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No symmetry breaking
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Topological characterization for gapped system
Example: Adiabatic principle: a lesson from the QHE

flux attachment (Jain)

Adiabatic heuristic argument (Wilczek)

Topological order !?

Collect gapped phases and classify into several classes
                                        by adiabatic continuation

Label of the Class : Adiabatic invariant (topological number)

Adiabatic heuristic (Wilczek)
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Characterization of short range entangled states
Generic short range entangled states

topologically single phase (too simple ?)

With some symmetry A, B, C

Multiple phases with SYMMETRIES
Time-reversal*
Particle-hole* (Chiral symmetry)
Inversion
ZQ : 1 ! 2, 2 ! 3, · · · , Q ! 1

“Many body”

 *Anti Unitary

Chen-Gu-Wen, ’10YH, ’06
Pollmann et al., ’10
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Short range entangled states

Ex.1) AKLT state

Ex.2) Collection of singlets

(1,1)

Something complicated
but gapped

many-body gap
small 

gapped integer spin chain
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Short range entangled states

Something very simple
& gapped

many-body gap

Adiabatic deformation !
gap remains open 

Decoupled !

big !



Short range entangled states
Adiabatic process to be decoupled: gap remains open 

Collection 
of 

local quantum objects

(My) def. of short range entangled state
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| (✓)i = U(✓)| (0)i
U(✓) = ei(S�Sz)✓

If decoupled, the twist by the transformation is gauged away !
z

x

y

It characterizes locality of the quantum object !

How to see this locality by skipping the adiabatic deformation ?

Question ?



How to characterize local object ?

| (✓)i = U(✓)| (0)i
U(✓) = ei(S�Sz)✓

If decoupled, the twist by the transformation is gauged away !
z

x

y

It characterizes locality of the quantum object !

Calculate a topological invariant as an adiabatic invariant

Answer !
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Topological

Quantization
⇡

Z = {· · · ,�2,�1, 0, 1, 2, , · · · }

...

Chern numbers:
Intrinsically quantized

 Quantum spin chains,
 Spin-QHE ...

Symmetry protected quantization
QHE ... 

Berry phases & generalization:

Quantization for topological phases

1st, 2nd, 3rd,....
Z

Z2

Parameter dependent hamiltonian        Berry connection
H| i = E| i

A = h |d i
F = dA+A2

�1 = � 1

2⇡i

Z

M1

A

C1 = � 1

2⇡i

Z

M2

F

 (without boundary)

ZQ = {1, 2, · · · , Q (mod Q)} Q 2 Z



Topological quantities : Berry connection

 = (| 1i, · · · , | M i)

 g =  g

 † = EMh j | ki = �jk

collect M states gapped from the else

Berry connection & gauge transformation

Ag =  †
gd g = g�1Ag + g�1dg

g 2 U(M)
Chern numbers

Fg = dAg +A2
g = g�1Fg

C1 = � 1

2⇡i

Z

S2

TrF, C2 = � 1

8⇡2

Z

S4

TrF 2, · · ·

Berry phases & generalizations

�1 = � 1

2⇡i

Z

S1

!1, �3 = � 1

8⇡2

Z

S3

!3, · · ·

Symmetry protected quantization

!1 = TrA, !3 = Tr (AdA+
2

3
A3), · · ·

: intrinsically quantized

g 2 Sp(M) with Kramers deg.

TrF = d�1 TrF 2 = d�3

Gauge dependent : 

�1 ⌘ �g
1 , (mod 1)

�3 ⌘ �g
3 , (mod 1)

Some constraint
YH ’09

Qi-Hughes-Zhang ’08
YH ’06

2n dim.

2n-1 dim.
any value



Example: Heisenberg model with local twist

H(x = ei�)

C = {x = ei�|� : 0� 2�}

Si · Sj �
1
2
(e�i�Si+Sj� + e+i�Si�Sj+) + SizSjz

Calculate the Berry phases  using the many spin wave function

Only link <ij>

Define a many body hamiltonian by local twist as a periodic parameter

i�C =

Z

C
A =

Z 2⇡

0
h |@ 

@✓
i d✓

H(✓)| (✓)i = E(✓)| (✓)i Lanczos diagonalization

Topological order parameter YH, J. Phys. Soc. Jpn. 75, 123601, ’06

= ⇡, 0
Time-reversal 

Z2 Berry phase

H0 =
X

hiji

JijSi · Sj
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Symmetry protection for Berry phases
Chiral symmetry
Particle-Hole symmetry
Time-reversal symmetry
Inversion symmetry
ZQ symmetry: SQ reduced into ZQ with gauge twist

k = 0, 1, 2, · · · , Q� 1ZQ

Z2

� ⌘ 2⇡
k

Q

� ⌘ 0,⇡

ZQ

Z2

Z2

Z2

Z2

Quantization
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Gauge transformation & Berry phase
If gauged away, the Berry  phase is trivially obtained 

z

x

y

| (✓)i = U(✓)| (0)i
U(✓) = ei(S�Sz)✓

A = h |d i = Sd✓

� = 2⇡S

S = 1/2� = 2⇡S = ⇡
S = (odd integer)/2

Spins
Z2

Fermions with filling ⇢ = P/Q, (P,Q) = 1

� = 2⇡⇢ = 2⇡
P

Q ZQ

Hirano-Katsura-YH, Phys. Rev. B 78, 054431 (2008) 



� = 2⇡S = ⇡Spins
Fermions with filling � = 2⇡⇢ = 2⇡

P

Q

Z2

ZQ

Symmetry protection

Quantized Berry phases for short range entangled states

i� =

Z
A



� = 2⇡S = ⇡Spins
Fermions with filling � = 2⇡⇢ = 2⇡

P

Q

Z2

ZQ

Symmetry protection

Quantized Berry phases for short range entangled states

Quantized even if 
it is complicated

(assuming the gap)

i� =

Z
A
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Strong bonds

:       bonds

AF bonds

:       bonds

1D S=1/2 chains with dimerization

AF-AF

Ferro-AF

AF-AF case

�

F-AF case

�Hida

Y.H., J. Phys. Soc. Jpn. 75  123601 (2006)
H =

X

hii

JiSi · Si+1

テキスト



S=1

H = J
�

�ij⇥

Si · Sj + D
�

i

(Sz
i )2

(Si)2 = S(S + 1), S = 1

D < DC

D > DC

Characterize the Quantum Phase Transition

Y.H., J. Phys. Soc. Jpn. 75  123601 (2006)

Heisenberg Spin Chains with integer S

Haldane phase

Large D phase



S=1,2 dimerized Heisenberg model

J1 = cos �, J2 = sin �

2

the Abelian Berry connection obtained by the single-
valued normalized ground state |GS(φ)〉 of H(φ) as
A(φ) = 〈GS(φ)|∂φ|GS(φ)〉. This Berry phase is real
and quantized to 0 or π (mod 2π) if the Hamiltonian
H(φ) is invariant under the anti-unitary operation Θ,
i.e. [H(φ),Θ] = 0 [3]. Note that the Berry phase is
undefined if the gap between the ground state and the
excited states vanishes while varying the parameter φ.
We use a local spin twist on a link as a generic param-
eter in the definition of the Berry phase [1]. Under this
local spin twist, the following term S+

i S−
j + S−

i S+
j in

the Hamiltonian is replaced with eiφS+
i S−

j + e−iφS−
i S+

j ,
where S±

i = Sx
i ±iSy

i . The Berry phase defined by the re-
sponse to the local spin twists extracts a local structure of
the quantum system. By this quantized Berry phase, one
can define a link-variable. Then each link has one of three
labels: “0-bond”, “π-bond”, or “undefined”. It has a re-
markable property that the Berry phase has topological
robustness against the small perturbations unless the en-
ergy gap between the ground state and the excited states
closes. In order to calculate the Berry phase numerically,
we introduce a gauge-invariant Berry phase[1, 33]. It is
defined by discretizing the parameter space of φ into N
points as

γN = −
N∑

n=1

argA(φn), (1)

where A(φn) is defined by A(φn) = 〈GS(φn)|GS(φn+1)〉
φN+1 = φ1. We simply expect γ = limN→∞ γN .

First we consider S = 1, 2 dimerized Heisenberg mod-
els

H =
N/2∑

i=1

(J1S2i · S2i+1 + J2S2i+1 · S2i+2) (2)

where Si is the spin-1 or 2 operators on the i-th site and
N is the total number of sites. The periodic boundary
condition is imposed as SN+i = Si for all of the models
in this paper. J1 and J2 are parametrized as J1 = sinθ
and J2 = cosθ, respectively. We consider the case of
0 < θ < π/2 in this paper. The ground state is composed
of an ensemble of N/2 singlet pairs in limits of θ → 0
and θ → π/2. The system is equivalent to the isotropic
antiferromagnetic Heisenberg chain at θ = π/4. Based
on the VBS picture, we expect a reconstruction of the
valence bonds by chainging θ.

Figure. 1(a) and (b) show the θ dependence of the
Berry phase on the link with J1 coupling and J2 cou-
pling with S = 1, N = 14 and S = 2, N = 10, respec-
tively. The region with the Berry phase π is shown by
the bold line. There are several quantum phase transi-
sions characterized by the Berry phase as the topologi-
cal order parameters. The boundary of the two regions
with different Berry phases 0 and π does not have a well-
defined Berry phase, since the energy gap closes during

 0  0.5  1  1.5  2

(b)

(c)

(4,0) (3,1) (2,2) (1,3) (0,4)

(a)
(2,0) (1,1) (0,2)

FIG. 1: The Berry phases on the local link of (a) the S = 1
periodic N = 14 and (b) the S = 2 periodic N = 10 dimer-
ized Heisenberg chains, and (c) the S = 2 periodic N = 10
Heisenberg chain with single-ion anisotropy. The Berry phase
is π on the bold line while that is 0 on the other line. We la-
bel the region of the dimerized Heisenberg chains using the
set of two numbers as (n, m). The phase boundaries in the
finite size system are θc1 = 0.531237, θc2 = 0.287453 and
θc3 = 0.609305, respectively. The Berry phase in (a) and (b)
has an inversion symmetry with respect to θ = π/4.

the change of the local twist parameter φ. Since the
Berry phase is undefined at the boundaries, there exists
the level crossing which implies the existence of the gap-
less excitation in the thermodynamic limit. This result is
consistent with the previously discussed results[28], that
the general integer-S extended string order parameters
changes as the dimerization changes. The phase diagram
defined by our topological order parameter is consistent
with the one by the non-local string order parameter. In
an N = 10 system with S = 2, the phase boundaries are
θc2 = 0.287453, θc3 = 0.609305, and it is consistent with
the results obtained by using the level spectroscopy which
is based on conformal field theory techniques[34]. Espe-
cially in the one dimensional case, the energy diagram of
the system with twisted link is proportional to that of
the system with twisted boundary conditions. However,
our analysis focus on the quantum property of the wave
functions rather than the energy diagram.

As for the S = 2 Heisenberg model with D-term, we
use the Hamiltonian

H =
N∑

i

[
JSi · Si+1 + D (Sz

i )2
]
. (3)

Figure. 1(c) shows the Berry phase of the local link in
the S = 2 Heisenberg model + D-term with N=10. The
parameter J = 1 in our calculations. The region of the
bold line has the Berry phase π and the other region
has the vanishing Berry phase. This result also makes
us possible to consider the Berry phase as a local order

2

the Abelian Berry connection obtained by the single-
valued normalized ground state |GS(φ)〉 of H(φ) as
A(φ) = 〈GS(φ)|∂φ|GS(φ)〉. This Berry phase is real
and quantized to 0 or π (mod 2π) if the Hamiltonian
H(φ) is invariant under the anti-unitary operation Θ,
i.e. [H(φ),Θ] = 0 [3]. Note that the Berry phase is
undefined if the gap between the ground state and the
excited states vanishes while varying the parameter φ.
We use a local spin twist on a link as a generic param-
eter in the definition of the Berry phase [1]. Under this
local spin twist, the following term S+

i S−
j + S−

i S+
j in

the Hamiltonian is replaced with eiφS+
i S−

j + e−iφS−
i S+

j ,
where S±

i = Sx
i ±iSy

i . The Berry phase defined by the re-
sponse to the local spin twists extracts a local structure of
the quantum system. By this quantized Berry phase, one
can define a link-variable. Then each link has one of three
labels: “0-bond”, “π-bond”, or “undefined”. It has a re-
markable property that the Berry phase has topological
robustness against the small perturbations unless the en-
ergy gap between the ground state and the excited states
closes. In order to calculate the Berry phase numerically,
we introduce a gauge-invariant Berry phase[1, 33]. It is
defined by discretizing the parameter space of φ into N
points as

γN = −
N∑

n=1

argA(φn), (1)

where A(φn) is defined by A(φn) = 〈GS(φn)|GS(φn+1)〉
φN+1 = φ1. We simply expect γ = limN→∞ γN .

First we consider S = 1, 2 dimerized Heisenberg mod-
els

H =
N/2∑

i=1

(J1S2i · S2i+1 + J2S2i+1 · S2i+2) (2)

where Si is the spin-1 or 2 operators on the i-th site and
N is the total number of sites. The periodic boundary
condition is imposed as SN+i = Si for all of the models
in this paper. J1 and J2 are parametrized as J1 = sinθ
and J2 = cosθ, respectively. We consider the case of
0 < θ < π/2 in this paper. The ground state is composed
of an ensemble of N/2 singlet pairs in limits of θ → 0
and θ → π/2. The system is equivalent to the isotropic
antiferromagnetic Heisenberg chain at θ = π/4. Based
on the VBS picture, we expect a reconstruction of the
valence bonds by chainging θ.

Figure. 1(a) and (b) show the θ dependence of the
Berry phase on the link with J1 coupling and J2 cou-
pling with S = 1, N = 14 and S = 2, N = 10, respec-
tively. The region with the Berry phase π is shown by
the bold line. There are several quantum phase transi-
sions characterized by the Berry phase as the topologi-
cal order parameters. The boundary of the two regions
with different Berry phases 0 and π does not have a well-
defined Berry phase, since the energy gap closes during

 0  0.5  1  1.5  2

(b)

(c)

(4,0) (3,1) (2,2) (1,3) (0,4)

(a)
(2,0) (1,1) (0,2)

FIG. 1: The Berry phases on the local link of (a) the S = 1
periodic N = 14 and (b) the S = 2 periodic N = 10 dimer-
ized Heisenberg chains, and (c) the S = 2 periodic N = 10
Heisenberg chain with single-ion anisotropy. The Berry phase
is π on the bold line while that is 0 on the other line. We la-
bel the region of the dimerized Heisenberg chains using the
set of two numbers as (n, m). The phase boundaries in the
finite size system are θc1 = 0.531237, θc2 = 0.287453 and
θc3 = 0.609305, respectively. The Berry phase in (a) and (b)
has an inversion symmetry with respect to θ = π/4.

the change of the local twist parameter φ. Since the
Berry phase is undefined at the boundaries, there exists
the level crossing which implies the existence of the gap-
less excitation in the thermodynamic limit. This result is
consistent with the previously discussed results[28], that
the general integer-S extended string order parameters
changes as the dimerization changes. The phase diagram
defined by our topological order parameter is consistent
with the one by the non-local string order parameter. In
an N = 10 system with S = 2, the phase boundaries are
θc2 = 0.287453, θc3 = 0.609305, and it is consistent with
the results obtained by using the level spectroscopy which
is based on conformal field theory techniques[34]. Espe-
cially in the one dimensional case, the energy diagram of
the system with twisted link is proportional to that of
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functions rather than the energy diagram.

As for the S = 2 Heisenberg model with D-term, we
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H =
N∑

i

[
JSi · Si+1 + D (Sz

i )2
]
. (3)

Figure. 1(c) shows the Berry phase of the local link in
the S = 2 Heisenberg model + D-term with N=10. The
parameter J = 1 in our calculations. The region of the
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has the vanishing Berry phase. This result also makes
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S = 2 N = 10S = 1 N = 14

Z2Berry phase

T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431’08

: dimerization strength : dimerization strength

S=1 & 2

Sequential  transitions among gapped phases

Red line :Berry phase ⇡
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the Abelian Berry connection obtained by the single-
valued normalized ground state |GS(φ)〉 of H(φ) as
A(φ) = 〈GS(φ)|∂φ|GS(φ)〉. This Berry phase is real
and quantized to 0 or π (mod 2π) if the Hamiltonian
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i.e. [H(φ),Θ] = 0 [3]. Note that the Berry phase is
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We use a local spin twist on a link as a generic param-
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j in

the Hamiltonian is replaced with eiφS+
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i . The Berry phase defined by the re-
sponse to the local spin twists extracts a local structure of
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robustness against the small perturbations unless the en-
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closes. In order to calculate the Berry phase numerically,
we introduce a gauge-invariant Berry phase[1, 33]. It is
defined by discretizing the parameter space of φ into N
points as

γN = −
N∑

n=1

argA(φn), (1)

where A(φn) is defined by A(φn) = 〈GS(φn)|GS(φn+1)〉
φN+1 = φ1. We simply expect γ = limN→∞ γN .

First we consider S = 1, 2 dimerized Heisenberg mod-
els

H =
N/2∑

i=1

(J1S2i · S2i+1 + J2S2i+1 · S2i+2) (2)

where Si is the spin-1 or 2 operators on the i-th site and
N is the total number of sites. The periodic boundary
condition is imposed as SN+i = Si for all of the models
in this paper. J1 and J2 are parametrized as J1 = sinθ
and J2 = cosθ, respectively. We consider the case of
0 < θ < π/2 in this paper. The ground state is composed
of an ensemble of N/2 singlet pairs in limits of θ → 0
and θ → π/2. The system is equivalent to the isotropic
antiferromagnetic Heisenberg chain at θ = π/4. Based
on the VBS picture, we expect a reconstruction of the
valence bonds by chainging θ.

Figure. 1(a) and (b) show the θ dependence of the
Berry phase on the link with J1 coupling and J2 cou-
pling with S = 1, N = 14 and S = 2, N = 10, respec-
tively. The region with the Berry phase π is shown by
the bold line. There are several quantum phase transi-
sions characterized by the Berry phase as the topologi-
cal order parameters. The boundary of the two regions
with different Berry phases 0 and π does not have a well-
defined Berry phase, since the energy gap closes during
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periodic N = 14 and (b) the S = 2 periodic N = 10 dimer-
ized Heisenberg chains, and (c) the S = 2 periodic N = 10
Heisenberg chain with single-ion anisotropy. The Berry phase
is π on the bold line while that is 0 on the other line. We la-
bel the region of the dimerized Heisenberg chains using the
set of two numbers as (n, m). The phase boundaries in the
finite size system are θc1 = 0.531237, θc2 = 0.287453 and
θc3 = 0.609305, respectively. The Berry phase in (a) and (b)
has an inversion symmetry with respect to θ = π/4.

the change of the local twist parameter φ. Since the
Berry phase is undefined at the boundaries, there exists
the level crossing which implies the existence of the gap-
less excitation in the thermodynamic limit. This result is
consistent with the previously discussed results[28], that
the general integer-S extended string order parameters
changes as the dimerization changes. The phase diagram
defined by our topological order parameter is consistent
with the one by the non-local string order parameter. In
an N = 10 system with S = 2, the phase boundaries are
θc2 = 0.287453, θc3 = 0.609305, and it is consistent with
the results obtained by using the level spectroscopy which
is based on conformal field theory techniques[34]. Espe-
cially in the one dimensional case, the energy diagram of
the system with twisted link is proportional to that of
the system with twisted boundary conditions. However,
our analysis focus on the quantum property of the wave
functions rather than the energy diagram.

As for the S = 2 Heisenberg model with D-term, we
use the Hamiltonian

H =
N∑

i

[
JSi · Si+1 + D (Sz

i )2
]
. (3)

Figure. 1(c) shows the Berry phase of the local link in
the S = 2 Heisenberg model + D-term with N=10. The
parameter J = 1 in our calculations. The region of the
bold line has the Berry phase π and the other region
has the vanishing Berry phase. This result also makes
us possible to consider the Berry phase as a local order
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consistent with the previously discussed results[28], that
the general integer-S extended string order parameters
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defined by our topological order parameter is consistent
with the one by the non-local string order parameter. In
an N = 10 system with S = 2, the phase boundaries are
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the results obtained by using the level spectroscopy which
is based on conformal field theory techniques[34]. Espe-
cially in the one dimensional case, the energy diagram of
the system with twisted link is proportional to that of
the system with twisted boundary conditions. However,
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functions rather than the energy diagram.
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the S = 2 Heisenberg model + D-term with N=10. The
parameter J = 1 in our calculations. The region of the
bold line has the Berry phase π and the other region
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where Si is the spin-1 or 2 operators on the i-th site and
N is the total number of sites. The periodic boundary
condition is imposed as SN+i = Si for all of the models
in this paper. J1 and J2 are parametrized as J1 = sinθ
and J2 = cosθ, respectively. We consider the case of
0 < θ < π/2 in this paper. The ground state is composed
of an ensemble of N/2 singlet pairs in limits of θ → 0
and θ → π/2. The system is equivalent to the isotropic
antiferromagnetic Heisenberg chain at θ = π/4. Based
on the VBS picture, we expect a reconstruction of the
valence bonds by chainging θ.

Figure. 1(a) and (b) show the θ dependence of the
Berry phase on the link with J1 coupling and J2 cou-
pling with S = 1, N = 14 and S = 2, N = 10, respec-
tively. The region with the Berry phase π is shown by
the bold line. There are several quantum phase transi-
sions characterized by the Berry phase as the topologi-
cal order parameters. The boundary of the two regions
with different Berry phases 0 and π does not have a well-
defined Berry phase, since the energy gap closes during
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the change of the local twist parameter φ. Since the
Berry phase is undefined at the boundaries, there exists
the level crossing which implies the existence of the gap-
less excitation in the thermodynamic limit. This result is
consistent with the previously discussed results[28], that
the general integer-S extended string order parameters
changes as the dimerization changes. The phase diagram
defined by our topological order parameter is consistent
with the one by the non-local string order parameter. In
an N = 10 system with S = 2, the phase boundaries are
θc2 = 0.287453, θc3 = 0.609305, and it is consistent with
the results obtained by using the level spectroscopy which
is based on conformal field theory techniques[34]. Espe-
cially in the one dimensional case, the energy diagram of
the system with twisted link is proportional to that of
the system with twisted boundary conditions. However,
our analysis focus on the quantum property of the wave
functions rather than the energy diagram.

As for the S = 2 Heisenberg model with D-term, we
use the Hamiltonian

H =
N∑

i

[
JSi · Si+1 + D (Sz

i )2
]
. (3)

Figure. 1(c) shows the Berry phase of the local link in
the S = 2 Heisenberg model + D-term with N=10. The
parameter J = 1 in our calculations. The region of the
bold line has the Berry phase π and the other region
has the vanishing Berry phase. This result also makes
us possible to consider the Berry phase as a local order
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parameter of the Haldane spin chains. Our numerical
results for finite size systems support the presence of the
intermediate D-phase [31].

Let us now interpret our numerical results in terms
of the VBS state picture. The VBS state is the exact
ground state of the Affleck-Kennedy-Lieb-Tasaki(AKLT)
model[35]. We shall calculate the Berry phase of the
generalized VBS state with the aid of the chiral AKLT
model[36] and its exact ground state wave function. The
chiral AKLT model is obtained by applying O(2) rotation
of spin operators in the original AKLT model. In our
calculation, it is convenient to introduce the Schwinger
boson representation of the spin operaors as S+

i = a†
i bi,

S−
i = aib

†
i , and Sz

i = (a†
iai − b†i bi)/2. ai and bi satisfy

the commutation relation [ai, a
†
j ] = [bi, b

†
j ] = δij with all

other commutators vanishing [37]. The constraint a†
iai +

b†i bi = 2S is imposed to reproduce the dimension of the
spin S Hilbert space at each site. In general, the ground
state of the chiral AKLT model having Bij valence bonds
on the link (ij) is written as

|{φi,j}〉 =
∏

〈ij〉

(
eiφij/2a†

i b
†
j − e−iφij/2b†ia

†
j

)Bij

|vac〉,(4)

[36]. This state has nonzero average of vector spin chiral-
ity 〈Si ×Sj · ẑ〉 unless the twist parameter φij = 0 or π.
This state is a zero-energy ground state of the following
Hamiltonian:

H({φi,i+1}) =
N∑

i=1

2Bi,i+1∑

J=Bi,i+1+1

AJP J
i,i+1[φi,i+1], (5)

where AJ is the arbitrary positive coefficient. P J
i,i+1[0]

is the polynomial in Si · Si+1 and act as a projection
operator projecting the bond spin J i,i+1 = Si + Si+1

onto the subspace of spin magnitude J . The replacement
S+

i S−
i+1 +S−

i S+
i+1 → eiφi,i+1S+

i S−
i+1 + e−iφi,i+1S−

i S+
i+1 in

Si · Si+1 produces P J
i,i+1[φi,i+1] in Eq. (5).

Now we shall explicitly show that the Berry phase of
the VBS state extracts the local number of the valence
bonds Bij as Bijπ(mod 2π). Let us now consider the
local twist of the parameters φij = φδij,12 and rewrite
the ground state |{φi,j}〉 as |φ〉. To calculate the Berry
phase of the VBS state, the following relation is useful:

iγ12 = iB12π + i

∫ 2π

0
Im[〈φ|∂φ|φ〉]/N (φ)dφ, (6)

where γ12 is the Berry phase of the bond (12) and
N (φ) = 〈φ|φ〉. Note that the first term of the right hand
side comes from the gauge fixing of the multi-valued wave
function to the single-valued function. Then, the only
thing to do is to evaluate the imaginary part of the con-
nection A(φ) = 〈φ|∂φ|φ〉.

Let us first consider the S = 1 VBS state as the sim-
plest example. In this case, Bi,i+1 = 1 for any bond and

the VBS state with a local twist is given by

|φ〉 =
(
eiφ/2a†

1b
†
2 − e−iφ/2b†1a

†
2

) N∏

i=2

(
a†

i b
†
i+1 − b†ia

†
i+1

)
|vac〉.

(7)
It is convenient to introduce the singlet creation operator
s† = (a†

1b
†
2 − b†1a

†
2) and the triplet (Jz = 0) creation

operator t† = (a†
1b

†
2 + b†1a

†
2). We can rewrite the bond

(12) part of the VBS state (eiφ/2a†
1b

†
2 − e−iφ/2b†1a

†
2)

as (cosφ
2 s† + isinφ

2 t†). Then ∂φ|φ〉 can be written
as ∂φ|φ〉 = (−1/2)sin(φ/2)|0〉 + (i/2)cos(φ/2)|1〉,
where |0〉 and |1〉 are s†

∏
(a†

i b
†
i+1 − b†ia

†
i+1)|vac〉 and

t†
∏

(a†
i b

†
i+1 − b†ia

†
i+1)|vac〉, respectively. It is now

obvious that the imaginary part of A(φ) vanishes
since the state |1〉 having a total spin Stotal = 1 is
orthogonal to the state |0〉 with Stotal = 0. Therefore,
the Berry phase of this state is given by γ12 = π.
Next we shall consider a more general situation with
arbitrary Bij . We can also express the VBS state
with a local twist on the bond (12) in terms of
s† and t† as |φ〉 = (cosφ

2 s† + isinφ
2 t†)B12(· · · )|vac〉,

where (· · · ) denotes the rest of the VBS state. By
using the binomial expansion, |φ〉 can be rewritten
as |φ〉 =

∑B12
k=0

(B12
k

)
(cos(φ/2))B12−k(isin(φ/2))k|k〉,

where |k〉 = (s†)B12−k(t†)k(· · · )|vac〉 is the state with k
triplet bonds on the link (12). In a parallel way, ∂φ|φ〉 =
(1/2)

∑B12
k=0

(B12
k

)
(cos(φ/2))B12−k(isin(φ/2))k(k cot(φ/2)−

(B12 − k) tan(φ/2))|k〉. To see that the imaginary part
of the connection A(φ) is zero, we have to show that
Im〈k|l〉 = 0 when k and l have the same parity(even
or odd) and Re〈k|l〉 = 0 when k and l have different
parities. This can be easily shown by using the coherent
state representation of the Schwinger bosons [37]. Then
we can obtain the Berry phase as γ12 = B12π (mod 2π)
using the relation (6). This result means that the Berry
phase of the Haldane spin chains counts the number of
the edge states[8] which emerge when the spin chain
is truncated on the bond (12). Thus, it relates to the
property of the topological phase. Finally, it should be
stressed that our calculation of the Berry phase is not
restricted to one-dimensional VBS states but can be
generalized to the VBS state on a arbitrary graph as
long as there is a gap while varying the twist parameter.

Now, let us consider the previous two models in terms
of the VBS picture. For the S = 2 dimerized Heisen-
berg model, the number of the valence bonds changes
as the θ changes as Fig. 2. Since the number of the va-
lence bonds on a local link can be computed by the Berry
phase, we can clearly see that the reconstruction of the
valence bonds occurs during the change of the dimeriza-
tion. Thus, the result of the Berry phase is consistent
with the VBS picture. For the S = 2 Heisenberg chain
with single-ion anisotropy, the valence bonds are broken
one by one as D increases. We can see that the Berry
phase reflects the number of the local bonds as well as
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where |k〉 = (s†)B12−k(t†)k(· · · )|vac〉 is the state with k
triplet bonds on the link (12). In a parallel way, ∂φ|φ〉 =
(1/2)

∑B12
k=0

(B12
k

)
(cos(φ/2))B12−k(isin(φ/2))k(k cot(φ/2)−

(B12 − k) tan(φ/2))|k〉. To see that the imaginary part
of the connection A(φ) is zero, we have to show that
Im〈k|l〉 = 0 when k and l have the same parity(even
or odd) and Re〈k|l〉 = 0 when k and l have different
parities. This can be easily shown by using the coherent
state representation of the Schwinger bosons [37]. Then
we can obtain the Berry phase as γ12 = B12π (mod 2π)
using the relation (6). This result means that the Berry
phase of the Haldane spin chains counts the number of
the edge states[8] which emerge when the spin chain
is truncated on the bond (12). Thus, it relates to the
property of the topological phase. Finally, it should be
stressed that our calculation of the Berry phase is not
restricted to one-dimensional VBS states but can be
generalized to the VBS state on a arbitrary graph as
long as there is a gap while varying the twist parameter.

Now, let us consider the previous two models in terms
of the VBS picture. For the S = 2 dimerized Heisen-
berg model, the number of the valence bonds changes
as the θ changes as Fig. 2. Since the number of the va-
lence bonds on a local link can be computed by the Berry
phase, we can clearly see that the reconstruction of the
valence bonds occurs during the change of the dimeriza-
tion. Thus, the result of the Berry phase is consistent
with the VBS picture. For the S = 2 Heisenberg chain
with single-ion anisotropy, the valence bonds are broken
one by one as D increases. We can see that the Berry
phase reflects the number of the local bonds as well as

Twist the link of the generic AKLT model

Berry phase on a link (ij)
�ij = Bij⇥ mod 2⇥

The Berry phase counts the number of the valence bonds!

S=1/2 objects are fundamental in integer spin chains

S=1/2

T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431’08

# VB
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Random hopping model on bipartite lattice

t’/t=0.7

Quantum Phase Transition

  with (local) Gap Closing

Y.H., J. Phys. Soc. Jpn. 75  123601 (2006)

Half-filled many body state

H =
X

hiji

tijc
†
i ci + h.c. +Vijninj

Vij = 0

P.H. symmetry in many body
Chiral symmetry in one particle part



Orthogonal dimers
discovery

H. Kageyama et al. , Phys. Rev. Lett. 82, 3168 (1999)

Sr Cu2(BO3)2

Theory: spin gap & magnetic plateaus

S. Miyahara & K. Ueda , Phys. Rev. Lett. 82, 3701 (1999)
T. Momoi and K. Totsuka, Phys. Rev. B 61, 3231 (2000)

B. S. Shastry and B. Sutherland, Physica, 108B, 1069 (1981).

H = J
X

hiji

Si · Sj + J 0
X

hiji

Si · Sj



Gapped to gapped transition
Dimer phase Plaquette singlet phase

A. Koga & N. Kawakami, Phys. Rev. Lett. 84, 4461 (2000)

H = J
X

hiji

Si · Sj + J 0
X

hiji

Si · Sj

J >> J 0
J ⇡ J 0

=

+
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Dimer phase

Gauge transform
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It can be gauged out
if decoupled 

twist locally
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Orthogonal dimers

plaquette singlet phase

Gauge transform
      only at 

U(✓) = ei(S�Ŝz)✓

It can be gauged out
if decoupled �p = ⇡

twist locally



gauge twist for singlet pair
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Fermions with frustrated lattice

Generalized to ZQ

Y. Hatsugai & I. Maruyama, EPL 95, 20003 (2011), arXiv:1009.3792
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Fermions with frustrated lattice

Generalized to ZQ

Y. Hatsugai & I. Maruyama, EPL 95, 20003 (2011), arXiv:1009.3792

(Q=d+1)

Series of fermionic models in d-dimensions

...d=1

d=3
d=2

d=4

Minimum model with frustration

ZQ Berry phases

pyrochlore

SSH

kagome
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H =
X

hiji

tijc
†
i cj + h.c.� µ

X

i

ni

+V
X

ninj

One may include interaction if the energy gap remains open

tij =

⇢
tR hiji 2
tB hiji 2

Tetramerization

3D pyrochlore

Fermionic Hamiltonian with “dimerization”

H =
X

hiji

tijc
†
i cj + h.c.� µ

X

i

ni

Trimerization

2D kagome

tij =

⇢
tR hiji 2
tB hiji 2

d-D generic pyrochlore as well



Diagonalizable within

h = Q(tBpB + tRpR) = �D�† Sum of 2 projections

Hamiltonian in momentum space 

LB = {c�B

��c � C} LR = {c�R

��c � C}
LB + LR

pBLB = LB

pRLR = LR

is invariant for any linear operationLinear space:

LB

LR
LB + LR dim (LB + LR)  2

Non zero energy bands are at most 2.
Q� 2

L? : null

Non zero energies are eigen states of h� = O1/2hO1/2 2⇥ 2

deth� = Q2tBtR detO Trh� = Trh = QTr (tBpB + tRpR) = Q(tB + tR)

E(k) = (Q/2)
�
tB + tR ±

p
(tB � tR)2 + tBtR|�(k)|2

�Energy bands :

At least               zero energy flat bands

If                   , one of the 2 bands degenerate with the flat bands
k = 0 : touching momentum

detO = 0

tB 6= tR tB = tR
E

Eg = |tB � tR|(Q/2)

E

Massless Dirac, CriticalQuantum
   Phase 
     Transition

tB < tRtB > tR

d=2 Kagome tB = tR tB = tR

Dirac fermions + flat bands with d-1 fold degeneracy

Q=d+1=3



Ex.)  ZQ=3 quantized Berry phases for 
fermions on Kagome

✓1
✓2

✓3

✓3 = �✓1 � ✓2

d=2, Q=3

|⇥(�)�

Many body state

filling 1/Q

i� =

Z

L
A

A = �⇥(�)|d⇥(�)⇥

� ⌘ 2⇥
n

Q
, mod2⇥, n 2 Z ZQ quantization

modify phases locally (in some way)

periodic boundary condition

Global ZQ symmetry with twists ⇥

⇥ = (✓1, ✓2, ✓3)



Topological order parameter for
Q-Multimerization Transition

tB = tR
E

Massless Dirac, Critical

E
|tB | > |tR||tB | < |tR|

E

EF EF1/Q filling

Quantum 
          Phase 
              Transition

tR =

Q-Multimerization

d=2, Q=3, Kagome tB = �1,

� = 0� =
2⇡

Q

Y. Hatsugai & I. Maruyama, EPL 95, 20003 (2011), arXiv:1009.3792
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Numerical demonstration up to 4D
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Stable against particle-particle interaction
unless the energy gap collapses
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Other systems applied

Spin ladders with ring exchange

BEC-BCS crossover at half filling
M. Arikawa, I. Maruyama, and Y. H., Phys. Rev. B 82, 073105 (2010)

I. Maruyama, T. Hirano, and Y. H.,Phys. Rev. B 79, 115107 (2009)
M. Arikawa, S. Tanaya, I. Maruyama, Y. H.,Phys. Rev. B 79, 205107 (2009) 
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Thank you


