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A “fractional” QME?

• IQHE: sxy = ne2/h, FQHE: sxy = (p/q)e2/h

• QME: q = p, “FQME”: q = (p/q)p?

• We know materials that have fractional q, e.g. multiferroics (cf. Joel 
Moore’s talk: Cr2O3 has q ≈ p/24)… but they break TRS

• Indeed, we know that q = 0 or p is required by TRS:

(-1)q/p = Fu-Kane-Mele Z2 invariant

• Even if q is fractional, why should it be quantized?



Outline

1. Parton construction of FQH states

2. Parton construction of fractional 3D TI

3. Quantized ME effect and TRS

4. Possible effective gauge theories

5. A microscopic model?



• A simple way to understand the FQHE from the IQHE (Jain, 1989; Wen, 

1991, 1992, 1999; Barkeshli, Wen, 2010)

• Break electron into m partons; each parton forms a n=1 IQH state

Parton construction of FQH states
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• Use the same construction to define a 3D FTI state based on the 
topological band insulator state

• Break electron into m partons; each parton forms a Z2 TI

Parton construction of fractional 3D TI
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• This is just one wave function… is it representative of a stable state 
of matter?

• If yes, what are the physically measurable properties of this state?
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• Beyond writing down a wave function, parton construction can be 
used to construct an effective field theory (Wen, 1991, 1992, 1999; 

Barkeshli, Wen, 2010)

• If the effective field theory describes a stable fixed point of the RG, 
we have a stable phase of matter

• From the effective field theory, we can extract physical properties

• Strategy:

 Lattice model of interacting electrons

 Low-energy effective field theory with gapped partons

 Integrate out gapped partons; topological field theory?

Effective field theory
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• Imagine adding interactions to a lattice model of Z2 TI:

• Write the electron operator in terms of fermionic parton (fractionalized) 
variables:
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• We have a complicated model of interacting partons:

• Do a mean-field approximation:

we have a 3x3 matrix variational parameter:



• Depending on detail of interactions, we can have various saddle 
points. Consider a simple saddle point:

• The MF Hamiltonian has a global U(3) symmetry



• Consider another saddle point which is less symmetric:

• Now, the MF Hamiltonian only has a global U(1)3 symmetry



• Finally, consider a generic saddle point with no symmetries:

• Now, the MF Hamiltonian only has a global U(1) symmetry



• Problem: Hilbert space of partons is bigger than “physical” Hilbert 
space of original electrons! But dimension of Hilbert space cannot 
change because of interaction effects…

• Should only keep those unitary transformations which leave the 
physical electron operator invariant:

hence we need det W = 1

• Finally, including the fluctuations above MF turns the global 
symmetry into a (local) gauge structure

Fluctuations and emergent gauge structure



• Gauge structure depends on symmetry of saddle point solution:

global U(3) becomes gauge SU(3)

global U(1)3 becomes 

gauge U(1)xU(1)

global U(1) becomes gauge Z3



• Including fluctuations, low-energy effective theory contains partons 
in a topological bandstructure interacting with a dynamical 
gauge field

Low-energy field theory of partons

q=p

put back EM fieldFTI

SU(3), U(1)xU(1), Z3…

• Does this describe a stable phase of matter?

• If yes, what is its EM response?



• Since the partons are gapped, this is essentially a question about the 
stable phases of pure gauge theory with gauge group 
G=SU(3),U(1)xU(1),Z3…

• SU(3): presumably confining at low energy (although deconfined 
phases of SU(N) gauge theory are possible if one adds enough gapless, 
EM neutral matter)

• U(1)xU(1): admits a deconfined, gapless Coulomb phase (Banks, Myerson, 

Kogut, 1977)

• Z3: admits a deconfined, gapped phase (Ukawa, Windey, Guth, 1980)

• In the deconfined phase, we can integrate out the partons

Low-energy field theory of partons



Topological field theory of 3D FTI

over parton degrees of freedom

“internal” field strength

• Integrate out gapped partons: because of TI bandstructure, get 
topological q-terms (E.B terms) for the EM and “internal” gauge 
field am:

• Actually a general result: effective q determined only by the ABJ 
anomaly coefficient, to all orders in g :
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• Review ordinary TI: why is q periodic with period 2p?

• 3D TI with periodic b.c. on the electron wave function:

• Choose                             (Qi, Hughes, Zhang, 2008; Vazifeh, Franz, 2010)

• What is the period for q in the fractional TI?

Periodicity of q angle
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• Generalized Dirac quantization:

with ea an “electric flux vector” (vector in weight lattice), mb a 
“magnetic flux vector” (vector in dual weight lattice); a,b run over the 
gauge group generators (Englert, Windey, 1976; Goddard, Nuyts, Olive, 1977)

• Take SU(3) for example: full gauge group is U(1)em x SU(3)

• Cartan generators:

• Fundamental weights:

• Solve Dirac quantization condition for the dual fundamental weights:

Periodicity of q angle



• The allowed magnetic monopoles live in the dual weight lattice:

• Smallest magnetic monopole: only one of n1,n2,n3 is equal to 1

=> smallest monopole is “colored” (carries SU(3) magnetic flux)

• Compute action contributed by the q-term for, say, n1=1:

• Hence q has period 2p, meaning qeff has period 2p/3

• Therefore qeff= p/3 is T-invariant!

• Fractional q in a T-invariant system: fractional QME

Periodicity of q angle



• “Halved” FQHE on the surface

• Witten effect in the bulk

Physical properties of the FTI
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• T-invariant Z2 topological insulators in 2D and 3D exhibit robust 
gapless surface states that have been experimentally observed

• By analogy with the FQHE, fractional counterparts of these states 
can be constructed as a field theory of partons

• These FTI states have a fractional q angle q=p/N, N odd, but do not 
break TRS

• Physical observables: halved FQHE on the surface, Witten effect on 
magnetic monopole in the bulk

• Also, nontrivial ground state degeneracy for discrete gauge groups 
(ZN)

Conclusion



Open questions

• Relation to Joel Moore’s BF theory?

• Interesting exactly soluble model (M. Levin et al., arXiv:1108.4954) 
obtains a state with ZN topological order in the bulk… possibly 
related

• One needs to construct more realistic models and understand the 
relationship between different topological field theories “on the 
market”

• Related work by B. Swingle et al., arXiv:1005.1076, PRB 2011

Thank you!


