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Motivation

v

Generic quantum many-body systems are chaotic

v

Understanding quantum chaos in many-body systems may be
useful for understanding strongly correlated systems

v

Quantum chaos is related to holographic duality

v

SYK model is a solvable chaotic model in (04 1)-d. We
would like to generalize it to higher dimensions



Outline

v

The Sachdev-Ye-Kitaev (SYK) model

v

Quantum chaos

Generalized SYK model
» Effective action
» Two-point functions and four-point functions
» Diffusion and chaos

v

v

Summary and discussion



A brief review of Sachdev-Ye-Kitaev model

Quantum mechanics (0 + 1-d) of N Majorana

fermions:
Jitim

H = S JmXixkxiXms {Xj Xk} = Ok —

1<j<k<l<m<N Jo

2

All to all random interaction ./Jk/m =0, Jk,m = %
[Sachdev, Ye, 1993; Kitaev 2015; Maldacena, Stanford

2016]

» Solvable in the limit N > 5J > 1

» Two-point function shows local criticality [Parcollet, Georges 1999]
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» Four-point function characterizes chaos



From classical chaos to quantum chaos

Chaos: exponential sensitivity to initial conditions

LN

Particles in a stadium

> Classical chaos: Poisson bracket {q(t), p(0)}pp = ggéé; ~ et

AL: Lyapunov exponent.

» From classical to quantum:
{a(t), p(0)}ps — [q(t), P(0)] — [W(t), V(0)]
[Larkin, Ovchinnikov 1969].

> W(t), V(0) -generic (hermitian) Heisenberg operators in
many-body system



Out-of-time-ordered correlator

» Diagnostics of chaos: C(t) = —([W(t), V(0)]*)s

> Important term in C(t): f(t) = (W(t)V(0)W(t)V(0))gs,
out-of-time-ordered correlator (OTOC)

» Regularized OTOC
f(t) = tr (W(t)p*V(0)p*/*W(t)p'/*V(0)p'/*) with

p = Z te PH the thermal density matrix.

> Example: 0+1 SYK model.

() = <><f (t * 35) v (f) X (H f> Xj(0)>ﬁ

with £(t) — £(0) ox — L eMt.

> A\ = %’T saturates the Maldacena-Shenker-Stanford bound



Generalized SYK model in higher dimensions

» Random quartic interaction between SYK islands. For the example

of 1D chain
J; J;
Jjklm,x—1 jklm,x
- 77
jv P
jk1\7n -,J'/// \\\/._
—— ., Lk tH—1Nm - — -
M
/
H= Z Z Jjkim,x Xjx Xk, xX1,xXm,x + Z ikt x X xXk,x X1, x+1Xm,x+1
x=1 | j<k<I<m j<kil<m
SYK term Nearest neighbour coupling

Independent random coefficients:
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Effective action

Same as 0+1 SYK, our model also self-averages (replicon diagonal):
1. Average over {Jjum} = disorder averaged partition function;

2. Introduce new fields G and X: ¥ is Lagrange multiplier enforces
Gu(71:m2) = § X2 Xjx (T1)Xj x(72)

Z— [ Dxewn(-Sh)

new fields

where S[x, G, X] contains “xd,x" + “L(G — xx)" + “G*"



Effective action

3. Integrate over fermions:

M M
J2
Seft[G, X] = E So[Gx, ] + E T16/d2T (11, 72)° — x+1(7—177—2)2>2
x=1

1 /8
So[Gr, Tl = — = Iogdet (9- — ) +7/ d?r ¥.G.
—— 2 Jo ——
SYK action Lagrange multiplier

From 1x(8, — T)x

SR

Ge(1,72)*

intra-site coupling

> Large N limit = semiclassical limit of £, G

> Analog: spin chain with external field and nearest neighbor coupling



Two-point function

Large N saddle point analysis:

1. Saddle point equation from

55eff -0 5Seff _
5G, 6%,

0, Vx € lattice

2. Using averaged translational symmetry: G:(m1,72) = G*(71,72)
1
GS(i — yS — J2 GS 3
(lwn) 7I.w,, _ Zs(iwn) ’ (T) (T)
J2 = J2 + J?: effective coupling.
3. Saddle point equation same as in the (0 + 1)-d SYK model.



Two-point function continued

1. Analytic solution at strong coupling N > 5J > 1: [Sachdev,Ye;

Parcollet, Georges|

R 1\%/BJ . mr\ 72 1
G(T)=<4ﬂ_) (Tsmﬁ) ’A:Z

2. At T — 0, power law correlation for fermion on the same site:
(Toxjx(T)xj.x(0)) ox sgn(r)[Jr| 724

3. Fermion correlation functions between different sites is zero, due to
on-site Z, fermion parity symmetry, and SO(N) after average.
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Thermodynamics

Large N thermodynamics: plug G° and X° back to the effective action:

F ! Homua zﬂ+1/ﬁrm pad )G5( ) fc% )4
- — S5 | = T — - T1, T T1, T — T1, T
NM 3 > g 5 1072 1, T2 1, T2 2 1,72

:U—%T—gﬂ+”.

Same large N free energy density as 0 + 1 SYK model:
1. Extensive zero temperature entropy So = Ca‘;ifrlan + "’%2 =0.2324...
2. Specific heat ¢, =T = %.

Spatial structure enters at level of quantum fluctuations.



Quantum fluctuations and four-point functions

v

Quantum fluctuations around saddle point:

Gy =G +6G;, XL,=X°+4+0%;
» Expands to quadratic order, integrate over 6Y =

Set[G] = Sert[G°] + /5GX(T1,T2)QXy(T17T2;’7'3,’7'4)5Gy(7'3,7'4)

v

Quadratic form has simple dependence on spatial coordinates

Quy(T1,72: 73, 72) = K~ (71, 72; T3, 74) Oxy — 6(713)6(724) Sy
_— —

same as 0+1 SYK was Oy,

> K: diagonalizable at 5J > 1 [Kitaev 2015; Maldacena, Stanford 2016];

v

S: 0y — Co0xy + C10x,y+1 :"band structure” s(p) =1 — ap’+...



Symmetry analysis

v
—iw, —X5(iwp)
——

IR,—0

G*(iwn) = , X(r) = S63(r)?

1. The model at IR has an emergent symmetry — time
reparametrization: f € Diff(S!) [symmetry of the model]:

Gi(r1,72) = (F(T)F (7)) G(F(m), F(2))
2. Spontaneously broken to PSL(R) [symmetry of the solution]:

(11— 72) 722 = (F(r)f ()2 (F(m1) — £(2)) 22 = (m — )2

ar+b a b
v(r) = T (C d) € SLo(R)

3. This symmetry is also explicitly broken by UV terms —iw,,.



Pseudo-Goldstone mode

» Almost spontaneous symmetry breaking = “nearly flat direction”.
Pseudo-Goldstone mode: f, € Diff(S1)/ PSLy(R)

Tilted Mexican hat

> Analogy: ferromagnetic spin chain with a small pining field. Order
parameter € S% = SU(2)/U(1). SU(2) symmetry is explicitly
broken by a small B,.

B,

| At



Effective action for pseudo-Goldstone mode

> Effective action for pseudo-Goldstone mode (7) = 7 + ex(7)

1 V2ak J2
5 >~ — n 2 1 —1 _ 1 o
I b R v ]
) —/_/ —/_/
Explicit breaking Kinectic term

V2o (27T|n|
€np

= Dp? > —1)ep—
51272 £ 5 " P)|”|(" Je-n—p

» The pseudo-Goldstone modes determine the long-wavelength long
time-scale dynamics.

D— fﬂJl

>

turns out to be the energy diffusion constant.



Four-point functions

» Connected four-point function determined by quantum
fluctuations:

% D G (T1)XG,x(72) X,y (73) X,y (74)) conn. = (G (71, 72) Gy (73, 74)) — (G)(G)
Jrk

1
= (6Gx(71,12)6Gy(73,72)) = NQ;yl(n,Tz;m,m)

» Next: physical consequence

1. OPE: collective modes and energy transport;
2. Out-of-time-ordered correlation function: characterization of
chaos.

imaginary time imaginary time

space




OPE and energy diffusion

OPE region: 71 = 7 > 73 & 74: the four-point function ~ two-point
function of collective modes.

1. Leading contribution: energy momentum tensor.

Xj Xk
X Xk
2. A diffusion pole W with diffusion constant:

2
D~ 71, independent of temperature

J1: coupling between neighbor sites; J: effective on-site coupling.



Other fields in the OPE

> Subleading contributions: an infinite family of locally critical fields
¢m, m=1,2 .... Short-range correlated in space

Xj Xk

localized ¢m

Xj Xk



Chaos and butterfly velocity

» OTOC

<Xj7x(t)xk,O(O)XLX(t)Xk,O(O»Conn. ~ %exp %(t — |X|/VB)

> )\ = %’T true at least to ﬁ (Correction vanishes at % order)

> Butterfly velocity: vg ~ Jlﬁ satisfies v3 = 2 TD (agree with
incoherent black hole [Blake 2016]. Relevant to incoherent metal [Hartnoll
2014]. )

The characteristic

A
D!

i . 1 1
> Intuitive reason: propagator oD N
frequency w = i\, = 27 Ti leads to the pole p? =

= vg/AL = |p|™t = (D/A)YV2.



Brief discussion on general construction

> Our model can be defined on arbitrary lattice I in any dimensions.

N
H= Z Z ij/m,xyszj,xXk,yXl,sz,w

x,y,z,werl j, I k,m=1

e u
Juuwz N
AN

N w Joxyy

\ //\\
z X y

— J2

> Independent random numbers J2 = v

fikim xyzw = 17~ SOlvable at large N.

> Locality: Jyy.w are “local functions” of xyzw.



Brief discussion on general construction

- lu
Juuwz A
RN
\ w Jxxyy
\ 7N
\ 7 N
z X y

1. Emergent (0 4 1)-d conformal symmetry at strong coupling; local
SO(N) symmetry on each site after average; maximal chaos;

2. Diffusive energy transport and butterfly velocity. For square lattice
v = 2 TD; holds for all directions x;, j = 1,2...,d.

Further generalization: adding global symmetries.



Overview of SYK family

dimension
|
|
2 I
today’s focus
our generalization [ 1 /—)
ol o __
: —4q
2 4.6 1
u(1) \
SUSY similar properties
g FL— Chaos

[Banerjee, Altman]

add symmetries

> g: random g-body interaction (previous slide g = 4)

H= Z J xx...Xx, [Kitaev; Maldacena, Stanford]

q Majoranas



Summary and discussion

Summary:

1.
2.
3.

Generalized SYK models are diffusive metals without quasiparticles
Local criticality and maximal chaos

Universal relation between diffusion and butterfly velocity

Discussions:

1.

A platform to study properties of strongly correlated system exactly;

. Is our model holographic?

2
3.
4

Further generalizations?

. Localization transition?



Replicon diagonal effective action (Backup slides)

Zn—1
n

. Replica trick: @ =lim,_g
. Start with replicated partition function Z";

. Disorder average Z";

. Large N = Zn = 7" therefore logZ =logZ

A W NN =

g @ 8
(a) Replicon diagonal ~ N

(b) Off-diagonal ~ 1/N?



Keldysh-Schwinger contour (Backup slides)
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