Spin Berry phase in topological insulators and Weyl semimetals

Ken Imura (Hiroshima Univ. & KITP)

in collaboration with

Yositake Takane, Akihiro Tanaka (Hiroshima) (NIMS)

Spin Berry phase in gapped and gapless topological phases

Ken Imura (Hiroshima Univ. & KITP)

in collaboration with

Yositake Takane, Akihiro Tanaka (Hiroshima) (NIMS)

Spin-to-surface locking in gapped and gapless topological phase

Ken Imura (Hiroshima Univ. & KITP)

in collaboration with

Yositake Takane, Akihiro Tanaka (Hiroshima) (NIMS) Gapped vs. gapless topological phases:

topological insulators Weyl semimetal weak & strong

bulk: topological invariants

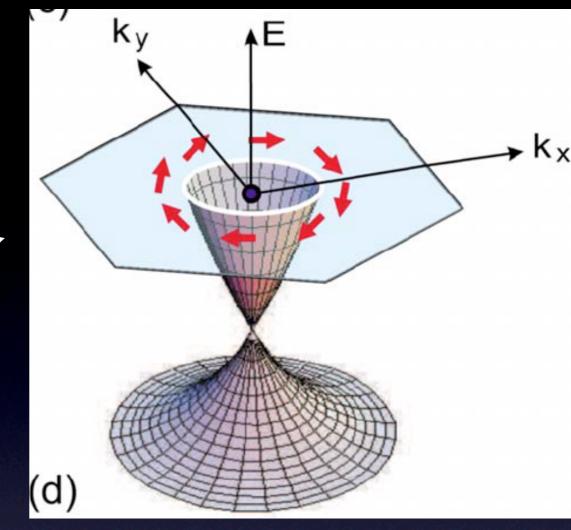
surface: (protected) gapless surface states

- Specific types of protected surface states:
 - 1. helical: Dirac cone(s) ← topological insulators
 - 2. chiral: Fermi arc states Weyl semimetal
- Highlight on the "spin-to-surface locking"
 - spin Berry phase

What is the spin-to-surface locking?

Not this one.

This is often referred to as "spin-to-momentum" locking



Hasan & Kane, Rev. Mod Phys. '10

Figure 1 Detection of spin-momentum locking of spin-helical Dirac electrons in Bi₂Se₃ and Bi₂Te₃ using spin-resolved ARPES. a, b, ARI

Hsieh et al., Nature, '09

The surface effective Hamiltonian:

$$H_{2D} = A(\boldsymbol{\sigma} \times \boldsymbol{k})_z$$

Zhang et al. Nature Phys. '10; Liu et al., PRB '10, Shan et al. NJP '10

so far everything was on a **flat** surface

What happens?

if one repeats the same procedure on a *curved* surface (cylinder)

$$H_{2D} = A \begin{bmatrix} 0 & -ik_z + \frac{1}{R} \left(-i\frac{\partial}{\partial \phi} + \frac{1}{2} \right) \\ ik_z + \frac{1}{R} \left(-i\frac{\partial}{\partial \phi} + \frac{1}{2} \right) & 0 \end{bmatrix}$$

KI, Takane & Tanaka, Phys. Rev. B 84, 195406 (2011)

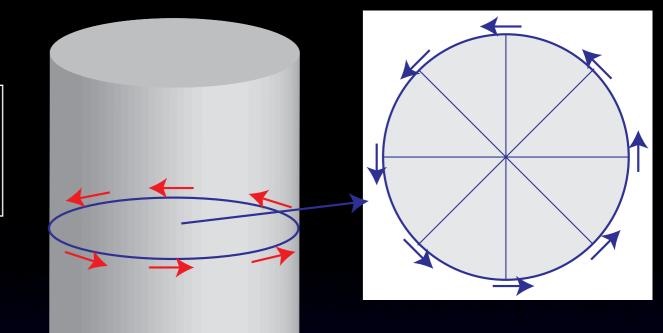
but with one important correction: the "spin Berry phase"

Zhang & Vishwanath PRL '10; Ostrovsky et al., PRL '10, Bardarson et al. PRL '10, ...

Interpretation: the "spin-to-surface" locking

spin = locked *in-plane* to the surface, i.e.,

with its frames following the tangential plane of the curved surface



plan of the talk

part 1

- 0) spin Berry phase: a brief sketch of its derivation
- 1) spin-to-surface locking in topological insulators
 - direct consequences of the spin-to-surface locking:
 - 1. Half-integer quantization of the orbital angular momentum
 - 2. Enhancement of finite-size corrections:

 ΔE decays only **algebraically**

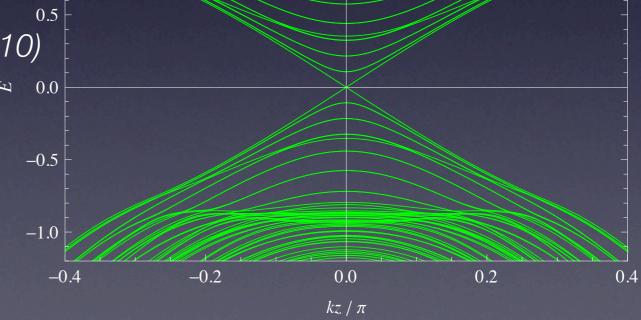
relevance to the classification of topological defects in

Teo & Kane, Phys. Rev. B 82, 115120 (2010)

further applications:

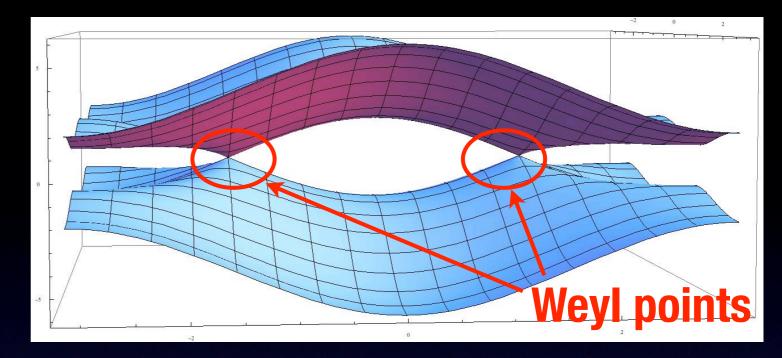
e.g., 1D *gapless* helical modes, associated with

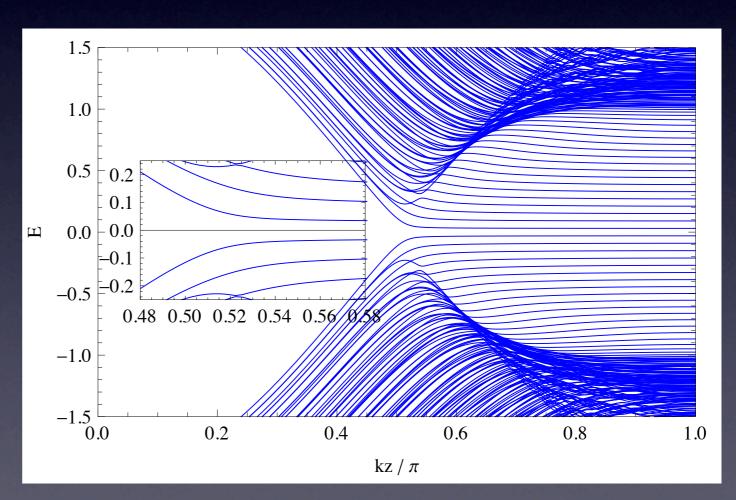
- i) a pi-flux tube
- ii) dislocation lines



part 2

- 2) Characteristic feature of the spin-to-surface locking in the Fermi arc surface states of a Weyl semimetal
 - *chiral* spin-to-surface locking
 - completely *flat* multiple subbands
 - flatness: topologically protected





The spin Berry phase: sketch of its derivation

starting with a 3D bulk effective Hamiltonian:

$$H_{3D} = A(p_x \gamma_1 + p_y \gamma_2 + p_z \gamma_3) + m\gamma_0$$

 $\{\gamma_i, \gamma_j\} = 2\delta_{ij} \quad m(\mathbf{p}) = m_0 + m_2 \mathbf{p}^2$

• Having in mind that we will consider a boundary value problem of this sort, $|\psi\rangle_{r=R}=\begin{bmatrix}0\\0\\0\end{bmatrix}$ we decompose the Hamiltonian into two parts:

$$H = H_{\perp}(k_r) + H_{\parallel}(k_{\phi}, k_z)$$

$$r = \sqrt{x^2 + y^2} \qquad \phi = \arctan \frac{y}{x}$$

• First, find in-gap surface solutions of the radial eigenvalue problem: $H_{\perp}|\psi\rangle=E_{\perp}|\psi\rangle \qquad |\psi\rangle\sim e^{\lambda(r-R)}$

$$ullet$$
 Then, find a linear combination: $|\psi
angle=\sum c_j|\psi_j
angle$

$$|\psi\rangle = \sum_{j=1} c_j |\psi_j\rangle$$

that is compatible with the boundary condition:

which turns out to be $E_{\perp} = 0$

$$E_{\perp} = 0$$

Calculating the matrix elements: $(H_{2D})_{\pm\pm}=\langle\langle r\pm|H_{||}|r\pm\rangle\rangle$

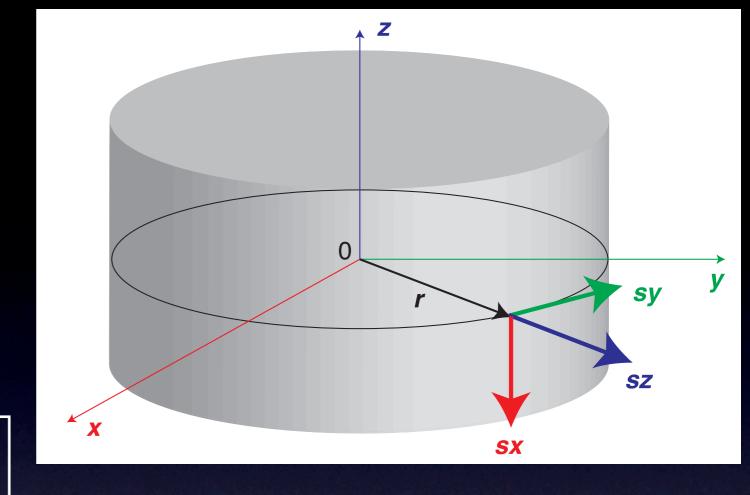
one finds
$$H_{2D} = A \begin{bmatrix} 0 & -ik_z + \frac{1}{R} \left(-i\frac{\partial}{\partial \phi} + \frac{1}{2} \right) \\ ik_z + \frac{1}{R} \left(-i\frac{\partial}{\partial \phi} + \frac{1}{2} \right) & 0 \end{bmatrix}$$

Interpretation of the factor 1/2: the "spin-to-surface locking"

• possible to **absorb** the 1/2 factor in the definition of the (c1,c2)-spinor:

$$H_{2D} \left[egin{array}{c} c_1 \ c_2 \end{array}
ight] = E_\parallel \left[egin{array}{c} c_1 \ c_2 \end{array}
ight]$$

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = e^{-i\phi/2} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix}$$



$$\chi = \frac{1}{\sqrt{2}} \begin{bmatrix} e^{-i\eta/2} \\ \pm e^{i\eta/2} \end{bmatrix}$$

• In the *transformed* basis, with some *redefinition* of the spin frame, one can rewrite the surface effective

Hamiltonian as

$$H_{2D}^{(\boldsymbol{\chi})} = A\sigma_x k_\phi + B\sigma_y k_z$$

 $\sim A(\boldsymbol{\sigma} \times \boldsymbol{k})_z$

$$egin{array}{lll} \hat{m{s}}_x: & \hat{m{x}}
ightarrow - \hat{m{z}} \ \hat{m{s}}_y: & \hat{m{y}}
ightarrow \hat{m{\phi}} \ \hat{m{s}}_z: & \hat{m{z}}
ightarrow \hat{m{r}} \end{array}$$

Manifestations of the spin Berry phase

in weak and strong topological insulators

- Half-integer quantization of the orbital angular momentum
- Finite-size energy gap: *algebraic* decay
- •1D *gapless* helical modes, associated with
 - i) a pi-flux tube ii) dislocation lines

A direct consequence of the spin Berry phase:

Half-integer quantization of the *orbital* angular momentum

Electronic state on the surface of a *cylinder*

orbital part: plane-wave like

$$\psi(\phi, z) = e^{i(p_{\phi}R\phi + p_z z)}$$

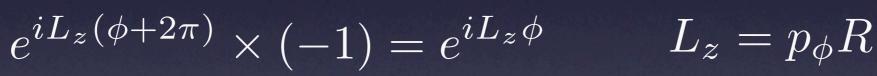
radius: R

$$H_{2D} \left[egin{array}{c} c_1 \ c_2 \end{array}
ight] = E_{\parallel} \left[egin{array}{c} c_1 \ c_2 \end{array}
ight]$$

$$E_{\parallel} = \pm A\sqrt{p_{\phi}^2 + p_z^2}$$

anti-periodic

boundary condition: periodic



$$L_z = p_{\phi} R$$

spin Berry phase

$$L_z=\pm 1/2,\pm 3/2,\cdots$$
 (half-integer quantization)

gap opening

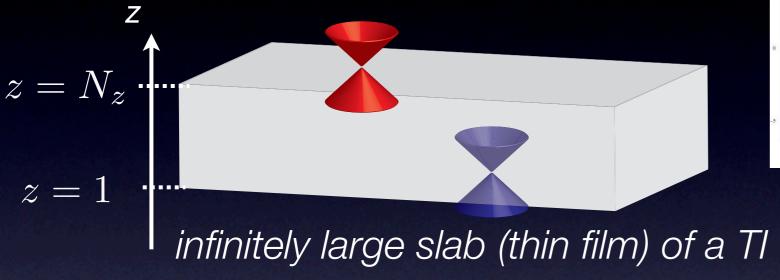
$$\Delta E = A/R \propto R^{-1}$$

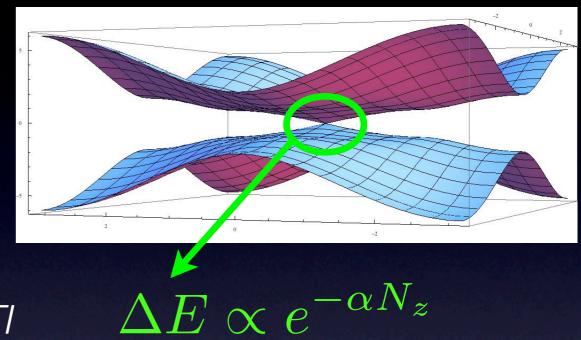
algebraic decay of the finite-size energy gap

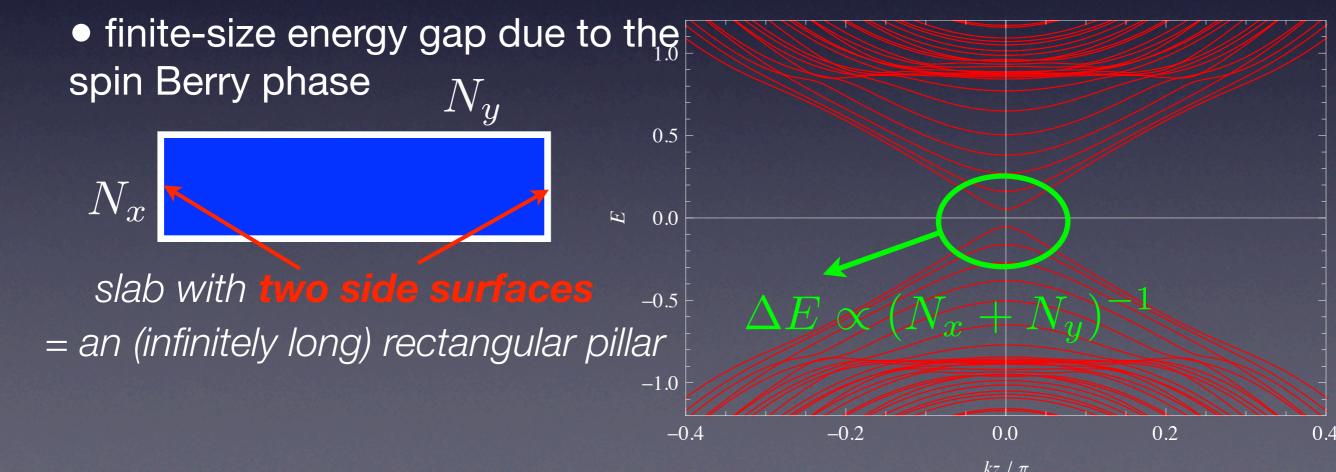
(strong finite-size effects)

Finite-size energy gap: algebraic decay

• conventional finite-size energy gap: exponential decay







1D gapless helical modes

associated with i) a pi-flux tube

• First recall the *half-integer* quantization:

$$e^{iL_z(\phi+2\pi)} \times (-1) = e^{iL_z\phi}$$
 anti-p.b.c spin Berry phase $L_z = \pm 1/2, \pm 3/2, \cdots$

 In the presence of an Aharonov-Bohm flux tube, this modifies as

$$e^{iL_z(\phi+2\pi)}\times e^{i\Phi_{AB}}\times (-1)=e^{iL_z\phi}$$
 IF the AB flux: $\Phi/\pi=\pm 1,\pm 3,\pm 5,\cdots$
$$L_z=p_\phi R$$
 THEN, $L_z=0,\pm 1,\pm 2,\cdots$
$$gapless$$

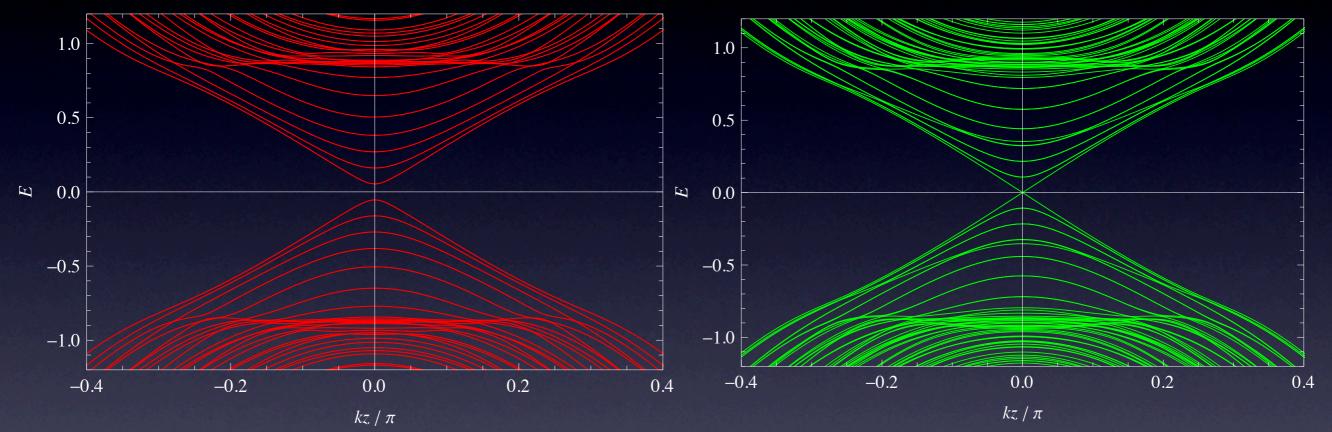
$$E=\pm A\sqrt{p_\phi^2+p_z^2}$$

$$L_z=p_\phi R$$

Energy spectrum of a rectangular pillar of TI

 \bullet In the $\it absence$ of AB flux $\Phi_{AB}=0$

• In the **presence** of AB flux $\Phi_{AB}=\pi$



spin Berry phase $\,\pi\,$

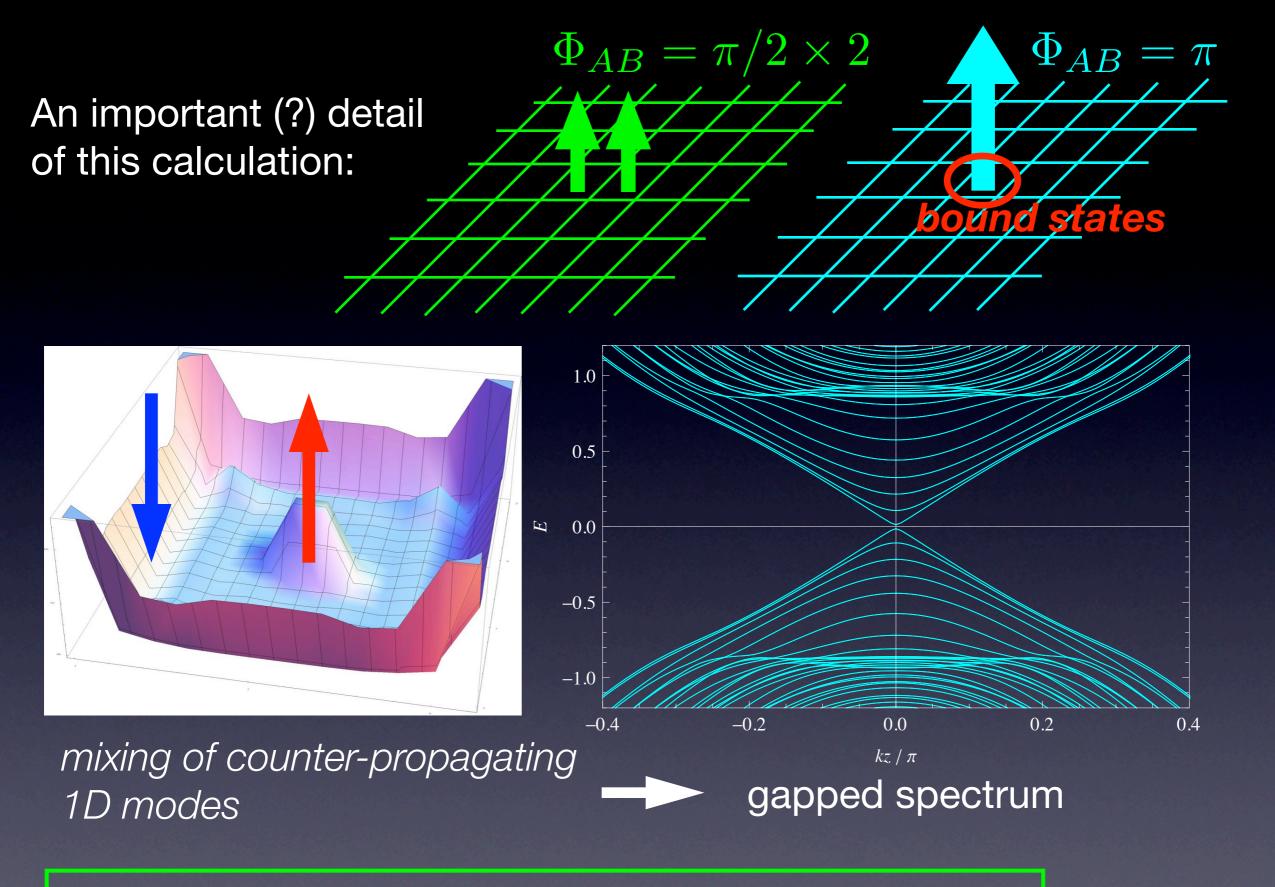
---- anti-p.b.c

--- spectrum: gapped

spin Berry phase & AB flux

$$\pi + \pi = 2\pi \simeq 0$$

gapless



pi-flux piercing a plaquette bound states

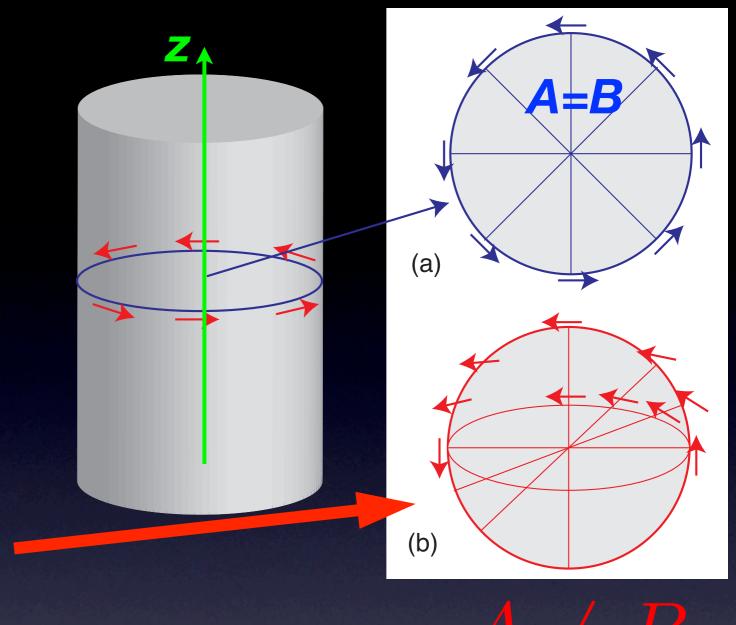
A remark on the anisotropic case

(a remark for the experts)

- anisotropy associated with the crystal growth axis
- Spin-to-surface locking is not a local concept!
- Only the **global** π -phase shift is robust.

$$H_{3D} = M\tau_z + \tau_x (B\sigma_x k_x + A\sigma_y k_y + A\sigma_z k_z)$$

anisotropy along the x-axis



1D gapless helical modes

associated with

ii) dislocation lines

• First recall the *half-integer* quantization:

$$e^{iL_z(\phi+2\pi)}\times (-1) = e^{iL_z\phi}$$
 spin Berry phase

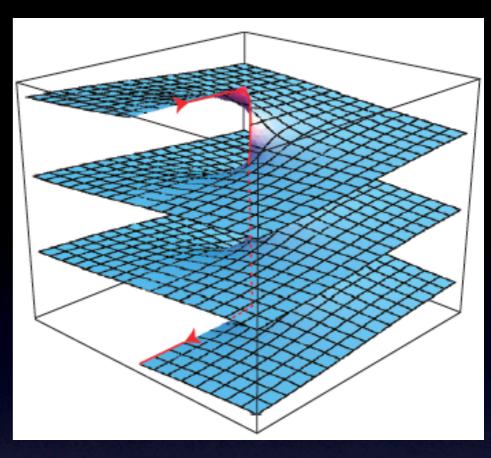
$$L_z = \pm 1/2, \pm 3/2, \cdots$$

 In the presence of a screw dislocation, this modifies as

$$e^{iL_z(\phi+2\pi)} \times e^{ik_z^{(0)}b} \times (-1) = e^{iL_z\phi}$$

screw dislocation

IF
$$k_z^{(0)}=\pi$$
 AND b =1,3,5,... THEN, $L_z=0,\pm 1,\pm 2,\cdots$



Ran, Zhang & Vishwanath, Nature Physics, 5, 298 (2009)

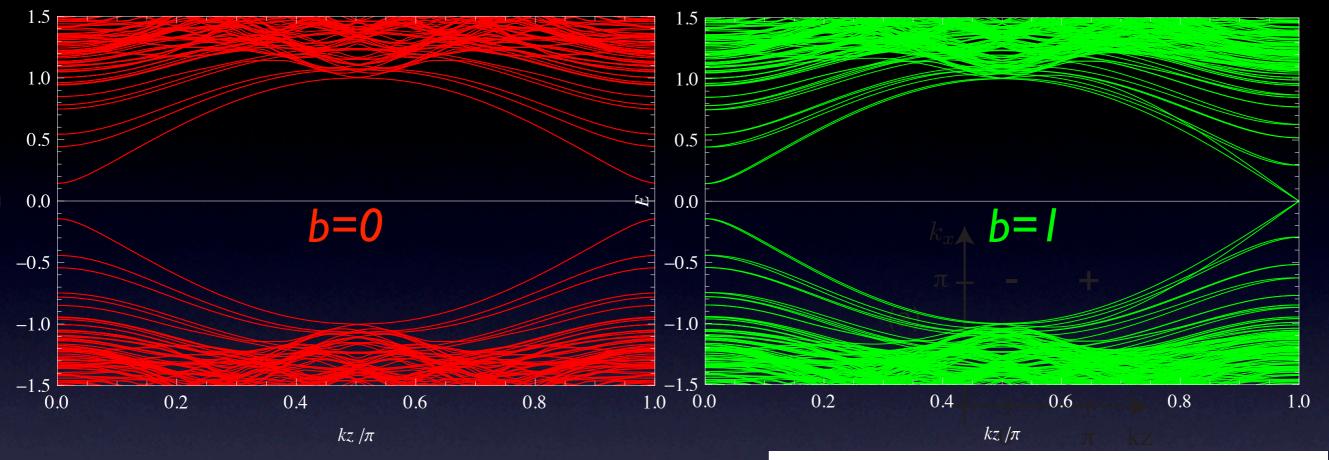
Burgers vector:

$$\boldsymbol{b} = (0, 0, b)$$

even/odd feature w.r.t. **b**

KI, Takane & Tanaka, Phys. Rev. B 84, 035443 (2011)

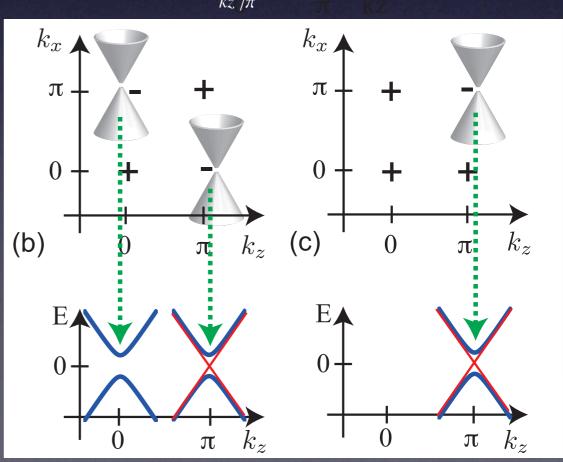
Even/odd feature with respect to b



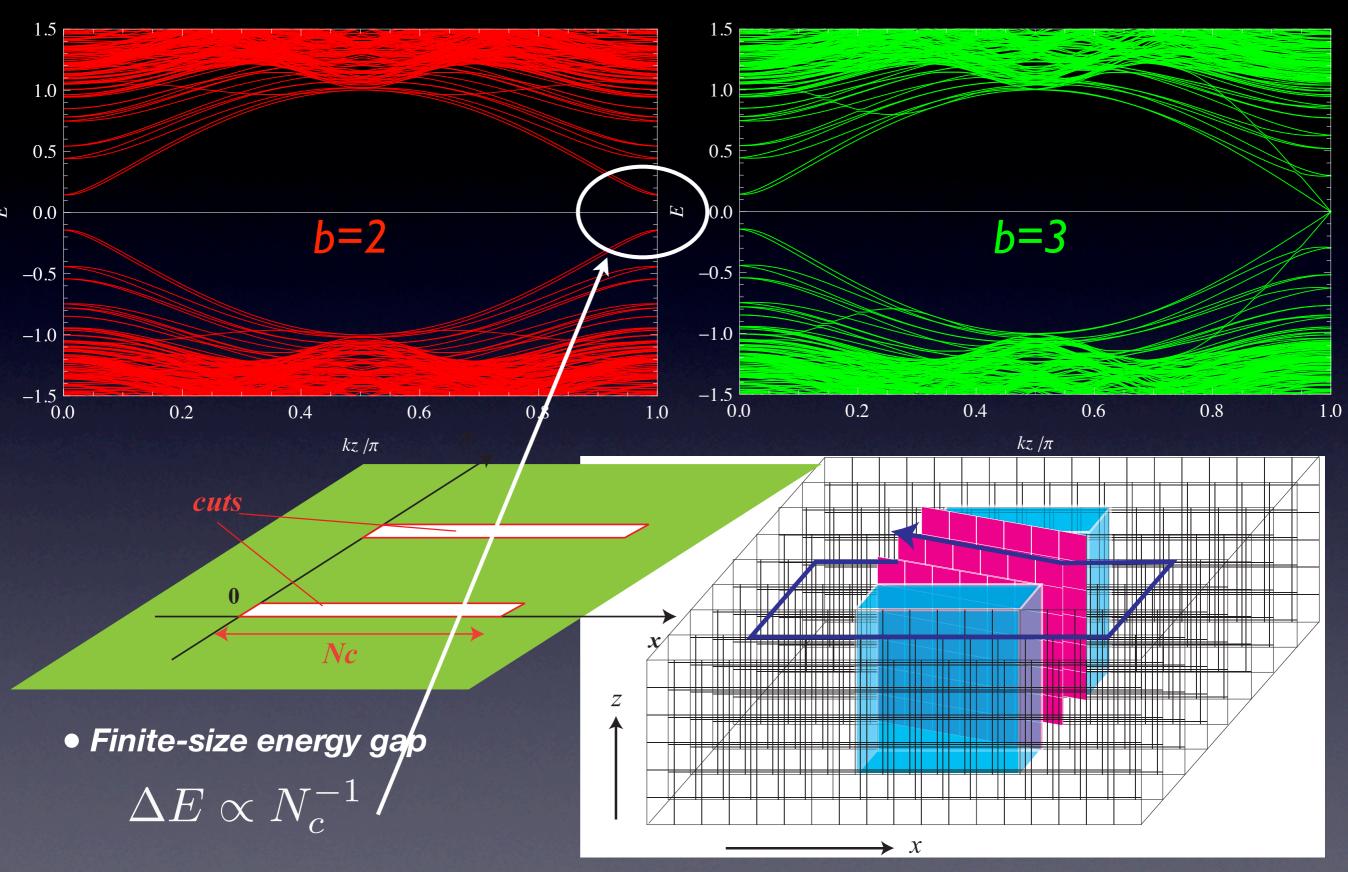
• The Dirac cone at

$$k_z^{(0)} = \pi$$

susceptible of the screw dislocation with $oldsymbol{b} = (0,0,b)$



continued from the last slide...



KI, Takane & Tanaka, Phys. Rev. B 84, 035443 (2011)

some remarks

• role of **weak indices**:

condition for the existence of such 1D gapless helical modes

$$\vec{M} \cdot \vec{b} = \pi \mod 2\pi$$
 $\vec{M} = \frac{1}{2}(\nu_1 \vec{G}_1 + \nu_2 \vec{G}_2 + \nu_3 \vec{G}_3)$

Ran, Zhang & Vishwanath, Nature Physics, 5, 298 (2009)

 1D gapless helical modes protected by the finite-size energy gap

KI, Takane & Tanaka, Phys. Rev. B 84, 035443 (2011)

Summary of the 1st half of talk

- 1. The spin-to-surface locking
 - i) leads to the *half-integer* quantization of the *orbital* angular momentum
 - ii) is **not a local** concept
- 2. Further manifestations of the spin-to-surface locking:
 - i) strong finite-size effects in *TI nanowires*
 - ii) 1D gapless helical modes along a *pi-flux tube* and

dislocation lines

KI, Takane & Tanaka, Phys. Rev. B 84, 195406 (2011)

KI, Takane & Tanaka, Phys. Rev. B 84, 035443 (2011)

Aharonov-Bohm measurement in TI nanowires

Peng et al., Nature Materials 9, 225 (2010)

part 2

How about the case of gapless topological phases?

• 3D Weyl semimetal may be realized in pyrochlore iridates:

A2Ir207

L. Balents, Physics '11

X. Wan et al. PRB '11; W. Witczak-Krempa & Y.-B. Kim,

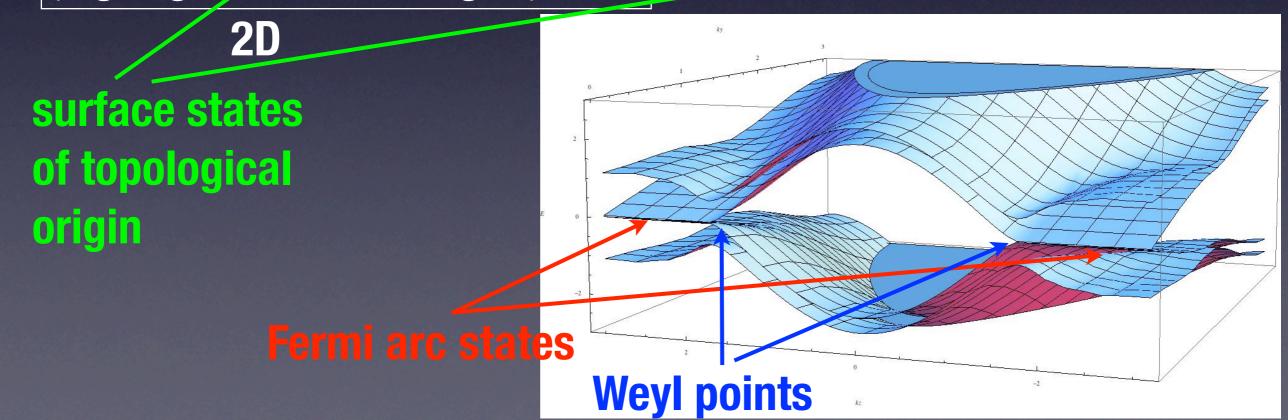
or maybe somewhere else, in some other formats... arXiv:1105.6108, ...

A.A. Burkov & L. Balents, arXiv:1105.5138, G. Xu et al. arXiv:1106.3125,...

• 3D Weyl semimetal is a 3D version of graphene:

flat edge modes of graphene (zigzag, bearded edges)

Fermi arc states **3D**



Classification of the gapless topological phases

A. Schnyder, KITP, 2011; **2D example**G.E. Volovik, books

- grapheneclass Alli
- protected point node : Z-type

$$H(\mathbf{k}) = \begin{bmatrix} 0 & f(\mathbf{k}) \\ f^*(\mathbf{k}) & 0 \end{bmatrix}$$

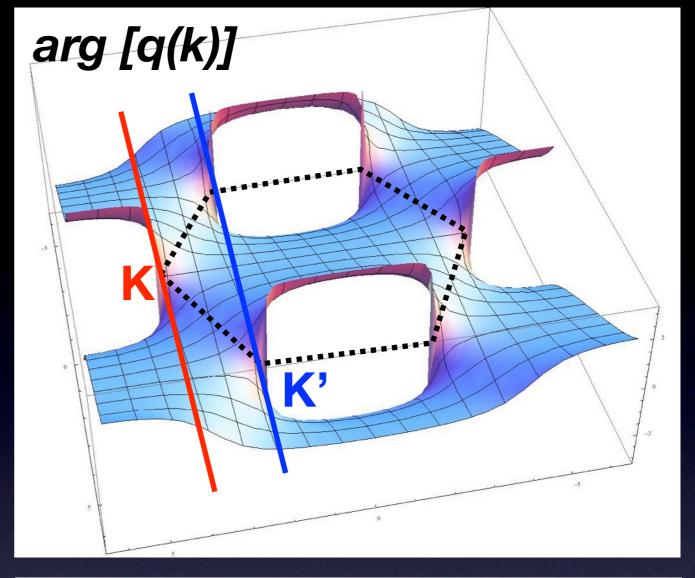
A winding number:

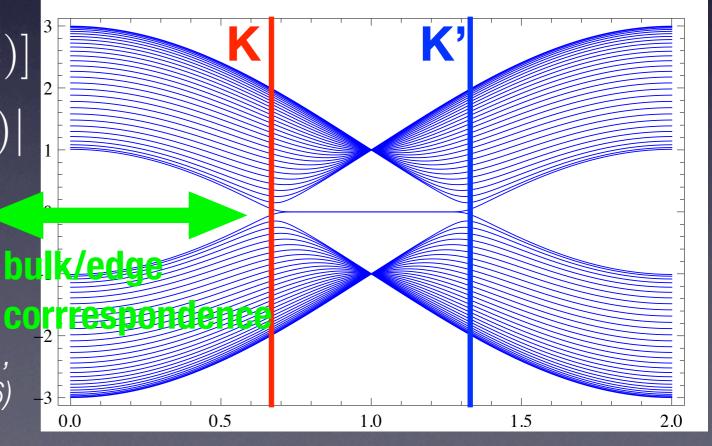
$$N_{\mathcal{L}} = \oint_{\mathcal{L}} \frac{dk}{2\pi} \operatorname{Tr} \left[q(\mathbf{k})^{-1} \partial_{k_{\mathcal{L}}} q(\mathbf{k}) \right]^{3}$$

$$q(\mathbf{k}) = f(\mathbf{k})/|f(\mathbf{k})|$$

can be defined, protecting the existence of a pair of Dirac points: K & K'

Fujita, Wakabayashi, et al., JPSJ 65, 1920 (1996)





Generalization to 3D

- Weyl semimetal
- class A
- protected point node: Z-type

$$H = d(k) \cdot \sigma$$

$$=A(k_x\sigma_x+k_y\sigma_y)+M(oldsymbol{k})\sigma_z$$
 [K.-Y. Yang et al. arXiv:1105.2353]

Weyl points

$$M(\mathbf{k}) = \Delta(k_z) + B(k_x^2 + k_y^2)$$
 $\Delta(k_z) = 2t_z(\cos k_z - \cos k_0)$

$$\Delta(k_z) = 2t_z(\cos k_z - \cos k_0)$$

A 2D Chern number number:

$$N_{S^2} = \int_{S^2} rac{dm{k}}{8\pi} \; \epsilon_{\mu
u} \; m{n}(m{k}) \cdot [\partial_{k_\mu} m{n}(m{k}) imes \partial_{k_
u} m{n}(m{k})]$$

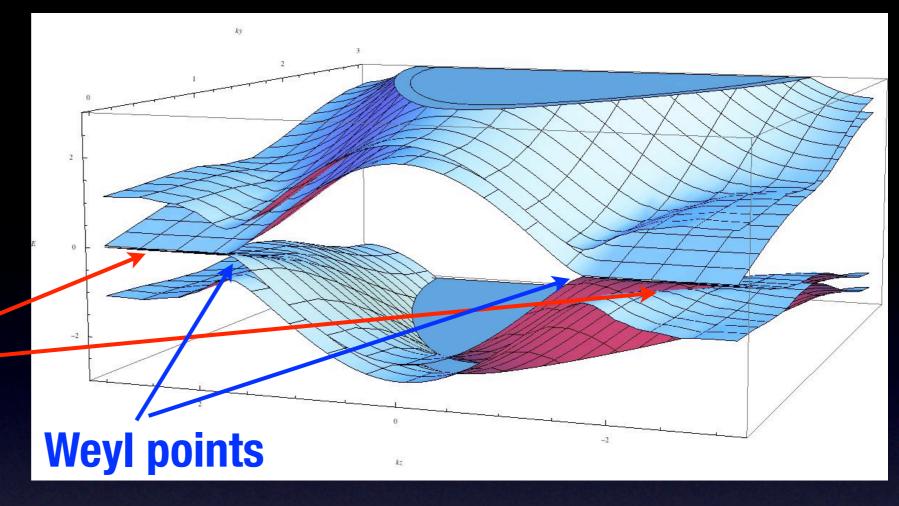
can be defined, protecting the existence of a pair of Weyl points at kz = +k0, -k0 (kx = ky = 0)

Fermi arc surface states

Protected surface states = Fermi arcs

geometry: a **slab** (0<x<L)

Fermi-arc surface states

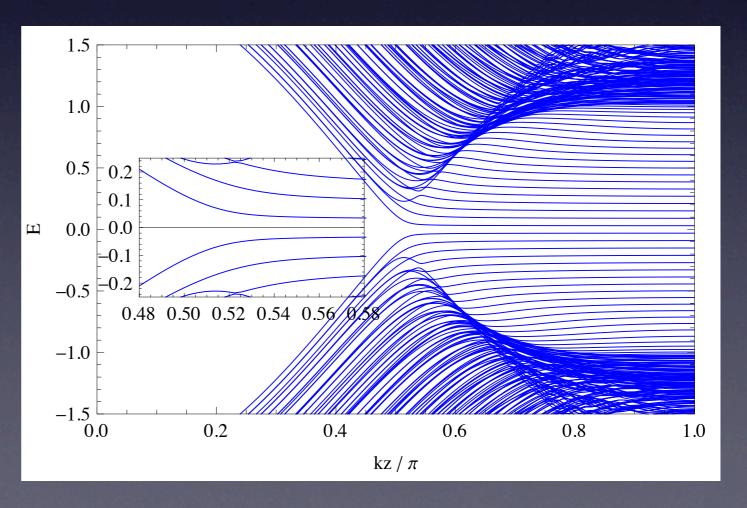


On a cylinder,

the Fermi-arc surface states split into multiple completely flat subbands

flatness: topologically protected

How about spin-to-surface locking?



Chiral spin-to-surface locking in the Fermi-arc surface states

Analytic calculation: • repeating the same type of analysis...

$$H=H_{\perp}+H_{\parallel} \qquad H_{\perp}(k_r)=H|_{k_{\phi}=0,k_z=k_z^{(0)}} \qquad |\psi(r=R,\phi,z)\rangle = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 The basis eigenspinor:
$$\boxed{\psi_{\perp}\rangle=\rho(r)\left(e^{\kappa_+(r-R)}-e^{\kappa_-(r-R)}\right)\begin{bmatrix} 1 \\ -ie^{i\phi} \end{bmatrix}}$$

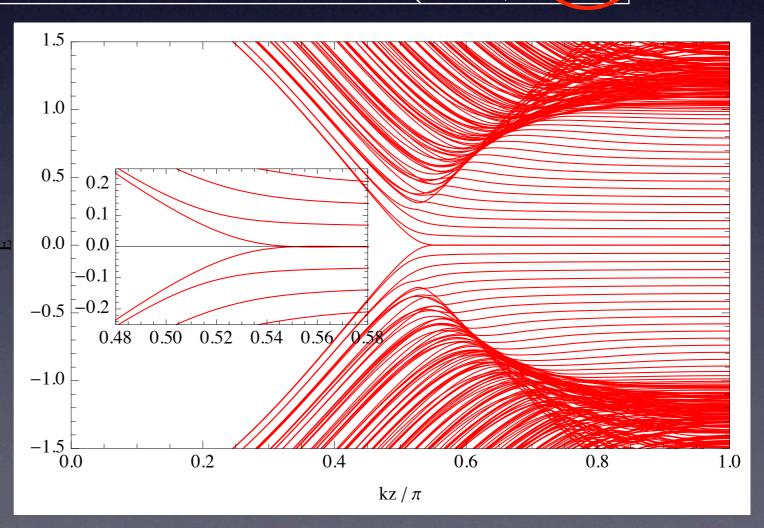
The surface effective Hamiltonian:

$$H_{\text{surf}} = \langle \psi_{\perp} | H_{\parallel} | \psi_{\perp} \rangle = \frac{A}{R} \left(-i \frac{\partial}{\partial \phi} + \frac{1}{2} \right)$$

Numerics:

 confirmed the closing of the gap in the presence of

$$\Phi_{AB} = \pi/2 \times 2$$



Conclusions

Gapped case: weak & strong topological insulators

- half-integer quantization of the orbital angular momentum
- algebraic (extremely slow of) decay of ΔE
- gapless helical modes along dislocation lines: role of weak indices: "How weak is a weak topological insulator?"

C.-X. Liu, KITP 2011; R. Mong, Station Q, tomorrow Ringel, Kraus, Stern, arXiv:1105.4351

Gapless case: Weyl semimetal / Fermi arc surface states

- completely *flat* multiple subbands
- flatness: topologically protected!
- chiral spin-to-surface locking: spin locked to the azimuthal component of the momentum

Acknowledgments: A. Schnyder, M. Sato, A. Ludwig, C.L. Kane, Y.-B. Kim, E.-G. Moon, A. Yamakage, T. Fukui, Y. Tanaka, ..., many other people

supplementary slides

Relation to the periodic table, "the ten-fold way"

A. Schnyder et al., PRB '09; NJP '10; A. Kitaev, AIP '10

Classification in the presence of toplogical defects:

Teo & Kane, PRB 82, 115120 (2010)

"The weak indices are related to the strong indices in one lower dimension."

Ran, arXiv:1006.5454; A. Schnyder et al. NJP '10

"(d-1) indices"

"It is these (d-1) indices that control the existence of onedimensional helical modes hosted by dislocations."

strong weak 2D gapless surface
$$d=3 \qquad \begin{array}{c} \nu_0 \\ \nu_1, \nu_2, \nu_3 \end{array} \qquad \begin{array}{c} \text{Dirac cone} \\ \text{Dirac local modes} \end{array}$$

$$d-1=2 \qquad \begin{array}{c} \nu_3 \\ \end{array} \qquad \qquad 1D \text{ gapless helical modes} \end{array}$$

	d=1	d=2	d=3		
D=0	•	<u>'</u>			
D=1	t 🕇				
D=2		1			

The periodic table: Teo-Kane's version

Teo & Kane, PRB 82, 115120 (2010)

$$d=3$$
 $D=1$ $d-D=d-1=2$

• the *effective* spatial dimension:

$$d \rightarrow \delta = d - D$$

	T'	C	1'5	Ü	1	2	3	4	5	6	
A	0	0	0	Z	0	Z	0	Z	0	Z	0
AIII	0	0	1	0	Z	0	Z	0	Z	0	Z
AI	1	0	0	Z	0	0	0	\overline{Z}	0	$\overline{Z_2}$	$\overline{Z_2}$
BDI	1	1	1	Z_2	Z	0	0	0	Z	0	Z_2
D	0	1	0	Z_2	Z_2	Z	0	0	0	Z	0
DIII	-1	1	1	0	Z_2	Z_2	Z	0	0	0	Z
AII	-1	0	0	Z	0	Z_2	Z_2	Z	0	0	0
CII	-1	-1	1	0	Z	0	Z_2	Z_2	Z	0	0
\mathbf{C}	0	-1	0	0	0	Z	0	Z_2	Z_2	Z	0
$\overline{\text{CI}}$	1	-1	1	0	0	0	Z	0	Z_2	Z_2	Z

symmetry class