

Topomat11:Topological Insulators & Superconductors, Nov.3, 2011

Quantized Berry Phases for Characterization of Short-Range Entangled States in d-Dimensions

Institute of Physics & TIMS, Univ. Tsukuba Kavli Institute for Theoretical Physics, UCSB Yasuhiro Hatsugai

YH & I. Maruyama, EPL 95, 20003 (2011), arXiv:1009.3792 I. Maruyama, S. Tanaya, M.Arikawa & YH. , arXiv:1103.1226

Topomat11:Topological Insulators & Superconductors, Nov.3, 2011

Collaborators

I. Maruyama, Osaka Univ. H. Katsura, Gakushuin Univ. (Univ. Tokyo) T. Hirano, (Univ.Tokyo) M. Arikawa, (Univ. of Tsukuba) S. Tanaya, Univ. of Tsukuba

<u>Plan</u>

- Short range entanglement, symmetry & quantization
 - * Adiabatic principle with symmetry
 - ☆ Gauge freedom for entangled state
- Two types of topological invariants for "order parameters"
 Chern numbers in even dimensions
 - Quantized Berry phases in odd dimensions
 - ☆ Examples in 1D, 2D, 3D and ...
 - x Integer spin chains with dimerization
 - Random hopping models
 - ☆ Orthogonal dimers in 2D
 - Generalized dimers in Kagome, Pyrochlore ...
 : d-Dim. fermions with frustration

- Short range entanglement, symmetry & quantization
 Adiabatic principle with symmetry
 Gauge freedom for entangled state
- Two types of topological invariants
 Chern numbers in even dimensions
- ☆ Examples in 1D, 2D, 3D and ...
 - * Integer spin chains with dimerization
 - Random hopping models
 - ☆ Orthogonal dimers in 2D
 - Generalized dimers in Kagome, Pyrochlore ...
 : d-Dim. fermions with frustration

Second Se

- ☆ No symmetry breaking
- × No low energy excitations (Nambu-Goldstone)

Gapped quantum (spin) liquids

☆ No symmetry breaking

Topological order !?

× No low energy excitations (Nambu-Goldstone)

- Gapped quantum (spin) liquids
 - ☆ No symmetry breaking

Topological order !?

- × No low energy excitations (Nambu-Goldstone)
- Topological characterization for gapped system
 - Example: Adiabatic principle: a lesson from the QHEflux attachment (Jain)
 - Adiabatic heuristic argument (Wilczek)

- Gapped quantum (spin) liquids
 - ☆ No symmetry breaking
 - × No low energy excitations (Nambu-Goldstone)
- ***** Topological characterization for gapped system
 - Example: Adiabatic principle: a lesson from the second seco

Topological order !?

Adiabatic heuristic argument (Wilczek)

Collect gapped phases and classify into several classes by adiabatic continuation

- Gapped quantum (spin) liquids
 - ☆ No symmetry breaking
 - × No low energy excitations (Nambu-Goldstone)
- ***** Topological characterization for gapped system
 - Example: Adiabatic principle: a lesson from the second seco

Topological order !?

- Adiabatic heuristic argument (Wilczek)
- Collect gapped phases and classify into several classes by adiabatic continuation
- *Label of the Class : Adiabatic invariant (topological number)

topologically single phase (too simple ?)

topologically single phase (too simple ?)

With some symmetry A

YH, '06 Chen-Gu-Wen, '10 Pollmann et al., '10

topologically single phase (too simple ?)

With some symmetry A, B

YH, '06 Chen-Gu-Wen, '10 Pollmann et al., '10

topologically single phase (too simple ?)

With some symmetry A, B, C

YH, '06 Chen-Gu-Wen, '10 Pollmann et al., '10

topologically single phase (too simple ?)

With some symmetry A, B, C

Multiple phases with SYMMETRIES YH, '06 Chen-Gu-Wen, '10 Pollmann et al., '10

topologically single phase (too simple ?)

With some symmetry A, B, C

Multiple phases with SYMMETRIESYH, '06Chen-Gu-Wen, '10
Pollmann et al., '10Many body"Time-reversal*"Many body"Particle-hole* (Chiral symmetry)
Inversion
 Z_Q : $1 \rightarrow 2, 2 \rightarrow 3, \cdots, Q \rightarrow 1$

Symmetry in physics

Text book Labeling of quantum states ☆Conservation law [H,G] = 0

$$t_{2g} e_g \ldots$$

We are now using it as _ Symmetry protection of adiabatic process ☆Chiral symmetry ☆Particle-Hole symmetry *ime-reversal symmetry inversion symmetry* $\approx Z_Q$ symmetry: S_Q reduced into Z_Q with gauge twists

Symmetry in physics

 $t_{2q} e_g$

_Text book Labeling of quantum states ☆Conservation law [H, G] = 0

We are now using it as _ Symmetry protection of adiabatic process ☆Chiral symmetry ☆Particle-Hole symmetry *ime-reversal symmetry inversion symmetry* $\approx Z_Q$ symmetry: S_Q reduced into Z_Q with gauge twists

Adiabatic deformation ! gap remains open

Something complicated but gapped

Adiabatic deformation ! gap remains open

Something complicated but gapped

Adiabatic deformation ! gap remains open

Something complicated but gapped

Adiabatic deformation ! gap remains open

Something complicated but gapped

many-body gap

Adiabatic deformation ! gap remains open

Something complicated but gapped

many-body gap

Adiabatic deformation ! gap remains open

Something complicated but gapped

many-body gap

Adiabatic deformation ! gap remains open

Adiabatic deformation ! Decoupled ! gap remains open

How to characterize local object ? Consider a gauge transform at some site

How to characterize local object ? Consider a gauge transform at some site Z $|\psi(\theta)\rangle = U(\theta)|\psi(0)\rangle$ $U(\theta) = e^{i(S-S_z)\theta}$ X

How to characterize local object ? Consider a gauge transform at some site Z $|\psi(\theta)\rangle = U(\theta)|\psi(0)\rangle$ $U(\theta) = e^{i(S - S_z)\theta}$

If decoupled, the twist by the transformation is gauged away !

$$|\psi(\theta)\rangle = U(\theta)|\psi(0)\rangle$$

 $U(\theta) = e^{i(S-S_z)\theta}$

If decoupled, the twist by the transformation is gauged away !

$$|\psi(\theta)\rangle = U(\theta)|\psi(0)\rangle$$

 $U(\theta) = e^{i(S-S_z)\theta}$

If decoupled, the twist by the transformation is gauged away !

$$|\psi(\theta)\rangle = U(\theta)|\psi(0)\rangle$$

 $U(\theta) = e^{i(S-S_z)\theta}$

It characterizes locality of the quantum object !

How to characterize local object ?

If decoupled, the twist by the transformation is gauged away !

$$\psi(\theta)\rangle = U(\theta)|\psi(0)\rangle$$

 $U(\theta) = e^{i(S-S_z)\theta}$

It characterizes locality of the quantum object !

- Question ?

How to see this locality by skipping the adiabatic deformation ?

How to characterize local object ?

If decoupled, the twist by the transformation is gauged away !

$$|\psi(\theta)\rangle = U(\theta)|\psi(0)\rangle$$

 $U(\theta) = e^{i(S-S_z)\theta}$

It characterizes locality of the quantum object !

Answer !

Calculate a topological invariant as an adiabatic invariant

Short range entanglement, symmetry & quantization
 Adiabatic principle with symmetry
 Gauge freedom for entangled state

Two types of topological invariants as "order parameters"
 Chern numbers in even dimensions
 Quantized Berry phases in odd dimensions

☆ Examples in 1D, 2D, 3D and ... (dim. of parameter space)

* Integer spin chains with dimerization

- Random hopping models
- ☆ Orthogonal dimers in 2D

☆ Generalized dimers in Kagome, Pyrochlore ...
: d-Dim. fermions with frustration

Quantization for topological phases

 $\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, , \cdots\}$ Topological $\mathbb{Z}_Q = \{1, 2, \cdots, Q \pmod{Q}\} \quad Q \in \mathbb{Z}$ 22 $A = \langle \psi | d\psi \rangle$ $F = dA + A^2$ Quantization $H|\psi\rangle = E|\psi\rangle$ Parameter dependent hamiltonian -> Berry connection mail: for the second seco Chern numbers: 1st, 2nd, 3rd,.... **Z** $C_1 = -\frac{1}{2\pi i} \int_{M^2} F$ QHE Symmetry protected quantization •Berry phases & generalization: $\gamma_1 = -\frac{1}{2\pi i} \int_{M_1} A$ Quantum spin chains,

Spin-QHE ...

$$\begin{array}{c} \mbox{Topological quantities : Berry connection} \\ \mbox{collect M states gapped from the else} \\ \Psi = (|\psi_1\rangle, \cdots, |\psi_M\rangle) \quad \langle\psi_j|\psi_k\rangle = \delta_{jk} \quad \Psi^{\dagger}\Psi = E_M \\ \mbox{Berry connection \& gauge transformation} \\ A_g = \Psi_g^{\dagger} d\Psi_g = g^{-1}Ag + g^{-1}dg \quad F_g = dA_g + A_g^2 = g^{-1}Fg \\ \Psi_g = \Psi g \quad g \in U(M) \quad g \in Sp(M) \text{ with Kramers deg.} \\ \mbox{Chern numbers : intrinsically quantized} \\ C_1 = -\frac{1}{2\pi i} \int_{S^2} {\rm Tr}F, \quad C_2 = -\frac{1}{8\pi^2} \int_{S^4} {\rm Tr}F^2, \cdots \\ \gamma_1 = -\frac{1}{2\pi i} \int_{S^1} \omega_1, \quad \gamma_3 = -\frac{1}{8\pi^2} \int_{S^3} \omega_3, \cdots \\ \mbox{Cauge dependent : } \omega_1 = {\rm Tr}A, \quad \omega_3 = {\rm Tr}(AdA + \frac{2}{3}A^3), \cdots \\ \mbox{Y}_1 \equiv \gamma_1^g, \ (\text{mod 1})_{\text{YH '06}} \quad \gamma_3 \equiv \gamma_3^g, \ (\text{mod 1}) \\ \mbox{Qi-Hughes-Zhang '08} \\ \mbox{YH '09} \\ \mbox{Some constraint } \longrightarrow \\ \end{tabular}$$

Example: Heisenberg model with local twist

Define a many body hamiltonian by local twist as a periodic parameter

Calculate the Berry phases using the many spin wave function

$$i\gamma_C = \int_C A = \int_0^{2\pi} \langle \psi | \frac{\partial \psi}{\partial \theta} \rangle \, d\theta = \pi, 0$$

Z₂ Berry phase

Topological order parameter YH, J. Phys. Soc. Jpn. 75, 123601, '06

Symmetry in physics

Symmetry in physics

Symmetry in physics

$$egin{aligned} \mathsf{Z}_2 & \gamma \equiv 0, \pi \ \mathsf{Z}_\mathbf{Q} & \gamma \equiv 2\pi rac{k}{Q} & k=0,1,2,\cdots,Q-1 \end{aligned}$$

Gauge transformation & Berry phase

If gauged away, the Berry phase is trivially obtained

Gauge transformation & Berry phase If gauged away, the Berry phase is trivially obtained

Gauge transformation & Berry phase If gauged away, the Berry phase is trivially obtained $|\psi(\theta)\rangle = U(\theta)|\psi(0)\rangle$ $U(\theta) = e^{i(S - S_z)\theta}$ $A = \langle \psi | d\psi \rangle = S d\theta$ $\gamma = 2\pi S$ S = 1/2Spins $\gamma = 2\pi S = \pi$ S = (odd integer)/2 Z_2

Hirano-Katsura-YH, Phys. Rev. B 78, 054431 (2008)

Quantized Berry phases for short range entangled states

Quantized Berry phases for short range entangled states

- Short range entanglement, symmetry & quantization
 Adiabatic principle with symmetry
 Gauge freedom for entangled state
- Two types of topological invariants
 Chern numbers in even dimensions
 Quantized Berry phases in odd dimensions
- Examples in 1D, 2D, 3D and ...
 - Integer spin chains with dimerization
 - Random hopping models
 - Orthogonal dimers in 2D
 - Generalized dimers in Kagome, Pyrochlore ...
 : d-Dim. fermions with frustration

1D S=1/2 chains with dimerization $H = \sum J_i \boldsymbol{S}_i \cdot \boldsymbol{S}_{i+1}$ Y.H., J. Phys. Soc. Jpn. 75 123601 (2006) $\langle i \rangle$ $J'_A > J_A \quad J'_A \quad J_A \quad J'_A \quad J_A \quad J'_A \quad J'_A \quad J'_A$ **AF-AF** case π 0 π Strong bonds AF-AF : π bonds $J'_A < J_A \quad J'_A \quad J_A \quad J'_A \quad J_A \quad J'_A \quad J_A$ π π π **F-AF** case $|J_F| \gtrless J_A \qquad J_F \qquad J_A$ Ferro-AF J_{A} AF bonds bonds Hida

Heisenberg Spin Chains with integer S

Y.H., J. Phys. Soc. Jpn. 75 123601 (2006)

Characterize the Quantum Phase Transition

S=1,2 dimerized Heisenberg model

Sequential transitions among gapped phases

S=1,2 dimerized Heisenberg model

Reconstruction of valence bonds!

S=2 Heisenberg model with D term

T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431'08

$$H = \sum_{i}^{N} \left[J \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1} + D \left(S_{i}^{z} \right)^{2} \right]$$

Red line :Berry phase π

Reconstruction of valence bonds!

Generic AKLT (VBS) models

T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431'08

Twist the link of the generic AKLT model

$$H(\{\phi_{i,i+1}\}) = \sum_{i=1}^{N} \sum_{J=B_{i,i+1}+1}^{2B_{i,i+1}} A_{J} P_{i,i+1}^{J} [\phi_{i,i+1}]$$

$$|\{\phi_{i,j}\}\rangle = \prod_{\langle ij \rangle} \left(e^{i\phi_{ij}/2} a_{i}^{\dagger} b_{j}^{\dagger} - e^{-i\phi_{ij}/2} b_{i}^{\dagger} a_{j}^{\dagger} \right)^{B_{ij}} |\text{vac}\rangle$$

$$\frac{\text{Berry phase on a link (ij)}}{\gamma_{ij} = B_{ij}\pi \mod 2\pi} \qquad S=1/2$$

The Berry phase counts the number of the valence bonds!

S=1/2 objects are fundamental in integer spin chains

Random hopping model on bipartite lattice

$$H = \sum_{\langle ij \rangle} t_{ij} c_i^{\dagger} c_i + h.c. + V_{ij} n_i n_j$$

P.H. symmetry in many body

Half-filled many body state

Chiral symmetry in one particle part

t'/t=0.6

$$V_{ij} = \gamma_C = \gamma$$

Y.H., J. Phys. Soc. Jpn. 75 123601 (2006)

Random hopping model on bipartite lattice

$$H = \sum_{\langle ij \rangle} t_{ij} c_i^{\dagger} c_i + h.c. + V_{ij} n_i n_j$$

P.H. symmetry in many body

Half-filled many body state

Chiral symmetry in one particle part

t'/t=0.7
we phase Transition local) Gap Closing
$$V_{ij} = 0$$

$$V_{ij} = 0$$

Quantum Phase Tra with (local) Gap C

Y.H., J. Phys. Soc. Jpn. 75 123601 (2006)

Orthogonal dimers

🛱 discovery

- H. Kageyama et al. , Phys. Rev. Lett. 82, 3168 (1999)
- Theory: spin gap & magnetic plateaus
- B. S. Shastry and B. Sutherland, Physica, 108B, 1069 (1981).

Sr $Cu_2(BO_3)_2$

 $H = J \sum_{\langle ij \rangle} oldsymbol{S}_i \cdot oldsymbol{S}_j + J' \sum_{\langle ij
angle} oldsymbol{S}_i \cdot oldsymbol{S}_j$

S. Miyahara & K. Ueda , Phys. Rev. Lett. 82, 3701 (1999) T. Momoi and K. Totsuka, Phys. Rev. B 61, 3231 (2000)

Gapped to gapped transition

Dimer phase

Plaquette singlet phase

Orthogonal dimers

Dimer phase

Orthogonal dimers

plaquette singlet phase

Gauge transform only at •

$$U(\theta) = e^{i(S - \hat{S}_z)\theta}$$

It can be gauged out if decoupled

I. Maruyama, S. Tanaya, M.Arikawa & YH. , arXiv:1103.1226

Ĥ

I. Maruyama, S. Tanaya, M.Arikawa & YH. , arXiv:1103.1226

Fermions with frustrated lattice

Generalized to Z_Q (Q=d+1) Z_Q Berry phases Series of fermionic models in d-dimensions Minimum model with frustration

Y. Hatsugai & I. Maruyama, EPL 95, 20003 (2011), arXiv:1009.3792

Fermions with frustrated lattice

Generalized to Z_Q (Q=d+1) Z_Q Berry phases Series of fermionic models in d-dimensions Minimum model with frustration

Y. Hatsugai & I. Maruyama, EPL 95, 20003 (2011), arXiv:1009.3792

Fermionic Hamiltonian with "dimerization"

One may include interaction if the energy gap remains open d-D generic pyrochlore as well

Fermionic Hamiltonian with "dimerization"

One may include interaction if the energy gap remains open d-D generic pyrochlore as well

Dirac fermions + flat bands with d-1 fold degeneracy

 $\gamma \equiv 2\pi \frac{n}{Q}, \ \mathrm{mod}\, 2\pi, \ n \in \mathbb{Z}$

Z_Q quantization

Other systems applied

Spin ladders with ring exchange

I. Maruyama, T. Hirano, and Y. H., Phys. Rev. B 79, 115107 (2009) M. Arikawa, S. Tanaya, I. Maruyama, Y. H., Phys. Rev. B 79, 205107 (2009)

BEC-BCS crossover at half filling

M. Arikawa, I. Maruyama, and Y. H., Phys. Rev. B 82, 073105 (2010)

Topomat11:Topological Insulators & Superconductors, Nov.3, 2011

Topology is useful to classify short range entangled states with symmetry

Topomat11:Topological Insulators & Superconductors, Nov.3, 2011

Topology is useful to classify short range entangled states with symmetry

