than the non-local Hamiltonian in the previous subsection
where ~�’s were active degrees of freedom while b j were pas-
sive. In addition, similar to the non-local case, the qubits are
coupled to a global cavity (described by photon operator a),
which will serve as the ancilla. We proceed as before, and split
the entire Hamiltonian Hs into two parts, i.e. Hs = H0 + V:

H0 =!b

X

j

b†jb j +
1
2
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j

�z
j, j+1 + Hdisp,
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j�1, j) + H.c.]. (15)

In place of the cross-Kerr interaction in Eq. (9), H0 now con-
tain a term Hdisp which represents the dispersive interaction
between the global cavity (a) and the qubits (�) with interac-
tion strength �, and is also sometimes called dispersive shift.
For convenience, we define ✏ is the renormalized frequency of
the qubits, with the Lamb shift due to the global cavity already
absorbed into the definition.

We note that the dispersive interaction Hdisp can arise, e.g.,
from a Jaynes-Cummings interaction in the dispersive regime
[17, 21], where we get the dispersive shift � = g2

a/�a. Here, ga
is the JC interaction strength and �a is the detuning between
bare qubit (�) and global cavity (a) frequencies. For weakly-
anharmonic superconducting qubits such as transmons, the
derivation of dispersive interaction can be found in Ref. [60].

Similar to the non-local case, the photon number a†a is con-
served, and we again restrict to 0- and 1-photon sectors. In the
following, we want to eliminate the qubit degrees of freedom
(�) perturbatively and find an e↵ective Hamiltonian that local
cavities (b) form an XY model of which the sign is determined
by the ancilla photon number.

Assuming that the clock can only take vacuum  
and one photon state: 
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The first term at the second order is the so-called ‘quantum-
bus’ interaction, i.e., the flip-flop interaction mediated by the
virtual photon in the coupling cavity bus [21, 62]. The second
term represents the Lamb shift induced by the cavity bus. The
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Here, the e↵ective Hamiltonian has exactly the form sug-
gested in Eq. (2), and the ‘arrow of time’ is controlled by the
ancilla photon number a†a = 0 or 1 as desired. As shown
above, the Hamiltonian controlled by the ancilla is an all-to-
all coupled XY model in the presence of external field (corre-
sponding to the Lamb shift term). One can also easily realize
disorder in the coupling strengths. Additional ZZ-interaction
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fied]:

VZZ = (1 � 2a†a)
X

j< j0

2g2
jg

2
j0

�3
b

�z
j�

z
j0 . (14)

The ZZ-interaction strength can be made stronger than this
if one uses the transmon qubits [66], where the third-level of
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can be realized with, e.g., circuit-QED network and super-
conducting qubit array in a 3D cavity. The central idea is to
use a global cavity as the ancilla, which enables both quantum
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1/2 XY spin model. We also generalize to an extended Bose-
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The first term at the second order is the so-called ‘quantum-
bus’ interaction, i.e., the flip-flop interaction mediated by the
virtual photon in the coupling cavity bus [21, 62]. The second
term represents the Lamb shift induced by the cavity bus. The
prefactors of both terms depend on the detuning �b,na , which
is controlled by the ancilla state | na i. In order to reverse the
sign of these prefactors, we chose the cross-Kerr nonlinearity
⌘ such that �b,1 = ��b,0 = ��b, which leads to the condition:
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Here, the e↵ective Hamiltonian has exactly the form sug-
gested in Eq. (2), and the ‘arrow of time’ is controlled by the
ancilla photon number a†a = 0 or 1 as desired. As shown
above, the Hamiltonian controlled by the ancilla is an all-to-
all coupled XY model in the presence of external field (corre-
sponding to the Lamb shift term). One can also easily realize
disorder in the coupling strengths. Additional ZZ-interaction
arises in the fourth-order perturbation [36, 64] [and the em-
bedding of the ancilla is also realized once Eq. (12) is satis-
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The first term at the second order is the so-called ‘quantum-
bus’ interaction, i.e., the flip-flop interaction mediated by the
virtual photon in the coupling cavity bus [21, 62]. The second
term represents the Lamb shift induced by the cavity bus. The
prefactors of both terms depend on the detuning �b,na , which
is controlled by the ancilla state | na i. In order to reverse the
sign of these prefactors, we chose the cross-Kerr nonlinearity
⌘ such that �b,1 = ��b,0 = ��b, which leads to the condition:

⌘ = 2(✏ � !b) ⌘ 2�b. (12)

When enforcing this condition, the e↵ective Hamiltonian in
the rotating frame with frequency ✏ can be written as

H̃e↵ =(1 � 2a†a)
X

j< j0

g jg j0

�b
(�+j�

�
j0 + H.c.) +

X

j

1
2

g2
j

�b
�z

j

�

+ O
0
BBBBB@

g4
j

�3
b

1
CCCCCA . (13)

Here, the e↵ective Hamiltonian has exactly the form sug-
gested in Eq. (2), and the ‘arrow of time’ is controlled by the
ancilla photon number a†a = 0 or 1 as desired. As shown
above, the Hamiltonian controlled by the ancilla is an all-to-
all coupled XY model in the presence of external field (corre-
sponding to the Lamb shift term). One can also easily realize
disorder in the coupling strengths. Additional ZZ-interaction
arises in the fourth-order perturbation [36, 64] [and the em-
bedding of the ancilla is also realized once Eq. (12) is satis-
fied]:

VZZ = (1 � 2a†a)
X

j< j0

2g2
jg

2
j0

�3
b

�z
j�

z
j0 . (14)

The ZZ-interaction strength can be made stronger than this
if one uses the transmon qubits [66], where the third-level of

transmon contribute significantly to the ZZ interaction [36].
Finally, we note that the presence of the Lamb shift is cru-
cial for implementing the controlled operations mentioned in
Sec. II, as will be explained in detail in Sec. IV.

B. Local model

Now we discuss the realization of local lattice models. We
present a generic cavity-QED array implementation, which
can be realized with, e.g., circuit-QED network and super-
conducting qubit array in a 3D cavity. The central idea is to
use a global cavity as the ancilla, which enables both quantum
switching of the ‘arrow of time’ and readout of the OTO corre-
lator. The e↵ective target Hamiltonian H we obtain is a spin-
1/2 XY spin model. We also generalize to an extended Bose-
Hubbard model and models with spatial disorders in Sec.VI.

The scheme is illustrated in Fig. 3: the blue boxes represent
local cavities associated with photon operators b j, which play
the role of active degrees of freedom. These local cavities are
coupled by intermediate qubits (red circles, associated with
Pauli operators �z

j, j+1) which are passive degrees of freedom
and will be eventually integrated out. Note that this is di↵er-
ent than the non-local Hamiltonian in the previous subsection
where ~�’s were active degrees of freedom while b j were pas-
sive. In addition, similar to the non-local case, the qubits are
coupled to a global cavity (described by photon operator a),
which will serve as the ancilla. We proceed as before, and split
the entire Hamiltonian Hs into two parts, i.e. Hs = H0 + V:

H0 =!b

X

j

b†jb j +
1
2
✏
X

j

�z
j, j+1 + Hdisp,

Hdisp =�a†a
X

j

�z
j, j+1,

V =gb

X

j

[b†j (�
�
j, j+1 + �

�
j�1, j) + H.c.]. (15)

In place of the cross-Kerr interaction in Eq. (9), H0 now con-
tain a term Hdisp which represents the dispersive interaction
between the global cavity (a) and the qubits (�) with interac-
tion strength �, and is also sometimes called dispersive shift.
For convenience, we define ✏ is the renormalized frequency of
the qubits, with the Lamb shift due to the global cavity already
absorbed into the definition.

We note that the dispersive interaction Hdisp can arise, e.g.,
from a Jaynes-Cummings interaction in the dispersive regime
[17, 21], where we get the dispersive shift � = g2

a/�a. Here, ga
is the JC interaction strength and �a is the detuning between
bare qubit (�) and global cavity (a) frequencies. For weakly-
anharmonic superconducting qubits such as transmons, the
derivation of dispersive interaction can be found in Ref. [60].

Similar to the non-local case, the photon number a†a is con-
served, and we again restrict to 0- and 1-photon sectors. In the
following, we want to eliminate the qubit degrees of freedom
(�) perturbatively and find an e↵ective Hamiltonian that local
cavities (b) form an XY model of which the sign is determined
by the ancilla photon number.
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concrete, the early-time behavior of OTO correlator, assuming
fast scrambling, can be approximated as

OTO ⇡ 1 � e�(t�x/vb), (22)

where x is the distance between O1 and O2, and � the Lya-
punov exponent. We note that depending on the particu-
lar model, the exponential growth of �OTO could be re-
placed by a power-law growth (such as in many-body local-
ized systems)[48–52]. From Eq. (22), we see that the actual
scrambling starts at tb = x/vb. This is due to the fact that,
in the Heisenberg picture, the size of O2(t) grows linearly
with time (i.e., it becomes a superposition of string-like op-
erators), which define an e↵ective Lieb-Robinson ‘light cone”
[65]. The velocity of this ‘light cone’ is approximately the
butterfly velocity vb. It takes time tb = x/vb for O2(t) to con-
tact and hence being non-commutative with O1(0). Before
that, O2(t) approximately commutes with O1(0) and hence we
have OTO ⇡ hO1(0)O2(t)O2(t)O1(0)i = 1 (which means that
| L i ⇡ |R i). However, as we observe in Fig. 5, once the time-
asymmetry error ✏ exists, the ‘turning-on’ time tb and the but-
terfly velocity vb is significantly modified. For ✏ = 0.1, tb and
vb decrease approximately to zero. This is not surprising since
the correlator OTO ⇡ hO1(✏t)O2(t)O2(t)O1(0)i < 1 decreases
rapidly when ✏t increases. We see that the time-asymmetry
error not only a↵ects the extraction of butterfly velocity, but
also distorts the shape of the early-time behavior, which will
make extracting functional dependence of the correlator (such
as exponential or power-law growth) challenging.

Another potential issue with this approach is that for a lo-
cal Hamiltonian such as the XY-spin model described above,
changing the sign of the total Hamiltonian requires one to
change the sign of each individual local term in the Hamil-
tonian separately, by controlling the detuning in-situ site by
site, and therefore, it is not obvious how to make the scheme
scalable without incurring errors that grow with the system
size. In contrast, a built-in global quantum clock avoids this
problem.

B. Quantum clock

Two primary error introduced to our protocol are the imper-
fection of the pulses (single qubit rotations) acted on the quan-
tum clock (ancilla) and the imperfection in the couplings. The
first type of error is generated in situ, while the second type is
static. In the following, we analyze the e↵ects of both types
of errors.

1. Imperfection in pulses

Both the initial Hadamard gate (⇡/2-pulse) and the ⌧x oper-
ation (⇡-pulse) which flips the ancilla and hence the ‘arrow of
time’ can su↵er from errors, since the rotation angles are con-
tinuous variables and hence may not be exact. For a rotation
along certain axis n̂, we can simply parameterize the rotation
error as

Rn̂(✓ + �✓) = e�i(✓+�✓)n̂·~⌧/2,

“arrow of time”

Measure

switch

switch

FIG. 4: Measurement protocol using a classical switch to control the
‘arrow of time’. An ancilla qubit is initialized as the superposition of
| 0a i and | 1a i and hence split the evolution into two branches in order
to do the Ramsey interference. The ancilla enables conditional-O1
operation but does not control the sign of the Hamiltonian. Another
classical switch (such as the detuning) is used to change the sign of
the Hamiltonian and hence flip the ‘arrow of time’.
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FIG. 5: E↵ect of imperfect sign change via classical switch for a
spin model. The model considered here is H=

P
i

⇣
~�i.~�i+1 + hi�

z
i

⌘

where hi are chosen randomly from a uniform distribution in
the interval [�0.5, 0.5]. The main figure shows the correlator
hO2(t)O1(t ")O2(t)O1(0)i with O1=�

z
2 and O2=�

z
L�1 where L=12 is

the total number of sites. We take ✏ to be random Gaussian vari-
able with variance � and averaging in hO2(t)O1(t ")O2(t)O1(0)i is
performed over this ensemble. The inset shows the relative error
(hO2(t)O1(t ")O2(t)O1(0)i/hO2(t)O1(0)O2(t)O1(0)i) � 1.

where �✓ is a small random fluctuation which di↵ers in di↵er-
ent shots of measurement.

Assuming the initial Hadamard being perfect, we first con-
sider the imperfection of the two ⌧x flip operations on the
ancilla (✓1, ✓2 = ⇡, n̂ = x̂). Note that due to the two flips
of quantum clock divide both upper and lower branches into
three sectors, 23 = 8 paths are generated. The two paths | L i
and |R i are always staying in either of the two branches, i.e.
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