Atom-by-atom assembly of defect-free cold atom arrays

Manuel Endres

Caltech

KITP, Oct 27, 2016 Synthetic Quantum Matter

This work: Endres et al. arXiv:1607.03044 (accepted in Science) See also: Browaeys Group: arXiv:1607.03042 (accepted in Science)

Outline

- 1) ,Synthetic quantum matter': Experimental goals and challenges
- 2) Neutral atom approaches: top-down and bottom-up
- 3) New approach: bottom-up + measurement and feedback
- 4) Experimental results
- 5) Current and future work
- 6) Discussion: Did we gain anything?

Systems for studying 'synthetic quantum matter'

Traditional solid state materials

Solid state qubits (SC qubits, NV centers, Majorana wires...)

Ion traps

Neutral atoms (optical lattices, Rydberg atoms, ...)

Common protocol

- 1) Initialization: create a certain quantum state
 - Thermal equilibrium state
 - Pure product state
 - ...

- 2) Evolution: time-evolution under certain H(t) (or L(t))
 - Sequence of gates
 - Adiabatic change of Hamiltonian
 - Quench
 - ...

- 3) Detection: measure some useful quantity
 - Correlation function
 - Entanglement
 - State reconstruction
 - ...

Common goals

1) Build quantum computers + networks

2) Study quantum many-body physics

3) Generate useful quantum states for other tasks, e.g., precision measurement

. . . .

Challenges

- 1) Scalability: reaching large, homogeneous systems
- 2) Controllability: control of single particles/spins and interaction terms
- 3) Engineering of interesting Hamiltonians/Liovillians
- 4) Low dissipation/dephasing
- 5) High-fidelity initialization of low entropy states
- 6) Fast experimental repetition rates
- 7) Experimental complexity

Neutral atom approaches (with single atom control):

- 1) Top-down: optical lattices
- 2) Bottom-up: optical tweezers

Top-down approach

1. Top-down: Optical lattices

Greiner Group

Bloch Group

Preparation:

- Start with atoms trapped in a Magneto-Optical Trap (MOT)
- 2. Evaporative cooling
- 3. Ramp up lattice
- 4. Reach Mott insulator state

Pros:

- Large numbers of atoms
- Efficient loading

Cons:

- Complex experimental setup
- Long experimental cycle times (~1/2 min)

Experimental Setup: quantum microscope

Quantum microscopes

Spin-control is not fully developed

How to generate ordered arrays of atoms?

2. Bottom-up: Optical Tweezers

Labuhn et al. Nature 534, 667 (2016)

Preparation:

- Start with atoms trapped in a Magneto-Optical Trap (MOT)
- Focus the tweezer inside the MOT and wait for an atom to be trapped

Pros:

- Short cycle times (<0.5s)
- Comparatively simple setup
- Individual control of each trap

Cons:

 Stochastic loading makes it hard to scale up to many atoms

Our scheme:

- bottom-up: tweezer-based but with many tweezers
- Entropy removal via measurement and feedback

Scheme

- 1. Array of tweezers loaded stochastically from Magneto-Optical Trap (Rubidium-87)
- 2. Image and remove empty traps
- 3. Rearrange remaining traps to form a defect-free array

4. Engineer interactions between atoms:

$$\hat{H}$$
 = ...

Experimental setup and scheme

Experimental setup

Our scheme

Rearranging atoms

Array of 100 optical tweezers $a = 2.6 \, \mu m$ Randomly loaded array

Defect-free array

Video: Before and after images

Rearrangement process

Quantitative results

What's the probability for an individual trap to be filled?

Quantitative results:

What's the probability for finding a defect-free array of size N?

Probability to load N traps:

$$p(N) = p_1^N,$$

Before rearrangement p₁~0.6

After rearrangement p₁~ $\exp(-t_r/ au)$

This work: Endres et al. arXiv:1607.03044 See also: Browaeys Group: arXiv:1607.03042, Ahn Group: arXiv:1601.03833

Flexible patterns

Start with a randomly loaded array...

Clusters of 2

	14		12	+ 4	* *	**	**	** **	1.1		**	**	**	**	**	**	**	**	**	**	**	**		**	936
4 7 3	**		. * * .	+ 8	4.4			** **	**	**		4,	**	**	**		**	**	**		**	**	**		(P) P ()
	2.5	**	**		39	**		** **	11	**		**	**	**	11	**	**	**	**	**	**	**	***	**	125° N
	++	1.5	1.5	**	* *	**	7 * ¥ 7	** **		13			11		**	**	**	**	**	**	**	**			194

Clusters of 10

********	********	********	******
******	*******	*********	********
*********		*********	********
******	********	*********	******

Varying geometry each repetition:

*****	****	***	V 100	***	** ****		*****	* *	
* *			 			* * * *		* *	
	*		 						
*****	*		 	***	** ****	****			
	* 1		 2.						
		6 * *	*0.5	0.200				1	

Reloading from a reservoir

Scheme:

Implementation:

Real-time video:

Current and future work:

- Scaling to 2d
- Spin control
- Engineering of interactions

Scaling to 2D

Nogrette et al., PRX 4, 021034 (2014) Barredo et al., arXiv:1607.03042 (2016)

Current work: Spin control

- Qubit manipulations via microwave or Raman transitions
- Single side addressing with light shifts possible

Single spin addressing in optical lattice: C. Weitenberg et al., Nature 471, 319 (2011)

Engineer interactions

- 1. Tightly focused laser trap loaded from Magneto-Optical Trap
- 2. Image and remove empty traps
- 3. Rearrange remaining traps->regular atom array

4. Engineer interactions:

Rydberg atoms

⁸⁷Rb 5S_{1/2} Ø 0.5nm

Go to very high quantum number

⁸⁷Rb 43S_{1/2} Ø 250 nm

Leads to strong induced dipole-dipole interactions

Saffman, Walker, & Mølmer Rev. Mod. Phys. (2010), Browaeys et al., J. Phys. B 49, 52001 (2016)

Tunneling

Requirement: ground state cooling

Question:

Can we assemble a Mott insulator and melt it into a superfluid?

Challenges:

- Quality of side-band cooling
- Length scales are tight
- Strong on-site interactions

Common goals

1) Build quantum computers + networks

2) Study quantum many-body physics

3) Generate useful quantum states for other tasks, e.g., precision measurement

. . . .

Challenges

- 1) Scalability: reaching large, homogeneous systems
- 2) Controllability: control of single particles/spins and interaction terms
- 3) Engineering of interesting Hamiltonians/Liovillians
- 4) Low dissipation/dephasing
- 5) High-fidelity initialization of low entropy states
- 6) Fast experimental repetition rates
- 7) Experimental complexity

@Caltech: Strontium in tweezers

Improve controllability and scalability further: use two-electron atom

Advantages:

- 1) Trapping with 532nm possible
- ->improved resolution
- ->up to ~5000 tweezers
- 2) Narrow transitions
- -> direct side-band cooling
- -> clock transition
- 3) Rydberg properties
- -> Rydberg states are trapped
- -> repulsive and attractive
- -> no hyperfine substructure (bosons)
- 4) Range of nice magic-wavelengths
- -> state-dependent trapping with less heating

Summary

Large arrays of optical tweezers generated by AOD.

Feedback on trap position overcomes probabilistic loading and generates large well ordered atom arrays.

Current and future work:

- Single qubit rotations
- Interactions mediated via Rydberg excitations

Find out more: arXiv:1607.03044(2016)

M. Endres, **H. Bernien, A. Keesling, H. Levine,** E. Anschuetz, C. Senko, S. Schwartz, V. Vuletic, M. Greiner, M. Lukin

Funding:

NSF, the Center for Ultracold Atoms, NSSEFF, AFOSR MURI, and NWO.

