Quantized Berry Phases for Characterization of

 Short-Range Entangled States in d-Dimensions

 Short-Range Entangled States in d-Dimensions}

Institute of Physics \& TIMS, Univ. Tsukuba Kavli Institute for Theoretical Physics, UCSB Yasuhiro Hatsugai

YH \& I. Maruyama, EPL 95, 20003 (2011), arXiv: 1009.3792
I. Maruyama, S. Tanaya, M.Arikawa \& YH. , arXiv:1103.1226

Collaborators

I. Maruyama, Osaka Univ.

H. Katsura, Gakushuin Univ. (Univ. Tokyo)
T. Hirano, (Univ.Tokyo)
M. Arikawa, (Univ. of Tsukuba)
S. Tanaya, Univ. of Tsukuba

University of Tsukuba

Plan

¿ Short range entanglement, symmetry \& quantization \approx Adiabatic principle with symmetry
\approx Gauge freedom for entangled state
Two types of topological invariants for "order parameters"
Thern numbers in even dimensions
Quantized Berry phases in odd dimensions
Examples in 1D, 2D, 3D and ...
in Integer spin chains with dimerization
\approx Random hopping models

* Orthogonal dimers in 2D
~ Generalized dimers in Kagome, Pyrochlore : d-Dim. fermions with frustration
*Short range entanglement, symmetry \& quantization \approx Adiabatic principle with symmetry \approx Gauge freedom for entangled state
is Two types of topological invariants
Thern numbers in even dimensions
¿Quantized Berry phases in odd dimensions
Examples in 1D, 2D, 3D and
is Integer spin chains with dimerization
\approx Random hopping models
2 Orthogonal dimers in 2D
\approx Generalized dimers in Kagome, Pyrochlore d-Dim. fermions with frustration

Adiabatic principle for gapped systems

\approx Gapped quantum (spin) liquids
No symmetry breaking
No low energy excitations (Nambu-Goldstone)

Adiabatic principle for gapped systems

\approx Gapped quantum (spin) liquids No symmetry breaking

Topological order !?
in No low energy excitations (Nambu-Goldstone)

Adiabatic principle for gapped systems

* Gapped quantum (spin) liquids
~No symmetry breaking
Topological order !?
is No low energy excitations (Nambu-Goldstone)
¿Topological characterization for gapped system
Example: Adiabatic principle: a lesson from the QHE
~ flux attachment (Jain)
~Adiabatic heuristic argument (Wilczek)
Δ dinhatir nrincinla far arnnad custame Adiabatic heuristic (Wilczek)

FQHE 2/5 states

COA:- IQHE 3rd LL Fermion

Adiabatic principle for gapped systems

\approx Gapped quantum (spin) liquids
\approx No symmetry breaking
Topological order !?
\approx No low energy excitations (Nambu-Goldstone)
¿Topological characterization for gapped system
\approx Example: Adiabatic principle: a lesson from tl
~ flux attachment (Jain)
\approx Adiabatic heuristic argument (Wilczek)
Collect gapped phases and classify into several classes by adiabatic continuation

Adiabatic principle for gapped systems

\approx Gapped quantum (spin) liquids
~No symmetry breaking
Topological order !?
\approx No low energy excitations (Nambu-Goldstone)
¿Topological characterization for gapped system
\approx Example: Adiabatic principle: a lesson from tl
~ flux attachment (Jain)
is Adiabatic heuristic argument (Wilczek)
Collect gapped phases and classify into several classes by adiabatic continuation

Label of the Class: Adiabatic invariant (topological number)

Characterization of short range entangled states Generic short range entangled states
topologically single phase (too simple ?)

Characterization of short range entangled states
Generic short range entangled states

topologically single phase (too simple ?)

With some symmetry A

$\begin{array}{ll}\mathrm{YH}, ' 06 & \begin{array}{l}\text { Chen-Gu-Wen, '10 } \\ \text { Pollmann et al., '10 }\end{array}\end{array}$

Characterization of short range entangled states
Generic short range entangled states

topologically single phase (too simple ?)

With some symmetry A, B

Characterization of short range entangled states
Generic short range entangled states

> topologically single phase (too simple ?)

With some symmetry A, B, C

Characterization of short range entangled states
Generic short range entangled states

topologically single phase (too simple ?)

With some symmetry A, B, C

Multiple phases with SYMMETRIES $\begin{array}{ll}\text { YH, '06 } & \begin{array}{l}\text { Chen-Gu-Wen, '10 } \\ \text { Pollmann et al., ' } 10\end{array}\end{array}$

Characterization of short range entangled states Generic short range entangled states

topologically single phase (too simple ?)

With some symmetry A, B, C

Multiple phases with SYMMETRIES $\begin{array}{ll}\text { YH, '06 } & \begin{array}{l}\text { Chen-Gu-Wen, '10 } \\ \text { Pollmann et al., ' } 10\end{array}\end{array}$ Time-reversal*
"Many body"
*Anti Unitary

Particle-hole* (Chiral symmetry)

 Inversion$$
\mathbf{Z}_{\mathbf{Q}} \quad: \quad 1 \rightarrow 2,2 \rightarrow 3, \cdots, Q \rightarrow 1
$$

Symmetry in physics

Text book
Labeling of quantum states
Conservation law $[H, G]=0 \quad t_{2 g} \quad e_{g} \cdots$
We are now using it as
Symmetry protection of adiabatic process
\approx Chiral symmetry
~Particle-Hole symmetry
WTime-reversal symmetry
Z inversion symmetry

$\gtrsim Z_{Q}$ symmetry: S_{Q} reduced into Z_{Q} with gauge twists

Symmetry in physics

Text book
Labeling of quantum states
Conservation law $[H, G]=0 \quad t_{2 g} \quad e_{g} \cdots$
We are now using it as
Symmetry protection of adiabatic process ¿ Chiral symmetry
\approx Particle-Hole symmetry
WTime-reversal symmetry
Z inversion symmetry

$\approx Z_{Q}$ symmetry: S_{Q} reduced into Z_{Q} with gauge twists

Short range entangled states

Ex.1) AKLT state
${ }^{(1,1)}\left\langle\left\{\begin{array}{l}\text { gapped int } \\ \text { O-C }\end{array}\right\}\right.$
Ex.2) Collection of singlets

Something complicated but gapped

$\overline{\overline{\underline{\underline{\underline{\bar{\prime}}}}}}$
 \downarrow many-body gap small

Short range entangled states

Adiabatic deformation! gap remains open

Something complicated but gapped

many-body gap

Short range entangled states

Adiabatic deformation! gap remains open

Something complicated but gapped

many-body gap

Short range entangled states

Adiabatic deformation! gap remains open

Something complicated but gapped

many-body gap

Short range entangled states

Adiabatic deformation! gap remains open

Something complicated but gapped

many-body gap

Short range entangled states

Adiabatic deformation! gap remains open

Something complicated but gapped

many-body gap

Short range entangled states

Adiabatic deformation! gap remains open

Something complicated but gapped

Short range entangled states

Adiabatic deformation!

 gap remains open

Something complicated but gapped

Short range entangled states

Adiabatic deformation! gap remains open

Decoupled!

Short range entangled states

Adiabatic process to be decoupled: gap remains open

How to characterize local object?

How to characterize local object?

How to characterize local object?
Consider a gauge transform at some site

How to characterize local object?
Consider a gauge transform at some site

$$
\begin{aligned}
|\psi(\theta)\rangle & =U(\theta)|\psi(0)\rangle \\
U(\theta) & =e^{i\left(S-S_{z}\right) \theta}
\end{aligned}
$$

How to characterize local object?
Consider a gauge transform at some site

$$
\begin{aligned}
|\psi(\theta)\rangle & =U(\theta)|\psi(0)\rangle \\
U(\theta) & =e^{i\left(S-S_{z}\right) \theta}
\end{aligned}
$$

How to characterize local object?

If decoupled, the twist by the transformation is gauged away !

$$
\begin{aligned}
|\psi(\theta)\rangle & =U(\theta)|\psi(0)\rangle \\
U(\theta) & =e^{i\left(S-S_{z}\right) \theta}
\end{aligned}
$$

How to characterize local object?

If decoupled, the twist by the transformation is gauged away !

$$
\begin{aligned}
|\psi(\theta)\rangle & =U(\theta)|\psi(0)\rangle \\
U(\theta) & =e^{i\left(S-S_{z}\right) \theta}
\end{aligned}
$$

How to characterize local object?

If decoupled, the twist by the transformation is gauged away!

It characterizes locality of the quantum object !

How to characterize local object?

If decoupled, the twist by the transformation is gauged away!

$$
\begin{aligned}
|\psi(\theta)\rangle & =U(\theta)|\psi(0)\rangle \\
U(\theta) & =e^{i\left(S-S_{z}\right) \theta}
\end{aligned}
$$

It characterizes locality of the quantum object!
Question?
How to see this locality by skipping the adiabatic deformation?

How to characterize local object?

If decoupled, the twist by the transformation is gauged away!

$$
\begin{aligned}
|\psi(\theta)\rangle & =U(\theta)|\psi(0)\rangle \\
U(\theta) & =e^{i\left(S-S_{z}\right) \theta}
\end{aligned}
$$

It characterizes locality of the quantum object!

- Answer!

Calculate a topological invariant as an adiabatic invariant

Whort range entanglement, symmetry \& quantization * Adiabatic principle with symmetry
is Gauge freedom for entangled state
~Two types of topological invariants as "order parameters"
Thern numbers in even dimensions
Q Quantized Berry phases in odd dimensions
(dim. of parameter space)
E Examples in 1D, 2D, 3D and
\approx Integer spin chains with dimerization
\approx Random hopping models
2 Orthogonal dimers in 2D
\approx Generalized dimers in Kagome, Pyrochlore d-Dim. fermions with frustration

Quantization for topological phases

Topological

$$
\begin{aligned}
& \mathbb{Z}=\{\cdots,-2,-1,0,1,2,, \cdots\} \\
& \mathbb{Z}_{Q}=\{1,2, \cdots, Q(\bmod Q)\} \quad Q \in \mathbb{Z}
\end{aligned}
$$

ใ

Quantization

$$
H|\psi\rangle=E|\psi\rangle
$$

$$
\begin{aligned}
& A=\langle\psi \mid d \psi\rangle \\
& F=d A+A^{2}
\end{aligned}
$$

Parameter dependent hamiltonian \Rightarrow Berry connection
Intrinsically quantized (without boundary)
Cher numbers: 1 st, ind, 3rd,....

$$
\text { SHE ... Z } C_{1}=-\frac{1}{2 \pi i} \int_{M^{2}} F
$$

Symmetry protected quantization
Berry phases \& generalization: $\quad \gamma_{1}=-\frac{1}{2 \pi i} \int_{M^{1}} A$

> Quantum spin chains, Spin-QHE ...

Topological quantities: Berry connection

collect M states gaped from the else

$$
\Psi=\left(\left|\psi_{1}\right\rangle, \cdots,\left|\psi_{M}\right\rangle\right) \quad\left\langle\psi_{j} \mid \psi_{k}\right\rangle=\delta_{j k} \quad \Psi^{\dagger} \Psi=E_{M}
$$

Berry connection \& gauge transformation

$$
\begin{gathered}
A_{g}=\Psi_{g}^{\dagger} d \Psi_{g}=g^{-1} A g+g^{-1} d g \quad F_{g}=d A_{g}+A_{g}^{2}=g^{-1} F g \\
\Psi_{g}=\Psi g \quad g \in U(M) \quad g \in S p(M) \text { with Kramers deg. }
\end{gathered}
$$

Chen numbers : intrinsically quantized

$$
\begin{array}{cc}
C_{1}=-\frac{1}{2 \pi i} \int_{S^{2}} \operatorname{Tr} F, \quad C_{2}=-\frac{1}{8 \pi^{2}} \int_{S^{4}} \operatorname{Tr} I \\
\operatorname{Tr} F=d \omega_{1} & \operatorname{Tr} F^{2}=d \omega_{3}
\end{array}
$$

Berry phases \& generalizations

$$
\gamma_{1}=-\frac{1}{2 \pi i} \int_{S^{1}} \omega_{1}, \quad \gamma_{3}=-\frac{1}{8 \pi^{2}} \int_{S^{3}} \omega_{3}, \cdots
$$

$2 n-1$ dim. any value
Gauge dependent: $\quad \omega_{1}=\operatorname{Tr} A, \quad \omega_{3}=\operatorname{Tr}\left(A d A+\frac{2}{3} A^{3}\right)$,

$$
\begin{aligned}
\gamma_{1} \equiv \gamma_{1}^{g},(\bmod 1)_{\mathrm{YH} \text { '06 }} \gamma_{3} \equiv \gamma_{3}^{g},(\bmod 1)^{\text {Qi-Hughes-Zhang '08 }} \begin{aligned}
& \text { YH '09 } \\
& \text { Some constraint } \longrightarrow \text { Symmetry protected quantization }
\end{aligned}
\end{aligned}
$$

Example: Heisenberg model with local twist

 Define a many body hamiltonian by local twist as a periodic parameter

$$
\begin{aligned}
& H\left(x=e^{i \theta}\right) \quad H_{0}=\sum_{\langle i j\rangle} J_{i j} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j} \\
& C=\left\{x=e^{i \theta} \mid \theta: 0 \rightarrow 2 \pi\right\}
\end{aligned}
$$

$$
\boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j} \rightarrow \frac{1}{2}\left(e^{-i \theta} S_{i+} S_{j-}+e^{+i \theta} S_{i-} S_{j+}\right)+S_{i z} S_{j z} \text { Only link <ii> }
$$

$$
H(\theta)|\psi(\theta)\rangle=E(\theta)|\psi(\theta)\rangle \text { Lanczos diagonalization }
$$

Calculate the Berry phases using the many spin wave function

$$
i \gamma_{C}=\int_{C} A=\int_{0}^{2 \pi}\left\langle\psi \left\lvert\, \frac{\partial \psi}{\partial \theta}\right.\right\rangle d \theta=\pi, 0
$$

Z_{2} Berry phase
Topological order parameter YH, J. Phys. Soc. Jpn. 75, 123601, '06

Symmetry in physics

Symmetry protection for adiabatic process

¿Chiral symmetry
\approx Particle-Hole symmetry
~Time-reversal symmetry
むinversion symmetry
$\approx Z_{Q}$ symmetry: S_{Q} reduced into Z_{Q} with gauge twist

Symmetry in physics

Symmetry protection for Berry phases

¿Chiral symmetry
\approx Particle-Hole symmetry
iTime-reversal symmetry
Ninversion symmetry
$\approx Z_{Q}$ symmetry: S_{Q} reduced into Z_{Q} with gauge twist

Symmetry in physics

Symmetry protection for Berry phases

\approx Chiral symmetry
Z_{2}
\approx Particle-Hole symmetry Z_{2}
\approx Time-reversal symmetry $\quad Z_{2}$
₹Inversion symmetry $\quad Z_{2}$

Quantization

$\approx Z_{Q}$ symmetry: S_{Q} reduced into Z_{Q} with gauge twist

$$
\begin{array}{ll}
Z_{2} & \gamma \equiv 0, \pi \\
Z_{Q} & \gamma \equiv 2 \pi \frac{k}{Q} \quad k=0,1,2, \cdots, Q-1
\end{array}
$$

Gauge transformation \& Berry phase If gauged away, the Berry phase is trivially obtained

Gauge transformation \& Berry phase If gauged away, the Berry phase is trivially obtained

Gauge transformation \& Berry phase
If gauged away, the Berry phase is trivially obtained

Gauge transformation \& Berry phase
If gauged away, the Berry phase is trivially obtained

$$
\begin{aligned}
|\psi(\theta)\rangle & =U(\theta)|\psi(0)\rangle \\
U(\theta) & =e^{i\left(S-S_{z}\right) \theta} \\
A & =\langle\psi \mid d \psi\rangle=S d \theta \\
\gamma & =2 \pi S
\end{aligned}
$$

$\begin{array}{ccl}\text { Spins } & \gamma=2 \pi S=\pi & S=1 / 2 \\ & Z_{2} & S=(\text { odd integer }) / 2\end{array}$
Fermions with filling $\rho=P / Q, \quad(P, Q)=1$

$$
\begin{equation*}
\gamma=2 \pi \rho=2 \pi \frac{P}{Q} \tag{Q}
\end{equation*}
$$

Spins $\quad \gamma=2 \pi S=\pi \quad Z_{2}$
Fermions with filling $\gamma=2 \pi \rho=2 \pi \frac{P}{Q} \mathrm{Z}_{\mathrm{Q}}$

Quantized Berry phases for short range entangled states

Spins $\quad \gamma=2 \pi S=\pi \quad Z_{2}$
Fermions with filling $\gamma=2 \pi \rho=2 \pi \frac{P}{Q} \mathrm{Z}_{\mathrm{Q}}$

Symmetry protection

$$
i \gamma=\int A
$$

Quantized Berry phases for short range entangled states
¿ Short range entanglement, symmetry \& quantization * Adiabatic principle with symmetry
\approx Gauge freedom for entangled state
\approx Two types of topological invariants

* Chern numbers in even dimensions
* Quantized Berry phases in odd dimensions

Examples in 1D, 2D, 3D and ...
Integer spin chains with dimerization
\approx Random hopping models
\approx Orthogonal dimers in 2D
T Generalized dimers in Kagome, Pyrochlore : d-Dim. fermions with frustration

ID $S=1 / 2$ chains with dimerization

$$
H=\sum_{\langle i\rangle} J_{i} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1}
$$

Y.H., J. Phys. Soc. Jpn. 75123601 (2006)

AF-AF

$$
\begin{array}{lllllll}
J_{A}^{\prime}>J_{A} & J_{A}^{\prime} & J_{A} & J_{A}^{\prime} & J_{A} & J_{A}^{\prime} & J_{A} \\
& \pi & 0 & \pi & 0 & \pi & 0 \\
& & & & & & \\
J_{A}^{\prime}<J_{A} & J_{A}^{\prime} & J_{A} & J_{A}^{\prime} & J_{A} & J_{A}^{\prime} & J_{A} \\
\hline 0 & \pi & 0 & \pi & 0 & \pi
\end{array}
$$

$\left|J_{F}\right| \gtrless J_{A} J_{F} \quad J_{A} \quad J_{F} \quad J_{A} \quad J_{F} \quad J_{A}$ Hida

AF-AF case

Strong bonds
: π bonds

F-AF case

AF bonds
$: \pi$ bonds

Heisenberg Spin Chains with integer S

$$
\begin{aligned}
S=1 & \left(\boldsymbol{S}_{i}\right)^{2}=S(S+1), S=1 \\
H=J & \sum_{\langle i j\rangle} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}+D \sum_{i}\left(S_{i}^{z}\right)^{2}
\end{aligned}
$$

Y.H., J. Phys. Soc. Jpn. 75123601 (2006)

Haldane phase

$$
D<D_{C}
$$

Large D phase
0
0
0
0
$0 \quad 0$
$D>D_{C}$

Characterize the Quantum Phase Transition

$S=1,2$ dimerized Heisenberg model

$$
H=\sum_{i=1}^{N / 2}\left(J_{1} \boldsymbol{S}_{2 i} \cdot \boldsymbol{S}_{2 i+1}+\begin{array}{c}
\text { T.Hirano, H.Katsura \&YH, Phy }
\end{array} J_{2} \boldsymbol{S}_{2 i+1} \cdot \boldsymbol{S}_{2 i+2}\right) .
$$

Z_{2} Berry phase
Red line :Berry phase π

0
$0 \quad 0$
0
0
0
00
$S=1 \& 2$

Sequential transitions among gapped phases

$S=1,2$ dimerized Heisenberg model

$$
H=\sum_{i=1}^{N / 2}\left(J_{1} \boldsymbol{S}_{2 i} \cdot \boldsymbol{S}_{2 i+1}+\begin{array}{c}
\text { T.Hirano, H.Katsura \&YH, Phy }
\end{array} J_{2} \boldsymbol{S}_{2 i+1} \cdot \boldsymbol{S}_{2 i+2}\right) .
$$

Z_{2} Berry phase
Red line :Berry phase π

Reconstruction of valence bonds!

$S=2$ Heisenberg model with D term

T.Hirano, H.Katsura \&YH, Phys.Rev.B77 094431 ’08

$$
H=\sum_{i}^{N}\left[J \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1}+D\left(S_{i}^{z}\right)^{2}\right]
$$

Red line :Berry phase π

Reconstruction of valence bonds!

Generic AKLT (VBS) models

T.Hirano, H.Katsura \&YH, Phys.Rev.B77 094431 ’08

Twist the link of the generic AKLT model

$$
\begin{gather*}
H\left(\left\{\phi_{i, i+1}\right\}\right)=\sum_{i=1}^{N} \sum_{J=B_{i, i+1}+1}^{2 B_{i, i+1}} A_{J} P_{i, i+1}^{J}\left[\phi_{i, i+1}\right] \\
\left.\left|\left\{\phi_{i, j}\right\}\right\rangle=\prod_{\langle i j\rangle}\left(e^{i \phi_{i j} / 2} a_{i}^{\dagger} b_{j}^{\dagger}-e^{-i \phi_{i j} / 2} b_{i}^{\dagger} a_{j}^{\dagger}\right)^{B_{i i j}} \mid \text { vac }\right\rangle \\
\text { \#VB } \\
\frac{\text { Berry phase on a link (iij) }}{\gamma_{i j}=B_{i j} \pi \bmod 2 \pi}
\end{gather*}
$$

The Berry phase counts the number of the valence bonds!
$S=1 / 2$ objects are fundamental in integer spin chains

Random hopping model on bipartite lattice

$$
H=\sum_{\langle i j\rangle} t_{i j} c_{i}^{\dagger} c_{i}+\text { h.c. }+V_{i j} n_{i} n_{j}
$$

Half-filled many body state
Chiral symmetry in one particle part

Random hopping model on bipartite lattice

$$
H=\sum_{\langle i j\rangle} t_{i j} c_{i}^{\dagger} c_{i}+\text { h.c. }+V_{i j} n_{i} n_{j}
$$

Half-filled many body state
Chiral symmetry in one particle part

Orthogonal dimers

2 discovery

H. Kageyama et al. , Phys. Rev. Lett. 82, 3168 (1999)
~Theory: spin gap \& magnetic plateaus
B. S. Shastry and B. Sutherland, Physica, 108B, 1069 (1981).

$H=J \sum_{\langle i j\rangle} S_{i} \cdot S_{j}+J^{\prime} \sum_{\langle i j\rangle} S_{i} \cdot S_{j}$
S. Miyahara \& K. Ueda, Phys. Rev. Lett. 82, 3701 (1999)
T. Momoi and K. Totsuka, Phys. Rev. B 61, 3231 (2000)

Gapped to gapped transition

Dimer phase
Plaquette singlet phase

A. Koga \& N. Kawakami, Phys. Rev. Lett. 84, 4461 (2000)

Orthogonal dimers

Dimer phase

Gauge transform only at

$$
U(\theta)=e^{i\left(S-\hat{S}_{z}\right) \theta}
$$

$$
G
$$

It can be gauged out if decoupled

$$
\gamma_{P}=\pi
$$

Orthogonal dimers

plaquette singlet phase

Gauge transform only at

$$
U(\theta)=e^{i\left(S-\hat{S}_{z}\right) \theta}
$$

It can be gauged out if decoupled

$$
\gamma_{p}=\pi
$$

Z_{2} Berry phase
 γ_{D}

gauge twist for singlet pair

$$
J^{\prime} / J
$$

I. Maruyama, S. Tanaya, M.Arikawa \& YH. , arXiv:1103.1226

Z_{2} Berry phase γ_{P}

gauge twist for plaquette singlet

I. Maruyama, S. Tanaya, M.Arikawa \& YH. , arXiv:1103.1226

Fermions with frustrated lattice

Generalized to $Z_{Q} \quad(Q=d+1)$

Z_{Q} Berry phases

Series of fermionic models in d-dimensions Minimum model with frustration

Y. Hatsugai \& I. Maruyama, EPL 95, 20003 (2011), arXiv:1009.3792

Fermions with frustrated lattice

Generalized to $Z_{Q} \quad(Q=d+1)$

Z_{Q} Berry phases

Series of fermionic models in d-dimensions Minimum model with frustration

Y. Hatsugai \& I. Maruyama, EPL 95, 20003 (2011), arXiv:1009.3792

Fermionic Hamiltonian with "dimerization"
$H=\sum_{\langle i j\rangle} t_{i j} c_{i}^{\dagger} c_{j}+h . c .-\mu \sum_{i} n_{i}$

3D pyrochlore

$$
\begin{gathered}
H=\sum_{\langle i j\rangle} t_{i j} c_{i}^{\dagger} c_{j}+h . c .-\mu \sum_{i} n_{i} \\
+V \sum n_{i} n_{j}
\end{gathered}
$$

$$
t_{i j}= \begin{cases}t_{R} & \langle i j\rangle \in \\ t_{B} & \langle i j\rangle \in\end{cases}
$$

Tetramerization

One may include interaction if the energy gap remains open
d-D generic pyrochlore as well

Fermionic Hamiltonian with "dimerization"
$H=\sum_{\langle i j\rangle}^{2 D} t_{i j} c_{i}^{\dagger} c_{j}+$ h.c. $-\mu \sum_{i} n_{i}$

$$
\begin{gathered}
t_{i j}= \begin{cases}t_{R} & \langle i j\rangle \in \\
t_{B} & \langle i j\rangle \in\end{cases} \\
\text { Trimerization } \\
t_{i j}= \begin{cases}t_{R} & \langle i j\rangle \in \\
t_{B} & \langle i j\rangle \in\end{cases}
\end{gathered}
$$

3D pyrochlore

$$
\begin{gathered}
H=\sum_{\langle i j\rangle} t_{i j} c_{i}^{\dagger} c_{j}+h . c .-\mu \sum_{i} n_{i} \\
+V \sum n_{i} n_{j}
\end{gathered}
$$

Tetramerization
One may include interaction if the energy gap remains open
d-D generic pyrochlore as well

Dirac fermions + flat bands with d-1 fold degeneracy

Ex.) $Z_{Q=3}$ quantized Berry phases for fermions on Kagome
$\Theta=\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$
periodic boundary condition $d=2, Q=3$
modify phases locally (in some way)

Global Z_{Q} symmetry with twists Θ
Many body state
$|\Psi(\Theta)\rangle$ filling 1/Q

$$
\begin{aligned}
A & =\langle\Psi(\Theta) \mid d \Psi(\Theta)\rangle \\
i \gamma & =\int_{L} A
\end{aligned}
$$

$\gamma \equiv 2 \pi \frac{n}{Q}, \bmod 2 \pi, n \in \mathbb{Z}$

Z_{Q} quantization

Topological order parameter for Q-Multimerization Transition

Topological order parameter for Q-Multimerization Transition

$\left|t_{B}\right|$

Massless Dirac, Critical

Numerical demonstration up to 4D
Quantized dimer order parameter
Quantum Phase Transition

Y. Hatsugai \& I. Maruyama, EPL 95, 20003 (2011), arXiv:1009.3792

Numerical demonstration up to 4D
Quantized dimer order parameter
Quantum Phase Transition
Stable against particle-particle interaction unless the energy gap collapses

Y. Hatsugai \& I. Maruyama, EPL 95, 20003 (2011), arXiv:1009.3792

Other systems applied

Spin ladders with ring exchange

I. Maruyama, T. Hirano, and Y. H.,Phys. Rev. B 79, 115107 (2009)
M. Arikawa, S. Tanaya, I. Maruyama, Y. H.,Phys. Rev. B 79, 205107 (2009)

BEC-BCS crossover at half filling

M. Arikawa, I. Maruyama, and Y. H., Phys. Rev. B 82, 073105 (2010)

Topomat11:Topological Insulators \& Superconductors, Nov.3, 2011

Summary

Topology is useful to classify short range entangled states

with symmetry

Topomat11:Topological Insulators \& Superconductors, Nov.3, 2011

Summary

Topology is useful to classify
 short range entangled states

with symmetry

