A Comparison of AMR and SPH codes for Galaxy Formation Simulations

Brian O'Shea
University of California San Diego

Collaborators: Ken Nagamine (CfA), Mike Norman (UCSD),

Lars Hernquist (CfA), Volker Springel (MPA)

Goal: To study the chemical evolution of the universe from z=30 –5

Codes:

Enzo: Eularian hydrodynamical adaptive Mesh Refinement (AMR)/N-body code (Norman & Bryan 1998)

GADGET: Lagrangian Smooth Particle Hydrodynamics (SPH)/ N-body code (Springel et al. 2001)

Code comparison:

- Dark matter / adiabatic hydro comparison
- Radiative cooling
- Star formation and feedback

Dark Matter-Only Comparison

Dark Matter Mass Function

Best results found for 64³ dm particles/128³ grid cells (AMR) for comparable resolution (due to PM algorithm)

Mean Separation of DM Halo Peak Densities

Baryon Distribution Functions

Gas Mass Fraction

Conclusions

- Initial results are better than we had expected
- To obtain comparable results the AMR mesh size must be twice the number of particles
- Quite a bit of work remains to be done detailed comparisons
- Continued agreement with more physics will lend confidence to predictions made with either code