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Two-dimensional electrons in a strong magnetic field:
IQHE

Integer Quantum Hall Effect
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Two-dimensional electrons in a strong magnetic field:
FQHE

Fractional Quantum Hall Effect
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Two-dimensional electrons with strong spin-orbit
coupling: IQSHE

Integer Quantum Spin Hall Effect
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Is there a FQSHE?

Fractional Quantum Spin Hall Effect
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Goal:

Construct a microscopic realization of a FQHE without a uniform
applied magnetic field.

I One of the known topological field theories that break TRS and
parity should capture its universal properties.

Construct a microscopic realization of a FQSHE.

I If successful, is it described by a topological field theory?
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Definition of the noninteracting lattice models

Let Λ = A ∪ B be a bipartite 2-dimensional lattice.

Example 1: Honeycomb lattice

Example 2: Square lattice

If spinless electrons are hopping so as to preserve the point group
sublattice symmetry of sublattice A, then

H0 :=
∑

k∈BZ

ψ†kHkψk , Hk := B0,kσ0 + Bk · σ, ψk :=

(
ck ,A
ck ,B

)
where BZ stands for the Brillouin zone of sublattice A.
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Chern numbers
If we define

B̂k :=
Bk
|Bk |

, tanφk :=
B̂2,k

B̂1,k

, cos θk := B̂3,k ,

then eigenvalues and eigenvectors of Hamiltonian Hk are

ε±,k = B0,k ± |Bk |, χ+,k =

(
e−iφk/2 cos θk

2
e+iφk/2 sin θk

2

)
, χ−,k =

(
e−iφk/2 sin θk

2
−e+iφk/2 cos θk

2

)
.

The first Chern-numbers for the bands labeled by ± are

C± = ∓
∫

k∈BZ

d2k
4π

εµν

[
∂kµ cos θ(k)

] [
∂kνφ(k)

]
.

They have opposite signs if non-zero. All the information about the
topology of the Bloch bands of a gaped system is encoded in the
occupied single-particle Bloch wave functions.
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Example 1: Honeycomb lattice (Haldane 1988)

If the NN hopping
amplitude, t1 > 0, is positive
(solid lines)the NNN
hopping amplitude are
t2ei2πΦ/Φ0 , with t2 ≥ 0, in the
direction of the arrow
(dotted lines),

then

B0,k := 2t2 cos Φ
3∑

i=1

cos k · bi ,

Bk :=
3∑

i=1

 t1 cos k · ai
t1 sin k · ai

−2t2 sin Φ sin k · bi

 .

(cos Φ = t1/(4t2) = 3
√

3/43 with the
lower-band flatness ratio 1/7)
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Example 2: Square lattice (Wen, Wilczek, and Zee 1989)

If the NN hopping
amplitudes are t1eiπ/4, with
t1 > 0, in the direction of the
arrow (solid lines) the NNN
hopping amplitudes are
t2 ≥ 0 and −t2 along the
dashed and dotted lines,
respectively.

then

B0,k := 0,

B1,k + iB2,k := t1 e−iπ/4[1+

e+i(ky−kx )]+ t1 e+iπ/4[e−ikx +

e+iky
]
,

B3,k := 2t2
(
cos kx − cos ky

)
,

(t1/t2 =
√

2 with the flatness ratio 1/5)
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Band flattening
Band-flattening is defined by

Hflat
k :=

Hk
ε−,k

.

Let there be N sites on sublattice A and N sites on sublattice B.

We fix the number Nf of spinless fermions to be Nf = N.

Before band-flattening, the Nf = N groundstate is

〈r1, · · · , rN |k1, · · · ,kN〉 = det

 eik1·r1χ−,k1
· · · eikN ·r1χ−,kN

...
...

...
eik1·rNχ−,k1

, · · · eikN ·rNχ−,kN

 .

After band-flattening, the Nf = N groundstate has not changed, for all
single-particle Bloch states are unchanged under band flattening.
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Band flattening preserves locality

Let
On(x) :=

∑
i∈Λ

an,i δ(x − r i ), n = 1,2,

be any pair of two Hermitean local operators.

Define

C(1,2)
k1,··· ,kN

(x , y) := 〈k1, · · · ,kN |O1(x)O2(y)|k1, · · · ,kN〉 .

The correlation function

C(1,2)(x , y) ∝ e−∆|x−y|

must decay exponentially before and after band flattening, for neither
the existence of the single-particle gap ∆ nor the eigenfunctions are
affected by the band flattening.
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Definition of the lattice model supporting the FQHE
Let

H0 :=
∑

k∈BZ

ψ†k
Bk · τ
|Bk |

ψk .

This kinetic energy supports the integer quantization σcharge
xy = ±e2

h of
its filled bands.
We then choose the interaction

Hint :=
1
2

∑
i,j∈Λ

ρi Vi,jρj ≡ V
∑
〈ij〉

ρi ρj , V>0,

where ρi is the occupation number on the site i ∈ Λ := A ∪ B of the
square lattice.
Define the filling fraction ν to be the ratio

ν :=
Nf
N

where Nf is the number of spinless fermions and N the number of sites
in sublattice A of the square lattice.
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Fractional quantum Hall ground state

Three distinctive properties of a fractional quantum Hall ground state
at filling fraction ν < 1 (where ν−1 is an odd integer) and with periodic
boundary conditions (toroidal geometry) are

the existence of a spectral gap above the ground state manifold,

the ν−1–fold topological degeneracy of the ground state manifold
in the thermodynamic limit,

and the quantization νc of the Hall conductance σcharge
xy in units of

e2/h.
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Spectral gap if N = 3× 6 and Nf = 6, i.e., ν = 1/3
Add a sublattice-staggered chemical potential 4µs to the single-particle
Hamiltonian by replacing B3,k → B3,k + 4µs.
The parameters t2 and µs of Hflat

0 interpolate between topological
(|t2| > |µs|) and non-topological (|t2| < |µs|) single-particle bands.

Here, g := (2/π) arctan |µs/t2| and all energies are measured relative
to the interacting band width Eb. The gap is of order V when g = 0.
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Topological degeneracy if N = 3× 6 and Nf = 6
Impose the twisted boundary conditions

|Ψγ(r + Nxx)〉 = eiγx |Ψγ(r)〉, |Ψγ(r + Ny y)〉 = eiγy |Ψγ(r)〉

where γ t = (γx , γy ) are the twisting angles and Lx × Ly = N the
number of unit cells.

Due to translational invariance, the Hamiltonian does not couple states
with different center of mass momenta Q := k1 + . . .+ kNf

, where
k i , i = 1, · · · ,Nf are the single-particle momenta of an Nf -particle
state.

At 1/3-filling of the 3× 6 sublattice A, the particle number Nf = 6 is
commensurate with the lattice dimensions and all three topological
states have the same Q.

As a consequence, their topological degeneracy is lifted and a unique
ground state appears.
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We can now use twisted boundary conditions to probe the topological
nature of the ground state: varying γx between 0 and 2π is equivalent
to the adiabatic insertion of a flux quantum in the system.

During this process, a topological ground state with
σ

charge
xy × h/e2 = 1/3 should undergo two level crossings with the other

two gaped topological states (Thouless 1989).
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Hall conductance if N = 3× 6 and Nf = 6
The Hall conductance σcharge

xy is related to the Chern-number C of the
many-body ground state |Ψ〉 as

σcharge
xy = C e2/h

where (Niu and Thouless 1984)

C :=
1

2πi

∫
γ∈[0,2π]2

d2γ ∇γ ∧
〈
Ψγ

∣∣∇γ

∣∣Ψγ

〉
.

Alternatively, we introduce

C̃ =
1

2πi

∫
k∈BZ

d2k n−,k
[
∇k ∧

(
χ†−,k∇kχ−,k

)]

where n−,k = 〈Ψ|c†−,k c−,k |Ψ〉 is the occupation number of the single-particle Bloch
state in the lower (−) band with wave vector k evaluated in the many-body ground
state.

It can be shown that C = C̃.
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When µs = 0, t2 = t1/
√

2, we find C = 0.29 and C̃ = 0.30 and attribute
the deviations from C = 1/3 to finite-size effects.

When µs = t1/
√

2, t2 = 0, we find that C and C̃ vanish to a precision of
10−6 and 10−3, respectively.
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Definition of the lattice model supporting the FQSHE

Bernevig and Zhang 2006

Let

H0 :=
∑

k∈BZ

(
ψ†k ,↑

Bk · τ
|Bk |

ψk ,↑ + ψ†k ,↓
B−k · τ t∣∣B−k

∣∣ ψk ,↓

)
.

This kinetic energy supports the integer QSH quantization
σ

spin
xy = ±2 × e

4π .

We then choose the interaction

Hint := U
∑
i∈Λ

ρi,↑ρi,↓ + V
∑
〈ij〉∈Λ

(
ρi,↑ρj,↑ + ρi,↓ρj,↓ + 2λρi,↑ρj,↓

)
,

U,V ≥ 0.
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Numerical diagonalization at 4/3 filling of sublattice A

λ

a)

b)

0 10 20

3-fold

9-fold

0
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0

0.1

E/V

γ
x

2̟0 ̟

0.2

U/V = 0, λ = 0
c)

γ
x

2̟0 ̟ γ
x

2̟0 ̟

d)
U/V = 0, λ = 1 U/V = 3, λ = 1

∋

Numerical diagonalization results for 16 electrons
when sublattice A is made of 3× 4 sites and with
t2/t1 = 0.4. (a) Ground state degeneracies.
Denote with En the n-th lowest energy eigenvalue
of the many-body spectrum where E1 is the
many-body ground state, i.e., En+1 ≥ En for
n = 1, 2, · · · . Define the parameter ε by
εn := (En+1 − En)/(En − E1). If a large gap
En+1 − En opens up between two consecutive
levels En+1 and En compared to the cumulative
level splitting En − E1 between the first n
many-body eigenstates induced by finite-size
effects, then the parameter εn is much larger than
unity. The parameter εn has been evaluated for
n = 3 and n = 9, yielding the blue and red regions,
respectively. For all other n 6= 1, no regions with
εn & O(1) of significant size were found. Within
the limited range of available system sizes, it is thus
not possible to decide on whether and how the
level-splitting above the ground state in the white
regions of the parameter space extrapolates in the
thermodynamic limit. (b)-(d) The lowest
eigenvalues with spin-dependent twisted boundary
conditions as a function of the twisting angle γx.
The number of low-lying states that are
energetically separated from the other states is 9,
3, and 3, respectively. In panel (c), it is the lowest
band parametrized by γx that is 3-fold degenerate.
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Spontaneous IQHE when Ne = N = 3× 4
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For Ne = N = 3× 4, the ground state is an
Ising ferromagnet with |σcharge

xy | = e2

h when
the flat band is topologically non-trivial:
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Bulk time-reversal symmetric effective theory (Abelian)
Define S := S0 + Se + Ss with

S0 := −
∫

dt d2x εµνρ
1

4π
Kij ai

µ ∂ν aj
ρ,

where K =

(
κ ∆

∆T −κ

)
, κT = κ ∈ GL(N,Z), ∆T = −∆ ∈ GL(N,Z);

Se := +

∫
dt d2x εµνρ

e
2π

Qi Aµ∂ν ai
ρ,

where Q =

(
%
%

)
∈ Z2N , (−)Qi = (−)Kii ;

Ss := +

∫
dt d2x εµνρ

s
2π

Si Bµ∂ν ai
ρ,

where S =

(
%
−%

)
∈ Z2N . Then, |det K | = (integer)2 is the topological

degeneracy and

νe := QT K−1 Q = 0, νs :=
1
2

QT K−1 S 6= 0, σspin
xy :=

e
2π
× νs .
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Wave function for N = 1

If

K =

(
+m 0
0 −m

)
∈ GL(2,Z), Q =

(
1
1

)
∈ Z2,

for some given positive odd integer m, then

νs =
1
m

and [generalization of Laughlin’s wavefunctions]

Ψ1/m ({z, z̄}n | {w , w̄}n) = n∏
i=1

n∏
j=i+1

(
zi − zj

)m (
w̄i − w̄j

)m

 n∏
i=1

exp

(
−
∣∣zi

∣∣2 +
∣∣w̄i

∣∣2
4`2

)
.
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Wave function in the symmetric representation for N = 2
If

K =

+

(
m1 n
n m2

)
+

(
0 +d
−d 0

)
−
(

0 +d
−d 0

)
−
(

m1 n
n m2

)
 ∈ GL(4,Z), Q =


1
1
1
1

 ∈ Z4,

with m1m2 − n2 > 0, then

νs =
m1 + m2 − 2n

m1 m2 − n2 + d2

and [generalization of Halperin’s (m1,m2,n) bilayer wavefunction]

Ψsymm
m1,m2,n,d

(
{z1, z̄1}n1

; {z2, z̄2}n2
| {w1, w̄1}n1

; {w2, w̄2}n2

)
=

Ψ1/m1

(
{z1, z̄1}n1

| {w1, w̄1}n1

)
×Ψ1/m2

(
{z2, z̄2}n2

| {w2, w̄2}n2

)
×

n1∏
i=1

n2∏
j=1

(
z1,i − z2,j

)n (w̄1,i − w̄2,j
)n (z1,i − w2,j

)d (w̄1,i − z̄2,j
)d
.
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Wave function in the hierarchical representation for N = 2
If

K =

+

(
+m +1
+1 −p

)
+

(
0 +d
−d 0

)
−
(

0 +d
−d 0

)
−
(

+m +1
+1 −p

)
 ∈ GL(4,Z), Q =


1
0
1
0

 ∈ Z4,

with m a positive odd integer and p an even integer then

νs =
p

mp + 1− d2

and [generalization of Halperin’s νc = p/(mp + 1) single-layer wavefunction]

Ψhier
m,−p,1,d

(
{z, z̄}pn | {w , w̄}pn

)
= n∏

i=1

∫
Ω

d2 ηi

∫
Ω

d2 ξi

×Ψ1/m

(
{z, z̄}pn | {w , w̄}pn

)
×Ψ1/p

({
ξ, ξ̄
}

n | {η, η̄}n

)

×
pn∏

i=1

n∏
j=1

(
zi − ηj

) (
w̄i − ξ̄j

) (
zi − ξj

)d (w̄i − η̄j
)d
.
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Edge theory with time-reversal symmetry
The bulk action with a two-body and translation-invariant interaction is
equivalent to

Ĥ0 :=

L∫
0

dx
1

4π
∂xΦ̂T V ∂xΦ̂

where V is a 2N × 2N symmetric and
positive definite matrix and[

Φ̂i (t , x), Φ̂j (t , x
′)
]

= −iπ
(

K−1
ij sgn(x − x ′) + Θij

)
.

y

– Ly/2 + Ly/2

Here,
Θij := K−1

ik Lkl K−1
lj

and the antisymmetric 2N × 2N matrix L is defined by (Haldane 1995)

Lij = sgn(i − j)
(
Kij + Qi Qj

)
,

where sgn(0) = 0 is understood.
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Tunneling of electronic charge among the different edge branches is

Ĥint := −
L∫

0

dx
∑
T∈L

hT (x) : cos
(

T TK Φ̂(x) + αT (x)
)

: .

The real functions hT (x) ≥ 0 and 0 ≤ αT (x) ≤ 2π encode information about
the disorder along the edge when position dependent. The set

L :=
{

T ∈ Z2N
∣∣T TQ = 0

}
encodes all the possible charge neutral tunneling processes, i.e., those that
just rearrange charge among the branches.
At least one pair of Kramers degenerate edge state remains delocalized
along the edge described by Ĥ := Ĥ0 + Ĥint if the integer

R := r %T (κ−∆)−1 %

is odd. Here, the integer r is the smallest integer such that all the N
components of the vector r (κ−∆)−1 % are integers.
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Summary

We have proposed a simple recipe to deform some non-interacting
lattice models so as to obtain flat bands, while preserving locality.

We flattened the bands of the chiral π-flux phase and then lifted
the resulting macroscopic ground state degeneracy with repulsive
interactions.

Via exact diagonalization, we have found signatures for a FQH-like
topological ground states at 1/3 and 2/3 fillings of sublattice A.

We took the same approach to construct a FQSH-state and found
microscopic signatures for it as well as spontaneous breaking of
TRS and parity via IQH and FQH ground states.

This opens the door for the realization of the QHE without an
applied magnetic field or the QSHE at room temperature.
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Figure: Comparison of the topological (top; t2 = 1/
√

2, µs = 0) and
non-topological (bottom; t2 = 0, µs = 1/

√
2) single-particle model. (a) The

shaded area represents the Fermi see of the lower band at the
commensurate filling fraction Ne = N when κ < 1. (b) The eigenspinor χk ,σ,
when interpreted as a point on the surface of the unit sphere, swipes out the
full surface of this sphere (a small portion of this sphere near one pole) as k
takes values everywhere in the BZ for the topological (non-topological) band
structure. (c) The spread of the Wannier states in real space indicates their
delocalized (localized) character for the topological (non-topological) band
structure.
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Figure: Numerical exact diagonalization results for flat bands κ = 1 at the
commensurate filling fraction Ne = N. Markers show the energy of the lowest state in
different sectors of total spin S (in units of ~/2) measured with respect to the ground
state energy for Lx = 3, Ly = 4. Here, g := (2/π)arctan|µs/t2| so that g > 0.5 and
g < 0.5 correspond to the trivial and topological single-particle bands, respectively.
Since there is only one state in the fully polarized sector |S| = 12, the difference
between the asterisks and the squares is the many-body excitation gap ∆(g). The
thick blue line shows the extrapolation of ∆(g) to the thermodynamic limit. In the inset,
exact diagonalization in the sector with one spin flipped away from the fully polarized
sector is presented for µs = 0, t2 = 1/

√
2 and Lx = Ly ranging from 6 to 30. The

straight lines are guide to the eye and make evident an even-odd effect in Lx = Ly.
Deep in the topologically non-trivial regime g � 0.5, we observe a sizable
∆(g � 0.5). The topologically trivial regime g > 0.5 is also characterized by a gap
∆(g > 0.5) in the sector with one spin flipped away from the fully polarized sector,
however this gap is much smaller than ∆(g � 0.5).
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Figure: Numerical exact diagonalization results at the commensurate filling fraction
Ne = N as a function of the bandwidth W for Lx = 3, Ly = 4. Plotted is the energy of
the lowest state in different sectors of total spin S (in units of ~/2) measured with
respect to the ground state energy. (a) Topological phase with µs = 0, t2 = 1/

√
2. The

ground state is gaped and fully spin-polarized for W/U < 0.7, while it is unpolarized
for W/U > 0.7. (b) Topological trivial phase with µs = 1/

√
2, t2 = 0. The unpolarized

ground state appears already for very small values of W/U.
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Figure: Low energy spectrum spinless Haldane model with interactions at one third
filling of 3× 3 sublattice A.
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