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Topological insulators and superconductors

Topological insulator is

I A material with a band gap in the bulk
(and a certain discrete symmetry)

I It has protected zero energy states at the edge

I Number of these states is a topological invariant Q[H(k)],
an integer which does not change under small perturbations.



Classification

Three discrete symmetries (Altland&Zirnbauer):
T : H(k) = UT H

∗(−k)U†T , P : H(k) = −UPH∗(−k)U†P ,
C : H(k) = −UCH(k)U†C ,

give 10 symmetry classes and a lot of topological insulators (Kitaev):

Symmetry d
class 1 2 3 4 5 6 7 8

A Z Z Z Z
AIII Z Z Z Z
AI Z Z2 Z2 Z
BDI Z Z Z2 Z2

D Z2 Z Z Z2

DIII Z2 Z2 Z Z
AII Z2 Z2 Z Z
CII Z Z2 Z2 Z
C Z Z2 Z2 Z
CI Z Z2 Z2 Z
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Scattering matrix

(
ψL

ψR

)
out

= S

(
ψL

ψR

)
in

I Describes scattering of free particles from the system at the
Fermi level.

I Is also constrained by symmetry.

I Easy to tell an insulator from a conductor.

What about Q(S)?



Simple case: Majorana fermions (1D superconductor)

Reflection matrix r has
Current conservation:

rr † = 1⇒ | det r | = 1
Particle-hole symmetry:

r =

(
ree rhe
reh rhh

)
=

(
ree rhe
r∗he r∗ee

)
⇒ Im det r = 0

Together:
det r = ±1



Simple case: Majorana fermions (1D superconductor)

det r = −1⇒ det(r − 1) = 0 ⇔ bound state at zero energy.
⇒ Superconductor is in topologically nontrivial phase.



Scattering invariant

Q = sign det r

Phase transition is accompanied by a single fully transmitted mode.
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Other TI’s in 1D

Idea:

1. Find all disconnected groups of fully reflecting r ’s.

2. Find what distinguishes them.

3. Check that this quantity is indeed Q(r).

It works!

Symmetry D DIII AIII BDI CII

Q(r) sign det r sign Pf r ν(r) ν(r) ν(r)
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Question

What about higher dimensions?



Higher dimensions: QHE

I Not insulating due to edge states?

Solution: roll it up.

I No difference from 1D?
Solution: thread flux, quantized charge pumping appears.

I Charge pumping is a winding number of det r(Φ)!
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Dimensional reduction

1. Start from d-dimensional Hd(kd).

2. Close d − 1 dimensions with twisted boundary conditions.

3. Calculate r(kd−1).

4. Classify topologically disconnected families of r(k).

Q: Isn’t that a lot of work?
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Dimensional reduction II

Idea: reduce problem to a known one.

With chiral symmetry C, r(k) = r †(k), so define

Hd−1(k) = r(k)

Without chiral symmetry define

Hd−1(k) =

(
0 r(k)

r †(k) 0

)
This Hd−1(k) has the same topology as r(k),
(Symmetry of Hd−1 is shifted according to the Kitaev’s periodic table.)



Dimensional reduction II

Idea: reduce problem to a known one.
With chiral symmetry C, r(k) = r †(k), so define

Hd−1(k) = r(k)

Without chiral symmetry define

Hd−1(k) =

(
0 r(k)

r †(k) 0

)
This Hd−1(k) has the same topology as r(k),
(Symmetry of Hd−1 is shifted according to the Kitaev’s periodic table.)



Dimensional reduction II

Idea: reduce problem to a known one.
With chiral symmetry C, r(k) = r †(k), so define

Hd−1(k) = r(k)

Without chiral symmetry define

Hd−1(k) =

(
0 r(k)

r †(k) 0

)

This Hd−1(k) has the same topology as r(k),
(Symmetry of Hd−1 is shifted according to the Kitaev’s periodic table.)



Dimensional reduction II

Idea: reduce problem to a known one.
With chiral symmetry C, r(k) = r †(k), so define

Hd−1(k) = r(k)

Without chiral symmetry define

Hd−1(k) =

(
0 r(k)

r †(k) 0

)
This Hd−1(k) has the same topology as r(k),
(Symmetry of Hd−1 is shifted according to the Kitaev’s periodic table.)



Algorithm for Q(S)

1. Start from d-dimensional Hd(kd).

2. Close d − 1 dimensions with twisted boundary conditions.

3. Calculate r(kd−1) and Hd−1(k).

4. Finally, look up the expression for Q(Hd−1).



Applications I: 1D

1. Half-integer conductance quantization in a topological QPC

2. Quantized transmission and shot noise at the phase transition.

3. RMT of topological superconductors:
In N-channel dot 〈GN〉trivial 6= 〈GN〉nontrivial
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Applications II: QHE

Quantized conductance peaks in a mesoscopic phase transition.



Applications III: uses for Q

1. High numerical efficiency:
systems of 2000× 2000 vs 60× 60 in 2D
and of 50× 50× 50 vs 12× 12× 12 in 3D

2. A new tool to study phase transitions with disorder.
Conductance scaling in disordered QHE:

σ = σ0 + C1(µ− µ0)2L−2/ν .
Topological invariant scaling:

Q = 1/2 + C2(µ− µ0)L−1/ν .



Summary

I Topological invariant can be calculated from r(k).

I Scattering approach provides a universal framework
for studying signatures of topology in transport.



Summary

Thank you all.
The end.


