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Recent publications exploring topological properties of light 

 
 
Fig. 1: Geometry and band structure of honeycomb photonic Floquet topological 
insulator lattice.  (a) Input facet of photonic lattice, honeycomb geometry with “zig-zag” 
edge terminations on the top and bottom, and “armchair” terminations on the left and 
right sides.  (b) Schematic diagram of the helical waveguides.  The waveguides are 
helical with their rotation axis in the z-direction, with radius R and pitch Z.   (c) Spatial 
band structure (β vs. (kx,ky)) for the case of non-helical waveguides comprising a 
honeycomb lattice (R=0). Note the band crossings at the Dirac point. (d) Spatial bulk 
band structure for the photonic topological insulator: helical waveguides with R=8µm 
arranged in a honeycomb lattice.  Note the band gap opening up at the Dirac points 
(labeled with the red, double-sided arrow), which corresponds to the band gap in a 
Floquet topological insulator.     
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aẑ

ax̂
aŷ
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FIG. 1: Real-space unit cell and reciprocal-space BZ of the 3D
DG PhC. a, Real space geometry in a bcc unit cell where a1 =
(−1,1,1) a2 , a2 = (1,−1,1) a2 and a3 = (1,1,−1) a2 . The two identi-
cal gyroid structures of red and blue colors are high refractive index
(n= 4) materials; they are inversion pairs of each other with respect
to the origin(o). An air sphere (r/a = 0.13) located at ( 14 ,−

1
8 ,
1
2 )a

breaks the inversion symmetry of the system. b, The BZ of the bcc
lattice. Weyl points and linear line-degeneracies of investigation in
this letter always lie in the green plane through the origin(Γ). Γ-N is
along [101] and Γ-H is along [010](ŷ). c, An air-isolated DG surface
can be formed by terminating the perturbed gyroid (red) but not the
other (blue). The SG PhC on the top has a large complete bandgap
as shown in Fig. 2a.

up. The three-fold degenerate point is well isolated in fre-
quency from other parts of the dispersion diagram of the DG
bandstructure, making it an ideal starting point for applying
symmetry-breaking perturbations.
The three-fold degeneracy of quadratic dispersions at Γ can

be lifted by breaking the I4132 space group without breaking
P or T symmetries. This is done by replacing a part of the gy-
roid material with two air-spheres (one on each gyroid). The
first air-sphere is placed in the red gyroid at ( 14 ,−

1
8 ,
1
2)a, as

illustrated in Fig. 1a; and the other is its inversion pair in the
blue gyroid (not illustrated in Fig. 1a). This perturbation lifts
the 5th band out of the three-fold degeneracy with the 3rd and
4th bands at Γ, as shown in Fig. 2b. The 4th and 5th bands
linearly cross each other, forming a closed line-degeneracy
around the Γ point in the Γ-N-P-H plane, inside an other-

wise complete frequency gap. It is worth pointing out that
this bandstructure, although not exhibiting Weyl points, is in-
teresting in itself in analogy to the line-node semimetals [23].
We show its flat surface dispersions towards the end of this
paper.
In what follows, we break the PT symmetry to obtain Weyl

points of photons for the first time. We start with the struc-
ture from Fig. 2a. First, we break P while preserving T. Since
T maps a Weyl point at k to −k with the same chirality, there
must exist at least two other Weyl points, both of opposite chi-
rality, to neutralize the whole system. So the minimal num-
ber of Weyl points in this case has to be four. We break P
by placing only one air sphere on one of the gyroids (but not
the other) at ( 14 ,−

1
8 ,
1
2 )a[34], as illustrated in Fig. 1(a). Un-

der this pure P-breaking perturbation[35], two pairs of Weyl
points, shown in Fig. 2c, emerge along Γ-N and Γ-H direc-
tions. The fact that all the Weyl points appear along high-
symmetry lines significantly simplifies the analysis. There are
no other states in the vicinity of the Weyl points’ frequencies.
Second, DC magnetic fields (B), along different directions,

are applied to the original DG PhC structure in Fig. 2a to
break the T while preserving P. We assume the high-index gy-
roid material is gyroelectric and use a generic model [24] to
describe its magnetic response. When B is along ẑ, we assume
the permittivity tensor takes the form of

ε(|B|) =

⎛

⎝

ε11(|B|) iε12(|B|) 0
−iε12(|B|) ε11(|B|) 0

0 0 ε

⎞

⎠ (1)

where det(ε(|B|)) = (ε211(|B|)−ε212(|B|))ε = ε3; this constant
determinant condition ensures the dispersions as a whole do
not move much in frequency with the external DC B fields.
The dimensionless effective magnetic field intensity is de-
fined as |B| ≡ ε12/ε in this paper. When B field is along
other directions, the corresponding ε tensor can be obtained
through coordinate transformations. (Note the T-breaking can
be equally well implemented via µ for gyromagnetic mate-
rials [25].) Under this pure T-breaking perturbation, only a
single pair of Weyl points emerges along the direction of the
magnetic field. This is the minimum number of Weyl points
that can exist under the inversion symmetry. These two Weyl
points are still frequency-degenerate: P maps a Weyl point at
k to −k with the opposite chirality. An example of this is
shown in Fig. 2d.
Third, we apply both P and T breaking perturbations at

the same time to observe the phase transitions between the
two(II) Weyl points in the pure T-breaking phase and the
four(IV) Weyl points in the pure P-breaking phase. Inter-
estingly enough, different magnetic field directions produce
strikingly different phase diagrams. When B is applied along
Γ-H, only two phases exist: the T-breaking dominated phase
(II) and the P-breaking dominated phase (IV). The pure P-
breaking phase, shown in the contour plot Fig. 2c, has four
Weyl points: two with positive chiralities along Γ-H and two
with negative chiralities along Γ-N. Applying magnetic field
along the Γ-H direction drives the two negative-chiralityWeyl
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Following the same path for a |B� photon at site (0,0) results in |A��after a full loop. A change of 

basis to |↑,↓�= (|A�±i |B��/√2, reveals that after the same loop, |↑� becomes i|↑�, and |↓��

becomes -i|↓�, which is precisely the π/2 flux per plaquette that was sought. 
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Figure" 1: a. Circuit topological insulator schematic. At each lattice site, the two inductors “A” and “B” 
correspond to right and left circularly polarized spins. The inductors are capacitively coupled via the green 
boxes, where the symbol inside the box describes the braiding: 0 means a capacitive coupling between 
identical inductor components, and the π/2, π and 3π/2 correspond to couplings that either connect opposite 
ends of the same inductors, opposite inductors, or both. This labeling convention starts on the site more up- 
and left- ward. To understand the Berry phase we follow a photon around a single plaquette: (i) The photon 
begins on sublattice A of site (0,0). (ii) It is then coupled capacitively to (1,0), remaining on sublattice A. (iii) 
From here it is capacitively coupled to site (1,1) on inductor A, and to site (0,1), with a negative sign, onto 
sublattice B. It is finally coupled back to site (1,0), returning on sublattice B. b. Structure of the coupling 
elements between lattice sites.  The capacitive couplers, shown in the top row, connect the inductors on 
different lattice sites. The second row shows the topology of the corresponding electrical connections, and the 
third row shows the corresponding rotational transfer matrices. c. Band Structure of a Circuit TI. A strip of 
circuit TI of finite length with periodic boundary conditions in the transverse direction is numerically 
diagonalized, yielding massive bulk bands (gray), and spin-orbit-locked edge states (blue, red) that reside in 
the bulk gap. The purple edge modes are not topologically protected. The highest energy protected edge-
channel is localized to a single site along one direction, while the middle and lowest edge-channels are 
localized to two and three sites respectively. d. Photograph of Circuit Topological Insulator. The inductors 
(black cylinders) are coupled via the capacitors (blue); circuit topology is determined by the trace layout on 
the PCB (yellow). 
!
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(Δϕp) because of their different propagation constants. A second
modulator (right) couples light in the odd mode back into the even
mode, and light exiting the interferometer exhibits an interference
profile, as in the atomic version but now depending on cos(Δϕp).

We use the Ramsey-type interferometer to probe the phase and
break the reciprocity of light, thus inducing an effective magnetic
field. This is achieved if the two modulators have different phases
ϕL and ϕR (Fig. 1c). When inducing couplings, modulators impart
their phases on photons. With respect to the phase of the local oscil-
lator that drives the modulator, the imparted phase on photons is
negative (positive) if excitation (de-excitation) occurs1. If the
phases of both modulators are identical (Fig. 1b), then the total
imparted phases are cancelled. However, if the modulators have
different phases (Fig. 1c), these imparted phases are detected and
the transmission becomes direction dependent. When light enters
the interferometer from the left (right), the output of the interfe-
rometer is proportional to cos(Δϕp − ϕL + ϕR) (cos(Δϕp − ϕR + ϕL)).
The non-reciprocal transmission is a result of an effective magnetic
flux, where Bflux = ϕL − ϕR (ref. 1). We implement the photonic
Ramsey-type interferometer by using the supermodes (even and
odd modes) of a silicon coupled-waveguides structure. The mode
profiles are shown in Fig. 2a,b and the dimensions of the structure
in Fig. 2c. The modulators are formed by embedding pn and np
diodes in the waveguides (Fig. 2c). Figure 2d presents a top view
of the carrier distribution under an applied sinusoidal voltage
(red). The width of the depletion region (grey) changes as the
signal is applied, which induces a change in the refractive index of
the coupled waveguides22,23. The pn–np configuration18 ensures
that, at any instant in time, only one side of the coupled waveguides
experiences a depletion width change, which enables coupling
between the supermodes. Figure 2e presents an overview of the
interferometer. The two modulators are identical and only their
modulation phases are different (ϕR and ϕL). The length of each
modulator is 3.9 mm, which in simulation provides an equal prob-
ability (50%) of populating both the two supermodes. The gap of the

coupled waveguides varies along the interferometer. At the edges
where the modulators are located, this gap is 900 nm (to separate
the two supermodes in frequency by a few GHz in the optical
c-band; Supplementary Fig. 1). In the centre, the gap tapers (taper
length of 100 µm) down to 550 nm and remains at this for a distance
Lf such that the two supermodes experience different effective
indices Δneff , and the phase difference between the two supermodes
becomes Δk × Lf (Δk = 2πΔneff/λ and λ is the optical wavelength).
Here, Lf varies from 175 µm to 350 µm for different fabricated
devices. We also place multimode interference devices at each end
of the interferometer so that only the even mode enters and exits
the interferometer. A microscope image and a simulated power
distribution of the multimode interference are shown in Fig. 2e
(bottom images).

We experimentally observed non-reciprocal fringe patterns, indi-
cating the existence of an effective magnetic flux from 0 to 2π cor-
responding to a non-reciprocal 2π phase shift of 8.35 mm (length of
our interferometer) and a fringe extinction ratio of 2.4 dB. Figure 3a
shows the optical transmission of our devices when light is propa-
gating from left to right (L→ R) and right to left (R→ L). Two syn-
chronized sinusoidal radiofrequency signals are applied such that ϕL
and ϕR are correlated. We chose λ = 1,570 nm to match the modu-
lation frequency ( fM = 4 GHz) to the frequency difference between
the supermodes. As shown in Fig. 3a we see full periods of sinusoi-
dal optical transmissions (fringe patterns) as Δϕ (= ϕL − ϕR) varies
from 0 to 2π. The solid curves in Fig. 3a are the theory curve fits
(Supplementary Section II), all of which match the experiments
well. For all values of Lf we observe clear non-reciprocal
transmission, where the Δϕ that corresponds to the maximum
transmission for R→ L (ΔϕR→L) is different from that for L→ R
(ΔϕL→R). Figure 3b also shows a linear relationship between
|ΔϕR→L − ΔϕL→R| and Lf. This result is expected, because ΔϕR→L
and ΔϕL→R are both proportional to the phase difference between
the two supermodes, which is also proportional to Lf. The exper-
iments (circles) match the theory well (solid line), and the data all
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Figure 2 | Ramsey-type interferometer design and fabrication. a,b, Simulated mode profiles for both the even mode (a) and the odd mode (b), which
coexist in a silicon coupled waveguide structure. c, Cross-sectional view of the coupled waveguides. A set of pn and np diodes is doped to modulate the
refractive index. d, Top view of carrier density (N) distribution in the coupled waveguide along the x-axis (slab omitted). The width of the depletion region
(grey) changes over time as a sinusoidal signal is applied to the diodes. The applied sinusoidal voltage V is shown in red. e, A photonic Ramsey
interferometer implemented as a silicon coupled-waveguide structure. Bottom: microscope image and simulated light transmission of a pair of multimode
interference devices located at the outer ends of the interferometer.
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Synthetic Magnetic Field 
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Experimental realization of the gauge field 
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Transport statistics

−4 −2 20 40

0.2

0.4

0.6

0.8

1

E/J

α

15x15 arrays

Different colors: different samples

S. Mittal et al.
Phys. Rev. Lett. 113, 087403 (2014)

−40
−20
0

T
 (

d
B

)

193.74 193.78 193.82 193.86

0

200

 (THz)

 (
p
s
)

0

T
 (

d
B

)

Short EdgeLong Edge Bulk



Metal (Al) 
Routing

BOX

SiO2

1.6 um

220 nm

510 nm
110 nm

Heaters (Ti)

Link ResonatorSilicon 
Substrate

Site

Resonator 

Link

Resonator 

Heater Roundtrip Phase = 

Bulk-edge correspondence


Laughlin-Halperin’s argument 

applied to photonic system


MH, PRL 112, 210405 (2014)  

Measuring integer topological invariants
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Quantum transport in topological photonics systems

Theory: S. Mittal, V. Vikram Orre, and M. H., Optics Expres 24, 15632 (2016)
see also Rechtsman et al. arXiv:1605.02053 
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Fig. 1. (a) Schematic of a 2D lattice of coupled ring resonators implementing the integer
quantum-Hall model. Site resonators (black) are coupled using link resonators (grey). The
lattice is coupled to input and output waveguides. Edge states transport is confined along
the lattice boundary whereas the bulk states follow different paths through the bulk of the
lattice. A time-bin entangled photon pair is coupled to the lattice at input and the output
temporal correlations are examined. An example single photon temporal wavefunction and
the two-photon correlation function is shown at the input and the output. (b) A vertical
shift of link resonator introduces direction dependent hopping phase and hence synthetic
magnetic field for photons. Photons hopping along right experience a longer path and hence
an extra phase compared to photons hopping along left. (c) Single-photon transmission
spectrum (solid red line) for a pure 8×8 lattice. CW, CCW Edge and bulk bands are shaded
in green, red and blue, respectively. In this paper, we use the input/output coupling rate to
be same as the coupling rate J between site resonators.

whereω0 is the ring resonance frequency, J is the coupling rate between neighboring lattice sites
and φ is the synthetic magnetic flux threading a single plaquette. â†x,y and âx,y are the photon
creation and annihilation operators, respectively, at the lattice site (x,y). We have specifically
chosen the Landau gauge where the magnetic phase is associated only with hopping along
x-direction and it is a linear function of the row index y. For simplicity, we choose ω0 = 0.
Moreover, to elucidate the topological protection of edge states against disorder, we neglect
the effect of loss in the resonators which can lead to decoherence of the entangled state, in
addition to disorder. Also, in experimental realization of this system, the effect loss is very
small compared to that of disorder [4, 20].
Figure 1(c) shows the simulated single-photon transmission spectrum for a 8×8 lattice, with

a magnetic flux φ = 2π
4 per plaquette. The transmission spectrum is divided into bulk bands

separated by edge bands [24]. The edge bands (shaded in green and red) are associated with
topologically non-trivial edge states circulating clockwise (CW) and counterclockwise (CCW)
along the system boundary. On the other hand, states in the bulk band (shaded in blue) occupy
the bulk of the lattice [3, 4].
At the input of this lattice, we couple a time-bin entangled two-photon state of the form

|ψ⟩ =
∫ ∞
−∞

∫ ∞
−∞ dt1dt2ψ(t1, t2; te, tl)â†(t1)â†(t2) |0⟩ ,where(te) and (tl) correspond to the early

and late time bins in which the photons could arrive and â†(t) is the photon creation
operator at time t. ψ(t1, t2; te, tl) is the two-photon temporal wavefunction and is symmetric
under exchange of photons. Note that both the photons are centered around the same carrier
frequency and have same polarization, in the plane of ring resonators. Here, we consider
the maximally entangled states - the Bell states. For example, the Ψ+ state is written as

                                                                                                Vol. 24, No. 14 | 11 Jul 2016 | OPTICS EXPRESS 15634 

time, a two-photon state can be written as

|2i =
Z

dx1dx2 (x1, x2; t)â
†
(x1)â

†
(x2)|0i, (3)

where  (x1, x2; t) is the corresponding wavefunction. Depending on the relative positions of pho-
tons, in a given snapshot, the wavefunction can be represent bunched to anti-bunched photons. In
fact, the time-entangled (path-entangled) information can be obtained by binning such a wavefunc-
tion. Based on our preliminary simulations, we expect that the two-photon wave function will be
preserved in a chiral channel (e.g. edge band), in contrast to the non-chiral and disordered systems,
where multiple scatterings can dramatically modify the form of the two-photon wavefunction.

To generate these correlated photon pairs, we use Type II spontaneous parametric down con-
version (SPDC) process in a PPKTP crystal. The crystal is pumped with a pulsed Ti-Sapph laser
around 780 nm (tunable) to yield correlated photon pairs at all frequencies, satisfying the energy
conservation and phase matching condition. This wide spectrum of photon pairs is then filtered
using a high-resolution monochromator to give degenerate photon pairs at around 1560 nm. By
tuning the Ti-Sapph laser output and heating the PPKTP crystal, we can tune the center wavelength
of the degenerate photon pairs.
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Photon Pair 
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Figure 9: Schematic of the two-photon transport experimental
setup. HWP: half-wave plate, PBS: polarization beam splitter.

In order to achieve an arbitrary
two-photon wavefunction, we vary
the delay between two photons to
control their interaction in the lattice
of coupled resonators. Fo that, we
use Type II SPDC to generate pho-
ton pairs with orthogonal polariza-
tions. We use a polarization beam
splitter (PBS) to split the two polar-
izations and delay the vertical polar-
ization with respect to the horizon-
tal. We then use a half wave plate
(HWP) to rotate the vertical polariza-
tion to horizontal, the only polariza-
tion which our ring resonator waveg-
uides support. The two-photon states
with a mutual delay are then com-
bined using a beam combiner and
coupled to an optical fiber. This fiber is coupled to the resonator lattice using grating couplers.
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Fig. 2. (a) Time-correlation Γ(t1, t2) forΨ+ input state, with σ = 10 T0 and delay τ = 30 T0,
where T0 = 1/J. (b,c) Simulated correlation function at the output port of a 8×8 lattice for
CCW and CW edge states, respectively. The delay incurred in the edge states shifts the
correlation function diagonally but correlation of the input state is preserved. The centres
of the two time-bins are marked with dashed yellow lines. (d-f) Results for the input state
Φ+. Insets show the transmission spectrum and the path followed by edge states. Γ(t1, t2)
is normalized such that the maximum is unity.

|Ψ+⟩= 1√
2 (|e⟩1 |l⟩2+ |l⟩1 |e⟩2) ,where|e⟩1,2 and |l⟩1,2 represent the single-photon states in early

and late time bins, respectively. It corresponds to a situation when one photon arrives in the early
time-bin (te) and the other in the late bin (tl). The early/late time bins can be considered as "0/1"
logic values of a qubit. Similarly, the other two Bell states symmetric under exchange of photons
are

∣

∣Φ+
〉

=
1√
2
(|e⟩1 |e⟩2+ |l⟩1 |l⟩2) (2)

∣

∣Φ−〉=
1√
2
(|e⟩1 |e⟩2− |l⟩1 |l⟩2) . (3)

These are the symmetric and antisymmetric combinations of the two scenarios when both the
photons arrive early or both arrive late. The fourth Bell stateΨ− is not considered here because
it is antisymmetric under exchange of photons. These time-bin entangled two-photon states can
be realized in various systems, for example, using spontaneous parametric down conversion or
quantum dots [21–23].
Assuming the input single-photon temporal wavefunctions are Gaussian,

the two-photon wavefunction for Ψ+ state is given by Ψ+(t1, t2; te, tl) =

A
[

exp
(

− (t1−te)2
2σ2

)

exp
(

− (t2−tl)2
2σ2

)

+ exp
(

− (t1−tl)2
2σ2

)

exp
(

− (t2−te)2
2σ2

)]

,whereσ characterizes
the single-photon temporal pulsewidth and A is the normalization factor. Similarly, we can
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Fig. 3. (a-d) Time-correlation function at the input and the output of the lattice for Ψ+

state and three different input frequencies in the bulk band, ω = (−0.52,−0.4,0.52)J.
The profile is dictated largely by the input excitation frequency and the two photons can
bunch at the output even when they are well separated at the input. (e-h) Correlation for
the separable state corresponding to the input frequencies in (a-d). For the separable state,
the bunching is much less than that for the entangled state. (i-p) Simulation results for Φ+

and the corresponding separable state, where the photons are bunched at the input and can
anti-bunch at the output after propagating through bulk states. These results show that the
quantum state of two entangled photons is more fragile than the separable state.

to different input ports and quantum walk in the system leads to spatial bunching/anti-bunching
of photons at the output, depending on the choice of input excitation ports and relative phase
between them. In contrast, our system has a single input and a single output port. But, each
coupling region between the resonators is a beam-splitter and therefore, the transport of photons
from input to the output by hopping this array of beam-splitters can be considered as a 2D spatial
quantum walk of two photons. These spatial correlations of the two-photon quantum walk in
the lattice manifest as temporal correlations at the output port.
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Outline of this talk

• Review of recent experiments on ring-resonators


• Quantum transport of two-photons 
(non-classical input) 
S. Mittal, V. Vikram Orre, and M. H., OPTICS EXPRESS 24, 15632 (2016)


• Topological photonic crystals 
(strong photon-photon interaction)  
S. Barik, H. Miyake, W. DeGottardi, E. Waks, M.H. arXiv:1605.08822 (2016)

• Effect of disorder on FQH of photons 



:  photon blockade regime

Fractional Quantum Hall state of light 

Gauge field 
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Quantum

Hall states

interaction+

Angelakis PRL (2008), Carusotto PRL (2012)  MH et al. NJP (2013)

H. Pichler, T. Ramos, A. Daley, P. Zoller

PRA (2015)
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Quantum optics of chiral spin networks

Hannes Pichler,1, 2, ⇤ Tomás Ramos,1, 2 Andrew J. Daley,3 and Peter Zoller1, 2, 4
1Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria

2Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
3Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, UK

4Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany

We study the driven-dissipative dynamics of a network of spin-1/2 systems coupled to one or more
chiral 1D bosonic waveguides within the framework of a Markovian master equation. We determine
how the interplay between a coherent drive and collective decay processes can lead to the formation
of pure multipartite entangled steady states. The key ingredient for the emergence of these many-
body dark states is an asymmetric coupling of the spins to left and right propagating guided modes.
Such systems are motivated by experimental possibilities with internal states of atoms coupled to
optical fibers, or motional states of trapped atoms coupled to a spin-orbit coupled Bose-Einstein
condensate. We discuss the characterization of the emerging multipartite entanglement in this
system in terms of the Fisher information.

PACS numbers: 03.67.Bg, 03.65.Yz, 42.50.Nn, 42.81.Dp

I. INTRODUCTION

The ability to engineer the system-bath coupling in
quantum optical systems allows for novel scenarios of dis-
sipatively preparing quantum many-body states of mat-
ter [1]. This is of interest both as a nonequilibrium con-
densed matter physics problem [2–8] and in the context of
quantum information [9–18]. In the present work we will
study open system quantum dynamics of chiral spin net-

works from a quantum optical perspective. The nodes
of these networks are represented by spin-1/2 systems,
whereas the quantum channels connecting them are 1D
waveguides carrying bosonic excitations [cf. Fig. 1(a) and
1(b)]. In addition, these waveguides provide the input
and output channels of our quantum network, allowing
for driving and continuous monitoring of the spin dy-
namics. In a quantum optical setting, such a network
can be identified by two-level atoms coupled to optical
fibers [19, 20] or photonic structures [21, 22]. As dis-
cussed in previous studies [23–25], the 1D character of
the quantum reservoir manifests itself in unique features
including long-range dipole-dipole interactions mediated
by the bath and collective decay of the two-level systems
as super- and subradiant decay.

The crucial aspect underlying our study below is the
assumption of a chiral character of the waveguides rep-
resenting the photonic channels. By chirality we mean
that the symmetry of emission of photons from the two-
level atoms into the right and left propagating modes
of the 1D waveguides is broken. This allows the forma-
tion of novel nonequilibrium quantum phases as steady
states of the open system dynamics in chiral quantum
spin networks. This includes the driven-dissipative evo-
lution as “cooling” to pure states of entangled spin clus-

ters, which play the role of quantum many-particle dark

⇤ hannes.pichler@uibk.ac.at

Figure 1. (Color online) Spin networks with chiral coupling
to 1D bosonic reservoirs. (a) Driven spins can emit photons
to the left and right propagating reservoir modes, where the
chirality of the system-reservoir interaction is reflected in the
asymmetry of the corresponding decay rates �

L

6= �

R

. (b)
Spin network coupled via three different chiral waveguides
m = 1, 2, 3. Waveguide m = 1 couples the spins in the order
(1, 2, 3, 4), whereas m = 2 couples them in order (1, 3, 2, 4)

and m = 3 in order (2, 1, 4, 3). Note that only waveguides
without closed loops are considered in this work.

states, i.e. spin clusters decoupled from the bath. While
in Ref. [26] the formation of entangled spin clusters for
the (idealized) purely unidirectional waveguide has been
discussed, we have recently presented results that this
formation of pure entangled spin clusters is, in fact, the
generic case for chiral spin networks under fairly general
conditions [27]. It is the purpose of the present paper to
present an in depth study of this quantum dynamics and
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Topological photonic crystals
• Synthesize spin-orbit in photonic crystals

• Find a compatible structure with solid-state emitters in optical domain 

 
Challenges:


Full bandgap in the bulk

E&M should be confined in prep. direction to the slab

previous works:  Rechtsman/Segev Nat. Photon (2012)

Shvets/Khanikaev PRL (2014), Wu/Hu PRL (2015)S. Barik, H. Miyake, W. DeGottardi, E. Waks, M.H. arXiv:1605.08822



Tight-binding approximation
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Figure 3: Schematic of the di↵erent orbital states. See Fig. 2(a) of Ref. [1] for reference. For
Ref. [1] these are Ez modes and for us these are Hz modes.

Then the transformation matrix can be written

T =

✓
a
11

a
12

a
21

a
22

◆
. (11)

This transformation matrix construction generalizes in an obvious way to higher dimensions.
Then given a matrix M in the original bases, the matrix in the new bases can be written in

any dimension as

M 0 = T�1MT. (12)

6.2 First transformation to “orbital” bases

With this understanding, the first transformation we want to apply toH is to go to an “orbital” basis
like what the Wu and Hu PRL does (see Fig. 2(a) of Ref. [1]). These modes can be schematically
depicted as in Fig. 3. Note these modes are Ez modes in the case of Ref. [1] and for us these are
Hz modes.

It turns out that if you find the eigenstates of the original Hamiltonian at k = 0, you see that
these modes are exactly the eigenstates. Since we want to expand around k = 0 to find the e↵ective
topological Hamiltonian, it makes sense to transform to this basis.

The corresponding transformation matrix can be written

To =
�
s f py px dxy dx2�y2

�
(13)
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Then we can apply this to H to get

Ho = T�1

o HTo. (15)

4

t1 6= 0, t2 = 0

t1 = t2t1 > t2

✓ Obtain band inversion, requirement for non-trivial topology

t1 < t2

p+, p�

d+, d�
p+, p�

d+, d�

t2 = 0

s

f

p+

p�

pristine honeycomb
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phase of z is analogous to an angular momentum. Acting H on | (z)i yields

H| (z)i =

0

BBBBBBB@

�t1 (z5 + z)� t2z
3

�t1 (1 + z

2)� t2z
3

�t1 (z + z

3)� t2z
3

�t1 (z2 + z

4)� t2z
�3

�t1 (z3 + z

5)� t2z
�3

�t1 (z4 + 1)� t2z
�3

1

CCCCCCCA

. (8)

We find that | (z)i is an eigenstate provided that z is a sixth root of unity. For

z = e

i⇡n/3, the spectrum is given by

"

n

= �2t1 cos
⇡n

3
� (�1)nt2. (9)

Thus, we see that the | (z)i states associated with z = 1 and z = �1 have energies

�2t1 � t2 and 2t1 + t2, respectively. Time-reversal symmetry is enacted by complex

conjugation. Thus the states corresponding to z = e

i⇡/3 and e

�i⇡/3 have energies

"±1 = �t1 + t2 while z = e

i2⇡/3 and e

�i2⇡/3 have energies "±2 = t1 � t2.

Although the full rotational symmetry is broken by the crystal axis, the states

corresponding to z = e

±i⇡/3 possess strong p-like character, while those with z = e

±i2⇡/3

have d-like character. This can be most easily seen by noting that the various states

| (z)i are ‘sampled’ from continuous angular wave functions as follows

| (e±i⇡/3)i = e

±i✓ ! |p±i, (10)

| (e±i2⇡/3)i = e

±i2✓ ! |d±i. (11)

The ± labels the pseudo-spin degree of freedom. The geometry of the wavefunctions is

clarified through the definitions

|p
x

i = 1p
2
(|p+i+ |p�i) , (12)

|p
y

i = 1

i

p
2
(|p+i � |p�i) (13)

where |p
x

i is odd about the x-axis, etc. Similarly, we have

|d
x

2�y

2i = 1p
2
(|d+i+ |d�i) , (14)

|d
xy

i =
1

i

p
2
(|d+i � |d�i) , (15)

where |d
x

2�y

2i is a wave function whose maxima coincide with the x- and y-axes as

✓ = 0 ! 2⇡, etc.

We now derive the spectra associated with these 4 states near � by expanding

Eq. (??) to linear order in k

x

and k

y

. In this limit, the e↵ective 4 ⇥ 4 Hamiltonian

is block diagonal, and only states of the same pseudo-spin are coupled. The e↵ective

Hamiltonian for the (+)-pseudo-spin is given by

H+ =

p
3

2
t2a (�k

x
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x

+ k
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y

) +
⇥
t2 � t1 +O(k2

x

+ k

2
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)
⇤
�

z

, (16)
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in the (|p+i, |d+i)T basis. Similarly, in the (|p�i, |d�i)T basis we find

H� =

p
3

2
t2a (kx�x

+ k

y

�

y

) +
⇥
t2 � t1 +O(k2

x

+ k

2
y

)
⇤
�

z

. (17)

In both cases, we have performed a unitary transformation U = e

i

⇡

2 �z . We note that in

the limit that the various honeycombs are completely decoupled, t2 ⇡ 0 and Eqs. (??)

and (??) reflect the fact that the p-states have a lower energy than the d-states. For

t1 = t2, H+ and H� are characterized by a Dirac cone spectrum. For t1 6= t2, the

spectrum acquires a gap of size |t1 � t2|.
Typically, the application of tight-binding is limited to electronic systems in which

electrons hop between weakly coupled atomic orbitals. However, the method is actually

much more broadly applicable. It turns out that any band can always be written in terms

of so-calledWannier functions [?]. Only if the various ‘atomic’ states are weakly coupled

will the Wannier functions bear a strong resemblance to the atomic wave functions, but

generally such Wannier functions may always be obtained. Moreover, the band structure

near � is tightly constrained by the symmetries of the system. In particular, the tight-

binding Hamiltonian H automatically accounts for the fact that the lattice and the

triangular holes exhibit a C6v symmetry. For t1 = t2, the Dirac cones are protected by

additional C3v symmetries.

7.4. Topology and Edge States

In the previous section, we showed that a honeycomb structure can be described

by a gapless Dirac Hamiltonian. When we introduce the lattice deformations, i.e.,

shrinking/expanding, a gap opens which can be described a mass term (m�

z

). Here, we

review the concept why the band inversion, i.e., changing the sign of mass, results in

having a topological edge at the boundary.

When the system is gapped, its topology can be characterized by a Chern number

for the pseudospins (±). A spin Chern number takes the form

C = C+ � C�, (18)

where C± = ±1
2sgn(m±), where m± are the masses for the two pseudo-spins [?]. Thus,

we have

C = sgn(t2 � t1). (19)

Topologically-protected edge modes will exist between gapped regions with di↵erent C 0
s,

i.e., any place that the quantity t2 � t1 changes sign.

In order to understand the edge state structure, we begin by considering H+ with

a spatially varying mass. For concreteness, we consider the situation outlined in Fig.

4b in the main text As we will see, edge states are localized to domain walls for which

m(x) = t2 � t1 ⇡ 0. The edge states satisfy the Heisenberg equation of motion which,

for H+ [Eq. (??)], is the Dirac equation. The Dirac equation corresponding to H+ is

[�i~v (��

x

@

x

+ �

y

@

y

) +m�

z

] = E , (20)
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shrinking/expanding, a gap opens which can be described a mass term (m�
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). Here, we

review the concept why the band inversion, i.e., changing the sign of mass, results in

having a topological edge at the boundary.

When the system is gapped, its topology can be characterized by a Chern number

for the pseudospins (±). A spin Chern number takes the form

C = C+ � C�, (18)

where C± = ±1
2sgn(m±), where m± are the masses for the two pseudo-spins [?]. Thus,

we have

C = sgn(t2 � t1). (19)

Topologically-protected edge modes will exist between gapped regions with di↵erent C 0
s,

i.e., any place that the quantity t2 � t1 changes sign.

In order to understand the edge state structure, we begin by considering H+ with

a spatially varying mass. For concreteness, we consider the situation outlined in Fig.

4b in the main text As we will see, edge states are localized to domain walls for which

m(x) = t2 � t1 ⇡ 0. The edge states satisfy the Heisenberg equation of motion which,

for H+ [Eq. (??)], is the Dirac equation. The Dirac equation corresponding to H+ is
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In both cases, we have performed a unitary transformation U = e
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⇡

2 �z . We note that in

the limit that the various honeycombs are completely decoupled, t2 ⇡ 0 and Eqs. (??)

and (??) reflect the fact that the p-states have a lower energy than the d-states. For

t1 = t2, H+ and H� are characterized by a Dirac cone spectrum. For t1 6= t2, the

spectrum acquires a gap of size |t1 � t2|.
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much more broadly applicable. It turns out that any band can always be written in terms

of so-calledWannier functions [?]. Only if the various ‘atomic’ states are weakly coupled
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binding Hamiltonian H automatically accounts for the fact that the lattice and the
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7.4. Topology and Edge States

In the previous section, we showed that a honeycomb structure can be described

by a gapless Dirac Hamiltonian. When we introduce the lattice deformations, i.e.,

shrinking/expanding, a gap opens which can be described a mass term (m�

z

). Here, we

review the concept why the band inversion, i.e., changing the sign of mass, results in

having a topological edge at the boundary.

When the system is gapped, its topology can be characterized by a Chern number

for the pseudospins (±). A spin Chern number takes the form
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where C± = ±1
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we have
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s,
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In order to understand the edge state structure, we begin by considering H+ with

a spatially varying mass. For concreteness, we consider the situation outlined in Fig.

4b in the main text As we will see, edge states are localized to domain walls for which
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see also: Wu/Hu PRL (2015)



Band inversion: numerical simulation

✓ Bulk/edge correspondence: We expect topological edge states 
to appear at the interface between expanded/shrunken system



helical/chiral topological edge states
✓  Interface between two distinct band structure

✓  Topological edge state appear in the bulk gap 

✓2D version/topological version of Lodahl/Rauschenbeutel

✓ different polarization propagate 
in different directions 

✓ robustness against deformation of edge

S. Barik, H. Miyake, W. DeGottardi, E. Waks, M.H. arXiv:1605.08822

✓ confinement in prep. direction

fabrication so far….



Outline of this talk

• Review of recent experiments on ring-resonators


• Quantum transport of two-photons 
(non-classical input) 
S. Mittal, V. Vikram Orre, and M. H., OPTICS EXPRESS 24, 15632 (2016)


• Topological photonic crystals 
(strong photon-photon interaction)  
S. Barik, H. Miyake, W. DeGottardi, E. Waks, M.H. arXiv:1605.08822 (2016)

• Effect of disorder on FQH of photons 
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Fractional Quantum Hall state of light 
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Challenges:

• Weak interaction in the optical domain
• Photon loss
• lack of chemical potential 
• lack of thermalization

Advantages:

• Synthetic gauge field
• k-body interaction 
• length scale
• correlation function measurement 

• MH, J. Taylor, M. Lukin NJP (2013)

• E. Kapit, MH and S. Simon PRX (2014)

• MH, Adhikari, Taylor PRB (2015)

• M. Schiro, M. Bordyuh, B. Oztop, and H. 
Tureci PRL (2012)

• F. Grusdt et al. PRL (2014)

• ….

• E. Kapit, S. Simon PRB (2013)

• MH, P. Adhikari,  and J. Taylor PRB (2014)

(three-body interaction and Pfaffian states)

• R. Umucalılar, I. Carusotto PLA (2013)

• ……



Interaction between photons 

Some challenges:

• Strong photon-photon interaction 
• Scalable implementation of various Hamiltonians

optical dipole trap before turning on the probe and control light, and
probe the Rydberg EIT system continuously for up to a few hundred
microseconds. The control light is filtered out from the transmitted
light, and the photon–photon correlation function g(2)(t) of the probe
beam is measured versus the time separation t by means of two photon
counters. The slow-light group delay td through the atomic medium5 is
measured independently in a pulsed experiment, and used to calculate
the corresponding minimum group velocity, vg~

ffiffiffiffiffi
2p
p

sax
"

td.
Probe transmission spectra are presented in Fig. 2a for large optical

depth OD 5 40 and the control laser tuned to the Rydberg state
j100S1/2æ. At very low incident photon rates Ri # 1 ms21, the spectrum
displays an EIT transparency window with 60% transmission. The trans-
mission is mainly limited by the finite EIT decoherence rate cgr, which
for our system is dominated by Doppler broadening and laser linewidth.
The extraordinary nonlinearity of the Rydberg EIT medium13 becomes
apparent as the incident photon rate is increased: the probe beam is
already strongly attenuated at a photon rate of Ri < 4ms21. To demon-
strate that we are operating in a quantum nonlinear regime, we show in

Fig. 2b the correlation function g(2)(t) of the transmitted probe light,
measured at Ri 5 1.2 ms21. For the most strongly interacting state
j100S1/2æ with rb 5 13 mm < 5la < 2.9w we observe strong antibunching
with g(2)(0) 5 0.13(2), largely limited by background light. (Here 0.13(2)
indicates 0.13 6 0.02.) Subtraction of the independently measured back-
ground coincidence counts yields a corrected g 2ð Þ

c 0ð Þ~0:04 3ð Þ. These
observations are in sharp contrast to EIT transmission via a less strongly
interacting Rydberg state j46S1/2æ with rb 5 3 mm, where the photon
statistics of the transmitted light are similar to those of the incident
coherent state (see Fig. 2b inset). We note that for j100S1/2æ the photons
are anti-bunched over a length scale vgt < 50mm that exceeds the
blockade radius (see top axis of Fig. 2b), indicating the influence of
additional propagation effects beyond the simple picture outlined above.

To investigate the transmission characteristics of multiple photons
through the medium, we plot in Fig. 3a the output photon rate Ro,
scaled by the EIT transmission measured at low probe power, as a
function of incident photon rate Ri. At first, Ro increases linearly with
Ri as expected, but then saturates abruptly to a constant value of
Ro 5 1.3(3) ms21. Note that these observations deviate from the
simplistic model of a multiphoton absorber that transmits only the
one-photon component from the incoming coherent state (black dashed
line in Fig. 3a). At the same time, the observed output flux corresponds to
less than one photon in the medium R{1

o wtd~300 ns
# $

. Figure 3b
shows the saturated output rate versus the ratio rb/w of blockade
radius and probe beam waist for a wide range of principal quantum
numbers, control field intensities and optical depths. The approximate
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Figure 2 | Two-photon optical nonlinearity. a, Transmission versus probe
detuning at various incoming photon rates (in ms21): Ri 5 1, 2, 4, 6 (dashed
green, solid red, dotted blue, and dot-dashed black, respectively) for | 100S1/2æ,
EIT linewidth cEIT 5 2p3 23 MHz, optical depth OD 5 40, and measured
group delay td 5 250 ns. The system is strongly nonlinear at a power as low as
0.25 pW. b, Data points show photon–photon correlation function g(2)(t) at
EIT resonance for the same parameters as in a with Ri 5 1.2 ms–1. The top axis
shows the spatial separation vgt of polaritons with vg < 400 m s21. Error bars,
1s statistical uncertainty. Spurious detection events set a lower bound on g(2) of
0.09(3) (red dotted line). Inset, g(2)(t) for the less strongly interacting state
| 46S1/2æ with similar parameters. The solid lines in the main panel and inset are
theoretical calculations as described in the text, with the probe waist fixed at
w 5 6 mm. Values g(2) . 1 are attributed to classical fluctuations (see
Supplementary Fig. 4 and Supplementary Information).
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a, b, An elongated ensemble of laser-cooled rubidium atoms is prepared in a
crossed optical-dipole trap. Co-propagating control and probe fields couple the
ground-state | gæ to a high-lying Rydberg state | ræ via a short-lived excited state
| eæ. Under EIT conditions, the probe photons slowly propagate in the medium
as Rydberg polaritons. The Rydberg–Rydberg interaction of strength C6

between atoms at a distance r, V(r) 5 BC6/r6, shifts the Rydberg levels out of
resonance and blocks simultaneous Rydberg excitations at close range.
Consequently two Rydberg polaritons cannot both propagate when they are
closer than the blockade radius rb 5 (2C6/cEIT)1/6, set by V(rb) 5 BcEIT/2, where
cEIT~V2

c

"
C is the single-atom EIT linewidth as set by the control field Rabi

frequency Vc and the decay rate C of state | eæ. c, d, Numerical simulations
showing the spatial evolution of the probability distribution associated with two
photons (c) and two Rydberg excitations (d) at positions (z1, z2) inside the
medium, normalized by their values in the absence of blockade. Two Rydberg
excitations are excluded from the blockaded range, resulting in the formation of
an anti-bunching feature in the light field, whose width increases during the
propagation due to the finite EIT transparency width B~cEIT
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Nanophotonic quantum phase switch with a
single atom
T. G. Tiecke1,2*, J. D. Thompson1*, N. P. de Leon1,3, L. R. Liu1, V. Vuletić2 & M. D. Lukin1

By analogy to transistors in classical electronic circuits, quantum
optical switches are important elements of quantum circuits and
quantum networks1–3. Operated at the fundamental limit where a
single quantum of light or matter controls another field or material
system4, such a switch may enable applications such as long-distance
quantum communication5, distributed quantum information pro-
cessing2 and metrology6, and the exploration of novel quantum
states of matter7. Here, by strongly coupling a photon to a single
atom trapped in the near field of a nanoscale photonic crystal cavity,
we realize a system in which a single atom switches the phase of a
photon and a single photon modifies the atom’s phase. We experi-
mentally demonstrate an atom-induced optical phase shift8 that is
nonlinear at the two-photon level9, a photon number router that
separates individual photons and photon pairs into different output
modes10, and a single-photon switch in which a single ‘gate’ photon
controls the propagation of a subsequent probe field11,12. These
techniques pave the way to integrated quantum nanophotonic
networks involving multiple atomic nodes connected by guided
light.

A quantum optical switch11,13–16 is challenging to implement because
the interaction between individual photons and atoms is generally very

weak. Cavity quantum electrodynamics (cavity QED), in which a photon
is confined to a small spatial region and made to interact strongly with
an atom, is a promising approach to overcoming this challenge4. Over
the past two decades, cavity QED has enabled advances in the control of
microwave17–19 and optical13,20–23 fields. Although integrated circuits with
strong coupling of microwave photons to superconducting quantum bits
(qubits) are being developed at the moment24, a scalable path to inte-
grated quantum circuits involving coherent qubits coupled by means of
optical photons has yet to emerge.

Our experimental approach (Fig. 1a) makes use of a single atom
trapped in the near field of a nanoscale photonic crystal cavity that is
attached to an optical fibre taper25. The tight confinement of the optical
mode to a volume V < 0.4l3, below the scale of the optical wavelength,
l, results in strong atom–photon interactions for an atom sufficiently
close to the surface of the cavity. The atom is trapped about 200 nm
from the surface in an optical lattice formed by the interference of an
optical tweezer and its reflection from the side of the cavity (Methods
Summary, Supplementary Information and Fig. 1a, b). Compared with
transient coupling of unconfined atoms13,22, trapping an atom allows
for experiments exploiting long atomic coherence times, and enables
scaling to quantum circuits with multiple atoms.

*These authors contributed equally to this work.

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA. 2Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, USA. 3Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
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Figure 1 | Strong coupling of a trapped atom to a photonic crystal cavity.
a, A single 87Rb atom (blue circle) is trapped in the evanescent field (red) of a
photonic crystal (grey). The photonic crystal is attached to a tapered optical
fibre (blue), which provides mechanical support and an optical interface to the
cavity. The tapered fibre–waveguide interface provides an adiabatic coupling of
the fibre mode to the waveguide mode. The inset shows the one-dimensional
trapping lattice (green), formed by the interference of a set of optical tweezers
and its reflection from the photonic crystal. b, Scanning electron microscope
(SEM) image of a single-sided photonic crystal. The pad on the right-hand side
is used to tune the cavity resonance thermally by laser heating. c, The photonic
crystal (PC) is integrated in a fibre-based polarization interferometer. A

polarizing beam splitter (PBS2) splits the D-polarized input field into an
H-polarized arm containing the photonic crystal and a V-polarized arm with
adjustable phase wV. Using a polarizing beam splitter (PBS1) and a half-wave
plate (HWP), the outgoing D and A polarizations are detected independently.
d, Excited-state lifetime at an atom–cavity detuning of 0 (red) and 241 GHz
(blue). The excited-state lifetime is shortened to t 5 C21 5 3.0(1) ns from the
free-space value of c21 5 26 ns, yielding a cooperativity of g 5 7.7 6 0.4. The
difference in the fluorescence signal at t 5 0 for the two detunings is consistent
with the change in cavity detuning. The inset shows the enhancement of the
atomic decay rate versus atom–cavity detuning. a.u., arbitrary units.
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Figure 2 | Cavity lattice for quantum simulation. a, More than two hundred
7 GHz microwave cavities are coupled in a Kagome lattice, a natural
two-dimensional lattice for these long, one-dimensional structures. To
provide the necessary photon–photon interaction, qubits must be added to
each cavity using an additional lithography layer. b, Each individual
transmission-line cavity is nearly 10 mm long and only 20 µm across, and is
folded to pack cavities densely on a chip. c, At each end, the cavities are
capacitively coupled to two neighbours, enabling photon hopping. The
symmetry of this three-way capacitor ensures uniform hopping rates
throughout the array. (Device image: courtesy of D. Underwood and
A. A. Houck.)

As qubits and cavities are made lithographically, it is possible to
fabricate large arrays to observe many-body physics of interacting
polaritons. With a 32mm⇥32mm sample, it is feasible to couple
over 200 cavities in a two-dimensional lattice. This number can
easily be extended to more than 1,000 cavities on a full two-
inch wafer. Disorder in the cavities alone can be small, on the
order of a few parts in 104, because each cavity is ⇠1 cm long
and optical lithography is typically precise to the level of only
a few micrometres. Preliminary experimental work suggests that
this is indeed feasible (A. A. Houck, private communication).
The geometry of transmission-line cavities also dictates the types
of lattice that are natural. Each ‘site’ in a simple lattice is
essentially two-dimensional, with two distinct endpoints where
photons may enter. The real-space sketch of a resonator lattice,

depicting resonators as a line segment, is thus the dual, or line
graph of the actual lattice. The 200-cavity sample in Fig. 2,
for instance, is an array of resonators forming a honeycomb
pattern. The resulting lattice is the kagome lattice (of which the
honeycomb lattice is the line graph). Qubits, not yet included
in the sample of Fig. 2, can be added in a further step of
electron-beam lithography. Without individual tunability of qubit
frequencies, disorder in qubit parameters must be expected
to be larger than cavity disorder. However, because a strong
photon–photon interaction can be realized when qubits are far
off resonance, the effects of this disorder will be mitigated,
and many-body behaviour could potentially be observed using
only global control54.

From a theoretical standpoint, the infinite-system limit is
particularly appealing owing to the availability of tools that are
appropriate for large systems, ranging from ‘pedestrian’ mean-field
theory to powerful methods such as variational cluster techniques.
Depending on the specific method, approximate—and sometimes
exact—results can be obtained that reveal important properties of
the ground state, the elementary excitations, or relevant correlation
functions. The paradigmatic model exhibiting a quantum phase
transition akin to the superfluid–Mott insulator transition in the
Bose–Hubbard model2,73 is the Jaynes–Cummings lattice with
nearest-neighbour photon hopping (at rate ):

H =
X

j

H JC
j �

X

hi,ji
(a†

j ai +a†
i aj) (1)

Despite the apparent lack of interaction terms such as (a†
j aj)2,

the Jaynes–Cummings lattice is an interacting model equivalent
to a Bose–Hubbard-like model with two species of bosons, one of
which has an infinite Hubbard parameterU !1 to reproduce the
pseudo-spin 1/2. Analogous to the Bose–Hubbard model, the key
physics of the Jaynes–Cummings lattice consists of the competition
between polariton delocalization, induced by photon hopping,
and on-site interaction, which tends to freeze out hopping and
localize polaritons.

For an array of equivalent cavities, the Jaynes–Cummings lattice
described by equation (2) has a global U (1) symmetry, so that the
total polariton number N = P

j(a
†
j aj + �+

j ��
j ) is conserved. It is

convenient to employ a grand-canonical description, where the
Hamiltonian is replaced by H = H � µN , where µ denotes the
chemical potential, although experimental procedures for realizing
such an effective chemical potential will need to be developed.
Much of the qualitative physics contained in the Jaynes–Cummings
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Figure 3 | Superfluid-to-Mott-insulator transition in the Jaynes–Cummings lattice. Polaritons in an infinite lattice of Jaynes–Cummings sites with
nearest-neighbour photon hopping can undergo a quantum phase transition from a compressible superfluid (SF) phase to Mott insulating (MI) phases
with integer polariton number n on each site. a, The critical region can be accessed by tuning the photon hopping  , the qubit–resonator detuning �, or the
chemical potential µ (here denoted as µ0 = µ�!

r

). b, The transition follows the universality class of the Bose–Hubbard model, including the characteristic
switch of the dynamic critical exponent at the multicritical points located at the tips of each lobe. c, Within the canonical ensemble, the total polariton
number remains fixed, Mott lobes reduce to line segments at integer filling factor in the phase diagram.
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Figure 1 | Elementary circuit-QED building block for a quantum simulator. a, Standard fabrication techniques are used for patterning the simplest
circuit-QED elements onto a chip: transmission-line resonators, superconducting qubits, and coupling capacitors. b, Capacitive coupling between a qubit
and a resonator produces the simplest model for a single-lattice site. c, The Jaynes–Cummings model.

half-integer spins under 2⇡ rotations can be directly observed for
these simulated spins.

Simulations of small spin chains are also possible by directly
coupling a number of superconducting qubits49. In this experi-
ment, a chain of eight ferromagnetically coupled spins in a one-
dimensional chain was simulated with uniform coupling between
nearest-neighbour spins. The ends of the chain were polarized in
opposite directions, and an effective magnetic field gradient was in-
duced by locally tuning each qubit transition energy, preferentially
shifting the resulting domainwall towards one end of the chain. The
system was annealed to the ground state, and reached the expected
state on a timescale consistent with quantum annealing.

As well as simulating spin physics, a great hope of
superconducting circuits is that they can be used to simulate
condensed-matter physics with photons and polaritons far from
equilibrium. In recent experiments in this direction, strong qubit-
mediated photon–photon interactions have been observed using
only a few quantum elements; these experiments include direct
spectroscopy50,51, collapse-and-revival experiments52 and correla-
tion measurements53. A single-qubit cavity system with large inter-
actions has been used to emulate electronic transport in a quantum
dot, with the typical control knobs of source–drain voltage and gate
voltage mapped onto the spectral properties of a photonic bath.
Wideband incoherent radiation replaces the Fermi sea in the source
lead, with the bandwidth giving the effective source–drain voltage.
As the bandwidth of incident radiation is increased, a staircase in
transmitted power emerges, matching expectations frommore con-
ventional transport experiments involving interacting particles54.

Two such circuit-QED systems can be coupled together to build
a system that emulates a Josephson junction for photons with
the Hamiltonian55:

H =
X

i=L,R

H JC
i � J

�
a†
LaR +a†

RaL
�

where H JC
i denotes the Jaynes–Cummings system on site i= L,R,

and a†
i and ai are the photon creation and annihilation operators

for site i. Here, one can begin to study the emergence of
correlated behaviour, because the system is expected to undergo
a non-equilibrium localization transition from a regime where
the initial photon population imbalance between two resonators
coherently oscillates between the two resonators (delocalized
regime) to another regime where it becomes self-trapped (localized
regime) as the photon–qubit interaction is increased beyond a
critical value gc(J ). This transition is driven by the competition
between tunnelling and on-site interaction. Furthermore, because
of photon leakage and qubit dissipation, this is an inherently
dissipative system. The effective interactions in the Jaynes–
Cummings Hamiltonian are weaker at higher photon numbers;
therefore, dissipation favours the localized regime and can give
rise to dynamical switching from the delocalized to the localized

regime. A numerical analysis of the master equation of the system
shows that the localization transition is not washed out by quantum
fluctuations, even down to an initial occupation as small as 20
photons, and should be readily accessible in experiments55.

From here, the realization of circuit-QED arrays with a few
resonators and qubits is relatively close. Their prominence in the
recent body of literature56–64 is owed in part to their tractability in
terms of brute-force numerics. Exact solutions for time evolution,
steady states, and correlators of small-size systems have been
obtained this way. In many cases, they already capture traces of the
quantum phase transition or strongly correlated dynamics expected
for the infinite-size system, even with as few as four lattice sites58.
These will provide an invaluable testbed for future experiments
beforemoving to larger superconducting circuit networks.

From an experimental standpoint, moderate increases in the
system size (that is, in the number of superconducting qubits
and resonators) can be obtained naturally by extending samples
currently in use in experiments aimed at quantum computation21.
First experiments with such ‘mesoscale’ samples are currently
underway. Beyond providing a proof of principle, they will allow
characterization of the systemparameters crucial for all future steps,
and gather statistics on possible disorder in the system parameters
caused byminor imperfections in fabrication.

The computationally accessible mesoscale regime is important
from the point of view of benchmarking experimental systems. As
systems grow, however, the exponential increase in Hilbert-space
dimension may create theory ‘badlands’, where the computational
cost for brute-force numerical solutions exceeds all reasonable
limits, and yet system size remains too small for a statistical
description based on the thermodynamic limit. This challenge of the
mesoscale has been a central theme in condensedmatter physics65,66,
nuclear physics and quantum chemistry of larger molecules, and
gave birth to the statistical theory of mesoscopic systems67,68.
Incidentally, quantum simulation has recently been suggested as
a practical way to tackle the challenge of predicting molecular
spectra3,4. Indeed, this computational intractability is the very
reason why quantum simulators are necessary, although it renders
performance verification extremely difficult.

Simulation with circuit-QED arrays
In large lattices of superconducting resonators, far beyond the
mesocale regime, it again becomes possible to develop an intuition
for what a quantum simulator might reveal. Still, large interacting
photon lattices challenge our understanding and modelling of
strongly correlated systems, their quantum phases and their
dynamics57,58,69–72. These lattices ideally illustrate the potential
of circuit-QED arrays for the purpose of quantum simulation,
and continue to provide new impulses for the development of
theoretical techniques capable of describing strongly correlated
systems both in and out of equilibrium.
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when it is in the spin-up state, inducing a spin-dependent reflection
coefficient. For a monochromatic photon that is resonant with the σ1
transition and is polarized parallel to the cavity, the reflection coeffi-
cients for the spin-down and spin-up states are r↓ = −(2α − 1) and
r↑ = 1 − ((2α)/(1 +C)) respectively12,35–37 (see Supplementary Section 1
for a complete derivation of the reflection coefficients). Here,
C = 2g2/κγ is the atomic cooperativity, which is a function of the
coupling strength g, the total cavity energy decay rate κ and the
dipole decay rate γ, and α = κex/κ is the interference contrast,
where κex is the cavity energy decay rate to the reflected mode.
For an ideal single-sided cavity α = 1, but realistic cavities may
suffer from intracavity losses and decay to parasitic photonic chan-
nels which serve to degrade the interference. When C > 1 and
α > 0.5, r↑ and r↓ have opposite signs. Thus, the spin state con-
ditionally shifts the phase of a reflected photon by π, implementing
a quantum phase operation. An ideal phase switch would be
attained in the limit of large cooperativity (C ≫ 1) and a perfect
single-sided cavity (α = 1) where the reflection coefficient
becomes r↓ = −1 and r↑ = 1.

The quantum phase switch allows one qubit to conditionally
switch the quantum state of the other qubit. We consider the case
where the polarization state of the photon encodes quantum infor-
mation. We express the state of a photon incident on the cavity in
the basis states |x〉 and |y〉, which denote the polarization states
oriented orthogonal and parallel to the cavity mode respectively.
The quantum state of a right-circularly polarized incident photon
can be written as |ψphoton

i 〉 = |x〉 + i|y〉. On reflection the state
becomes |ψphoton

f 〉 = |x〉 + ir↑(↓)|y〉, which remains unchanged if
the quantum dot is in the spin-up state, but becomes left-circularly
polarized for the spin-down state. Similarly, if the spin is prepared
in the state |ψspin

i 〉 = |↑〉 + |↓〉, then after a y-polarized photon reflects
from the cavity the spin state transforms to |ψspin

f 〉 = |↑〉 − |↓〉, which
creates a spin flip corresponding to a rotation of π along the equator
of the Bloch sphere.

Spin-dependent cavity reflectivity
Figure 1b shows a scanning electron microscope image of the
fabricated photonic crystal cavity. The Methods section describes
the device design and fabrication procedure. We initially character-
ize the device using micro-photoluminescence measurements

(Supplementary Section 2). From these measurements, we identify
a single charged quantum dot that is strongly coupled to the
cavity mode and is red-detuned by 67 GHz.

To demonstrate that the spin can flip the state of the photon, we
use the polarization interferometry set-up shown in Fig. 1c (see
Methods). We excite the cavity with right-circularly polarized
light, and measure the reflected signal along either the left-circularly
or right-circularly polarized component. Figure 2a shows both the
cross-polarized (red diamonds) and co-polarized reflection spec-
trum (blue circles) when the quantum dot is detuned from the
cavity so that the two systems are decoupled. By fitting the reflection
spectrum to a Lorentzian lineshape (blue and red solid lines; see
Supplementary Section 3), we determine the cavity energy decay
rate to be κ/2π = 35.9 ± 0.7 GHz and the interference contrast to
be α = 0.81 ± 0.01.

We next apply a magnetic field of 6.6 T that tunes transition σ1
onto cavity resonance via a Zeeman shift. We excite the quantum
dot with a narrowband tunable laser to optically pump the spin
state38,39. We first tune the optical pumping laser to transition σ4
to prepare the quantum dot in the spin-up state. The blue circles
in Fig. 2b show the cross-polarized reflection spectrum with the
optical pumping laser, which exhibits a vacuum Rabi splitting.
When we turn off the pumping laser, we observe a reduced contrast
due to random spin fluctuations (red diamonds). Co-polarized
measurements show the expected complementary behaviour
(Supplementary Section 4). In contrast, when we optically pump
transition σ2 to initialize the quantum dot to the spin-down state,
we observe a spectrum that closely resembles a bare cavity
(Fig. 2c). This spin-dependent reflection spectrum is one of the
essential properties of the phase switch. We note that we were not
able to perform a co-polarized measurement when optically
pumping transition σ2 because the pump laser is too close to the
probe and generates large background.

We numerically fit the measured spectra to a theoretical model
(blue solid line; see Supplementary Section 3). From the fit to
Fig. 2b we determine the coupling strength between σ1 and the
cavity to be g1/2π = 10.2 ± 0.1 GHz, and the dipole decay rate of
σ1 to be γ1/2π = 2.9 ± 0.4 GHz, corresponding to a cooperativity of
C = 2.00 ± 0.28. This cooperativity is sufficiently large to enable
quantum phase switch operation, but is lower than the value
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Figure 1 | Device and experimental set-up. a, Energy level structure of a negatively charged quantum dot under a magnetic field. The level structure is
composed of two spin ground states and two excited trion states, with four allowed optical transitions labelled σ1 to σ4. The spin ground states and trion states
are split by Δe and Δh, respectively, due to the Zeeman effect. The vertical and cross transitions couple to orthogonal linear polarizations of light, denoted V and
H, respectively. b, Scanning electron microscope image of the fabricated device. c, Measurement set-up. OL, objective lens; QWP, quarter wave plate;
P, polarizer; BS, beam splitter; M, mirror; SMF, single mode fibre; CCD, charged-coupled device; c.w., continuous wave.
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Figure 2: Low-lying states of a system 6× 5 lattice system described by the Hamiltonian Eq. (3) and an impurity of
the form (a) Uni and (b) Uni(ni − 1). The system is much more stable in part (b).

Figure 3: Values of ∆i/∆0 for small Uimp, (Uimp = 0.01U0) plotted as a function of (a) nimp and (b) α. The fact
that the data in (a) follows the linear relation Eq. (30) shows that the wave function is essentially uniform. Note the
lack of clear linear relationship (b) when the data is plotted as a function of α (compare with Fig. 4).

In Fig. 2, we have plotted the low-lying spectrum of a ν = 1
2 liquid as a function of impurity strength for two types

of impurities. First, we consider the standard example of a perturbation of the form

Hint = V ni, (26)

the effects of which are shown in Fig. 2a. For both positive and negative µ0, there is a lifting of the ground state
degeneracy as well as a reduction in the gap. The effect of an “interaction impurity” of the form Eq. (24) is shown
in Fig. 2b. We note that the system is robust to the presence of even strong disorder, which bodes well for photonic
realizations of the FQHE. In part, this behavior arises, in part, because ni(ni − 1) ≪ ni for these simulation. But
(a) and (b) differ because of the differences between single-body and many-body correlations in the quantum liquid.
In particular, the behavior of an interaction impurity acts asymmetrically: a strongly repulsive impurity does not
appear to affect the liquid. In contrast, for sufficiently strong attractive interactions, the liquid is destroyed. As we
will see, this occurs when particles and quasiparticles become localized near the defect.
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Figure 4: Values of ∆i/∆0 forUimp = −U0 plotted as a function of (a) nimp and (b) α. The lack of a clear linear
relationship in (a) shows that the wave function of the excited state is not uniform. The linearity of the data in (b)
when plotted as a function of α indicates that that wave function is localized around the impurity/impurities.

3.1 Perturbative Regime

We begin by considering the regime in which Uimp ≪ U0 ≪ !ω which ensures that ∆i ≪ ∆0. Furthermore, all the
states remain uniform in the weak impurity limit. In all simulations, we work in the limit

nimp ≪ ℓ−2
B . (27)

The lowest states in the spectrum all belong to the first Landau level and the gap ∆0 between the ground states and
the first excited state |e⟩ arises exclusively from the interaction term Uint. Thus, we may write

∆0 = ⟨e|Hint|e⟩. (28)

Since |e⟩ is uniform, to first order in perturbation theory we have

∆i

∆0
= a2nimp

Uimp

U0
(29)

where nimp is the impurity density. Simulations are shown in Figs. 3(a)-(b). The least squares fit shown in (a) is
given by

∆i/∆0 = 1.5× 10−3 + 9.3× 10−3nimp. (30)

This is in good agreement with Eq. (29) since Uimp/U0 = 0.01 for the simulations shown.

3.2 Non-Perturbative Regime

In order to understand the stability of the Laughlin states, it is necessary to go beyond the perturbative regime
considered in the previous section. For sufficiently large Uimp, the excited state becomes strongly localized in a
region around the impurity. Based on the plasma analogy, we might expect that for moderate Uimp the particle
density is localized to an area of πℓ2 around the defect. If we assume that the correlations in this region are uniform,
then the ratio of ∆i/∆0 should be given by the fraction of the wave function which covers the impurity, given by
a2/πℓ2 = 2πα. For multiple impurities of equal strength, the wave function would be localized around each impurity.
Thus, we would find

∆i

∆0
∝ a2

ℓ2
Uimp

U0
. (31)

In Fig. 4b, we have plotted ∆i/∆0 as a function of α. Indeed, we find that the data follows a linear relationship
when plotted as a function of α. However, in Fig. 4a there is not a clear relationship between ∆i/∆0 showing that
the wave function is non-uniform.
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Fig. 1. (a) Schematic of a 2D lattice of coupled ring resonators implementing the integer
quantum-Hall model. Site resonators (black) are coupled using link resonators (grey). The
lattice is coupled to input and output waveguides. Edge states transport is confined along
the lattice boundary whereas the bulk states follow different paths through the bulk of the
lattice. A time-bin entangled photon pair is coupled to the lattice at input and the output
temporal correlations are examined. An example single photon temporal wavefunction and
the two-photon correlation function is shown at the input and the output. (b) A vertical
shift of link resonator introduces direction dependent hopping phase and hence synthetic
magnetic field for photons. Photons hopping along right experience a longer path and hence
an extra phase compared to photons hopping along left. (c) Single-photon transmission
spectrum (solid red line) for a pure 8×8 lattice. CW, CCW Edge and bulk bands are shaded
in green, red and blue, respectively. In this paper, we use the input/output coupling rate to
be same as the coupling rate J between site resonators.

whereω0 is the ring resonance frequency, J is the coupling rate between neighboring lattice sites
and φ is the synthetic magnetic flux threading a single plaquette. â†x,y and âx,y are the photon
creation and annihilation operators, respectively, at the lattice site (x,y). We have specifically
chosen the Landau gauge where the magnetic phase is associated only with hopping along
x-direction and it is a linear function of the row index y. For simplicity, we choose ω0 = 0.
Moreover, to elucidate the topological protection of edge states against disorder, we neglect
the effect of loss in the resonators which can lead to decoherence of the entangled state, in
addition to disorder. Also, in experimental realization of this system, the effect loss is very
small compared to that of disorder [4, 20].
Figure 1(c) shows the simulated single-photon transmission spectrum for a 8×8 lattice, with

a magnetic flux φ = 2π
4 per plaquette. The transmission spectrum is divided into bulk bands

separated by edge bands [24]. The edge bands (shaded in green and red) are associated with
topologically non-trivial edge states circulating clockwise (CW) and counterclockwise (CCW)
along the system boundary. On the other hand, states in the bulk band (shaded in blue) occupy
the bulk of the lattice [3, 4].
At the input of this lattice, we couple a time-bin entangled two-photon state of the form

|ψ⟩ =
∫ ∞
−∞

∫ ∞
−∞ dt1dt2ψ(t1, t2; te, tl)â†(t1)â†(t2) |0⟩ ,where(te) and (tl) correspond to the early

and late time bins in which the photons could arrive and â†(t) is the photon creation
operator at time t. ψ(t1, t2; te, tl) is the two-photon temporal wavefunction and is symmetric
under exchange of photons. Note that both the photons are centered around the same carrier
frequency and have same polarization, in the plane of ring resonators. Here, we consider
the maximally entangled states - the Bell states. For example, the Ψ+ state is written as
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