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Outline

1. Motion in a moving frame and non-adiabatic response 
(inertia, Coriolis force, …).

2. Counter-diabatic driving and quantum speed limit.

3. Variational approach for gauge potentials (connection 
operators). Application to many-particle systems 



What is the moving frame and what is behind these transformations? 

Let us do a unitary transformation to a co-moving frame, 
diagonalizing the instantaneous Hamiltonian

gauge potential 
(connection)

Classical Hamiltonian systems: gauge potentials – generators 
of canonical transformations.



Moving frame Hamiltonian, many potential applications

1. Mapping dynamical problems to static problems (Floquet).

2. Non-adiabatic response and geometry.

3. Counter-diabatic driving.

4. Adiabatic state preparation (quantum annealing).

5. Finding quantum speed limits.

1. Constructing approximate eigenstates (including excited 
states, MBL states)

2. ....



Moving frame Hamiltonian and connections to geometry

Only the gauge potential term is responsible for transitions

Gauge potential and the Berry connection

Berry curvature.

Metric tensor. Defines the Riemannian metric structure on the 
manifold of ground states. Defines fidelity susceptibility.



Compute leading correction to the energy due to the Galilean term 
(consider the ground state)

Recover the mass term as the leading non-adiabatic correction 
to the energy. Inertia appears as noni-adiabatic response.

F

Galilean Transformation

Can recover many familiar results from non-adiabatic perturbation theory



Dilation operator

Recover “quantum” dilatation mass: the classical (massive 
spring) result plus an additional quantum correction. 

Leading non-adiabatic correction.

Moving frame

Can absorb L2 into time dilatation:

Dilations



Example: spin ½ in a magnetic field

Use ordinary perturbation theory

Can measure Berry’s curvature and various topological 
numbers/transitions as non-adiabatic corrections.

Experiments (with many ideas from M. Kolodrubetz) M. Schroer et. al. (2014), 
P. Rouchan et. al. (2014). Extension to second Chern number (M. Kolodrubetz
–theory, S. Sagawa and I. Spielman - experiment (2016).



Counter-diabatic driving (Shortcuts to adiabaticity).
(M. Demirplak, S. A. Rice (2003), M. Berry (2009), S. Deffner, A. Del Campo, C. Jarzynski (2014+)).

Idea: introduce counter-diabatic (CD) term

Moving frame follow eigenstates of    . Back to the lab frame: 
No CD term CD term

CD driving intuitively:
• Have to introduce extra parameters
• Do not necessarily follow 

instantaneous ground state
• Use only local (physical) counter 

terms, i.e. do not address individual 
water molecules

Non-adiabatic response: recover macroscopic Hamiltonian dynamics + 
corrections. Coriolis force is related to the Berry curvature and the mass is 
related to the Fubini-Study metric tensor.



Example: adiabatic loading in LZ problem

Standard route: go slowly, 
especially near the gap minimum

CD route: introduce counter term

Zero transition probability for any driving rate. Fast ground 
state preparation. 



What is the minimum time to connect two ground states?

Superficially zero, we can always scale the Hamiltonian and 
decrease time. Incorrect question.

Do the trick: change time and coupling

Fastest protocol – minimizes the norm of the effective Hamiltonian

Minimal proper time is given by the geodesic length.

Cannot design protocols faster than this. 

Gauge potential becomes Hamiltonian and coupling becomes 
time. Effective dual description of adiabatic dynamics.

CD driving and the quantum speed limit



Finding adiabatic gauge potentials in complex systems 
(important for CD driving, geodesics, Chern numbers, metric, state preparation…)

1. Through the unitary:
Exact but not useful as we do not know the unitary.

2. Through the matrix elements of the instantaneous eigenstates:

Hard to connect to local physical operators. Problem of small 
denominators in chaotic systems unless have special 
symmetries like Galilean invariance (related issues in classical 
chaotic systems Jarzynski 1997).

1. Need to find another root for finding approximate local 
adiabatic gauge potentials. 



Recall definition of the moving frame as the one diagonalizing H

Differentiate with respect to λ (moving derivative)

By construction                        : gauge potential eliminates 
off-diagonal terms in the conjugate force                        

Go back to the lab frame (remove tildes), insert Planck’s constant 

Classical systems



Many-particle (non-interacting) systems

It is clear that  

Gauge potential is imaginary, in general long range, hopping

Exact solution for a constant electric field

CD term is the current operator



Counter-diabatic Hamiltonian (set J=1)

Can eliminate complex hopping by the gauge (Pierls) transformation

Fast limit (optimal adiabatic loading)

This protocol exactly connects ground states with different 
electric fields. Minimal loading time diverges as the inverse 
electric field (There is an equivalent electric field protocol). 



Beyond the linear potential

Treat the gauge potential as a variational function:  

Minimize norm of G. This talk: trace norm. Can use  norm with 
UV cutoff, GS norm, finite temperature norm etc.

Equivalent to the minimization problem



Advantages of the trace norm: easy to find analytically, Wick’s theorem 
applies to any Hamiltonian. Works both for the ground and excited states.  

Result of the minimization

Smooth potentials, continuum limit

This gauge potential defines the best local co-moving frame. Does not require 
diagonalization of the Hamiltonian. Maps quantum to classical problem 



Example: inserting Eckart’s potential (fighting Anderson 
orthogonality catastrophe). Half filling, 512 sites 

Like throwing a stone into quantum water (gas) without 
generating ripples.



Interacting spin system

Try to minimize white noise dissipation using CD driving. 

Gauge potential

The expansion seems to quickly converge in gapped phases.



Good measure of dissipation – energy variance spread 
within FGR  (works also for infinite temperature states)

White noise:

Thermodynamic limit protocol
15 site chain.

No CD protocol

Single site CD protocol

Two site CD protocol



Potential implementations for state preparation

Instead of adiabatic turning on fast CD driving

Gauge potential is similar to the entanglement Hamiltonian. Need to evolve 
for finite time.

Will not resolve individual eigenstates but can potentially prepare good 
excited states



CD driving through QCP in the TFI model

Dots: variational solutions with string lengths 1-4; lines: exact 
truncated solutions. Variational solution can be generalized 
to a nonintegrable chain.



Machine learning optimization (final fidelity as a reinforcer)
(in progress, lead by M. Bukov and P. Mehta)

Landau-Zener problem:



14 cite chain, no QCP, 1000 runs



14 cite chain, crossing QCP, 1000 runs



Summary

• Deep connections between non-adiabatic response and 
geometry. 

• Counter-adiabatic driving for quantum state preparation and 
suppression of dissipation.

• Many open questions/potential applications.



Beyond adiabatic response. Shortcuts to adiabaticity.
(M. Demirplak, S. A. Rice (2003), M. Berry (2009), S. Deffner, A. Del Campo, C. Jarzynski (2014+)

F
Suppose we want to move a box in 
space without exciting a particle inside 
(without heating).

Can move the box slowly but it takes time. If move too 
slow will likely decohere due to a bath. 

Recall a moving Hamiltonian

Can compensate the last term by adding the counter term  

The moving frame the Hamiltonian is diagonal (time-independent). Can 
move arbitrarily fast. This is not what the waiter does!



F

CD (counter-diabatic) term is simply a linear potential 
proportional to the acceleration (gravitational field).  

CD term is a harmonic potential (Deffner, Jarzynski, Del Campo 2014). 



Imagine motion in momentum space (equivalently gauge 
potential space)

Quantization of the Chern number (when we integrate F 
over a closed manifold) implies the quantum Hall effect

Recover the standard Hall effect

QHE can be interpreted as 
measurement of the quantized 
Coriolis force.



How can we understand the mass in a simple setup?

F
Take container and start slowly 
accelerating it to velocity v.

Compute the force (or work).

Assume particle is fast compared to the container

a a

a a

Only valid near the adiabatic 
limit, where 



Two ways of measuring generalized force

1. Measure force as a pressure using some calibrated 
device like a spring and third Newton’s law.

2. Measure as the generalized force

is the wall potential

F

Y. Kafri, M. Kardar, … non-existence of pressure as a 
function of state in active (non-equilibrium) matter  (2014)
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