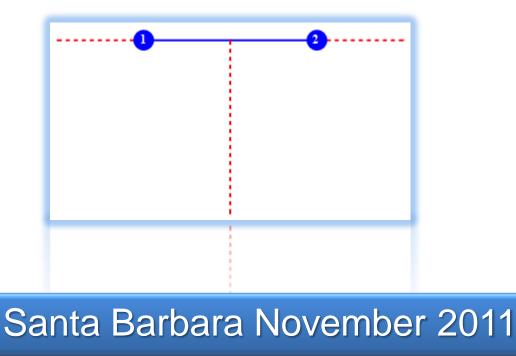
Majorana Fermions in Quantum wires

Yuval Oreg



Department of Condensed Matter Physics. Weizmann Institute of Science, Rehovot, Israel

Collaborators

Jason Alicea, Gil Refael, Felix von Oppen and MPA Fisher, Bert Halperin , Ady Stern, Liang Jiang, David Pekker , Yonatan Most

Outline

OIntroduction:

- p Wave SC, and Majorana fermions
- Realization in FQHE
- \odot Realization in 3D TI, 2D semi conductors with and without FM
- Majoranas in 1D wires
 - Five phases: N,V,H,S,T tuned by μ and TDOS
 - Josephson "transistor"
 - Topological numbers
 - Examples for wave functions
- \odot Exchange and non Abelian physics in 1D wires

(embedded in 3D)

• Relation to effective Spinors, calculation of the Berry phase.

Outline

OIntroduction:

- p Wave SC, and Majorana fermions
- Realization in FQHE
- o Realization in 3D TI, 2D semi conductors with and without FM
- o Majoranas in 1D wires
 - Five phases: N,V,H,S,T tuned by μ and TDOS
 - Josephson "transistor"
 - Topological numbers
 - Examples for wave functions
- o Exchange and non Abelian physics in 1D wires

(embedded in 3D)

Relation to effective Spinors, calculation of the Berry phase.

2D Spin less *px+ipy* SC

$$H = \int \frac{d^{2}k}{(2\pi)^{2}} \left[(\varepsilon_{k} - \mu) \psi_{k}^{+} \psi_{k} + (\Delta_{k} \psi_{k} \psi_{-k} + h.c.) \right]$$

$$\Delta_{k} \propto k_{x} + ik_{y}$$
Majorana
Fermion
$$Linform SC state$$
is gapped in the bulk
Kopnin and Salomaa (1991)
$$E_{k} = \sqrt{|\Delta_{k}|^{2} + (\varepsilon_{k} - \mu)^{2}}$$

$$E = 0$$

Spin less *px+ipy* SC vs. S wave SC

Spinless P-wave

$$\Delta_k \psi_k \psi_{-k} + h.c.$$
$$\Delta_k \propto k_x + ik_y$$

$$u\psi(r)\partial_r\psi(r) + h.c.$$

$$|\Delta|e^{i\phi}\psi_i\psi_{i+1} + h.c.$$
$$\Delta = Const$$

 $\gamma_k = u_k c_k^{\dagger} + v_k c_{-k}$

Fermion Doubling

S-wave $\Delta \psi_{k\uparrow} \psi_{-k\downarrow} + h.c.$ $\Delta = Const$ $\Delta \psi_{\uparrow}(r)\psi_{\downarrow}(r) + h.c.$ $\Delta = Const$ $\Delta \psi_{i\uparrow} \psi_{i\downarrow} + h.c.$ $\Delta = Const$

 $\gamma_{k0} = u_k c_{k\uparrow}^{\dagger} + v_k c_{-k\downarrow}$

 $\gamma_{k1} = u_k c_{k\perp}^{\dagger} + v_k c_{-k\uparrow}$

Properties of Majorana fermions

•Majorana Fermion is its own antiparticle

$$\gamma = \gamma^+$$

• Existence is topologically protected

 γ_1

• One Majorana = "half" a usual (non local) Dirac fermion $f = \gamma_1 + i \gamma_2$ Majorana Fermion

E = 0

• 2n Majoranas → 2ⁿ degenerate ground states

 γ_2

• Exhibit non-Abelian braiding statistics

Majoranas & non Abelian Physics

Four Majoranas $\gamma_1 \bullet \gamma_2$ $\gamma_2 \bullet \gamma_4$ $\gamma_3 \bullet \gamma_4$ Two non local Dirac Fermions

$$f_{A} = \gamma_{1} + i\gamma_{2}$$

$$f_{B} = \gamma_{3} + i\gamma_{4}$$

$$\begin{vmatrix} 0_{A}, 0_{B} \rangle, & 0_{A}, 1_{B} \rangle \\ & 1_{A}, 0_{B} \rangle, & 1_{A}, 1_{B} \rangle$$

What happens when we braid γ_2 around γ_3 ?

$$\begin{array}{c} 0_{A}, 0_{B} \rangle \rightarrow \frac{1}{\sqrt{2}} \left(\left| 0_{A}, 0_{B} \rangle - i \left| 1_{A}, 1_{B} \right\rangle \right) \\ 1_{A}, 0_{B} \rangle \rightarrow \frac{1}{\sqrt{2}} \left(\left| 1_{A}, 0_{B} \right\rangle - i \left| 0_{A}, 1_{B} \right\rangle \right) \end{array}$$

Read & Green 2000; Ivanov 2001, Stern, von Oppen & Mariani 2004

Quantum state changes

Braiding implements unitary rotation within degenerate manifold

Urgently wanted for topological quantum computation

Nayak, Simon, Stern, Freedman, & Das Sarma, RMP 80, 1083 (2008)

How to experimentally realize Px+iPy SC

- Not so easy: We live in 3D
 - Fermions come usually in pairs (e.g. spin)
 - P+ i P are rare (currently St₂RuO₄)
- One elegant solution v=5/2

Very challenging

1.) Only numerical evidences to

Moore Read state

- 2.) If exist its fragile
- 3.) Requires strong magnetic field and low temp

<u>v = 5/2</u>

Composite Fermi sea is unstable towards p+ip pairing!

$$\Psi_{\rm Pf} = {\rm Pf}(\frac{1}{z_i - z_j}) \prod_{i < j} (z_i - z_j)^2$$

How to experimentally realize Px+iPy SC

- Not so easy: We live in 3D
 - Fermions come usually in pairs (e.g. spin)
 - P+ i P are rare (currently St₂RuO₄)
- One elegant solution v=5/2
- Additional promising

settings recently proposed

- Topological insulators
- Semiconductor heterostructures

See Marcel Franz, Physics 3, 24 (2010)

Outline

olntroduction:

- p Wave SC, and Majorana fermions
- Realization in FQHE

\odot Realization in 3D TI, 2D semi conductors with and without FM

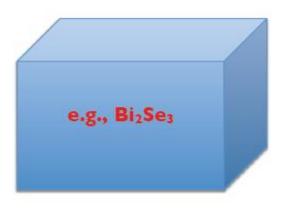
- o Majoranas in 1D wires
 - Five phases: N,V,H,S,T tuned by μ and TDOS
 - Josephson "transistor"
 - Topological numbers
 - Examples for wave functions
- o Exchange and non Abelian physics in 1D wires

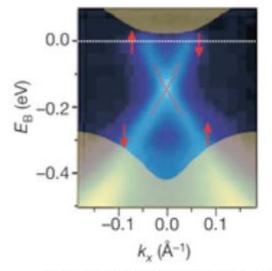
(embedded in 3D)

Relation to effective Spinors, calculation of the Berry phase.

Majoranas in 3D topological insulator

3D topological insulators: inert bulk but odd # of Dirac cones on the surface



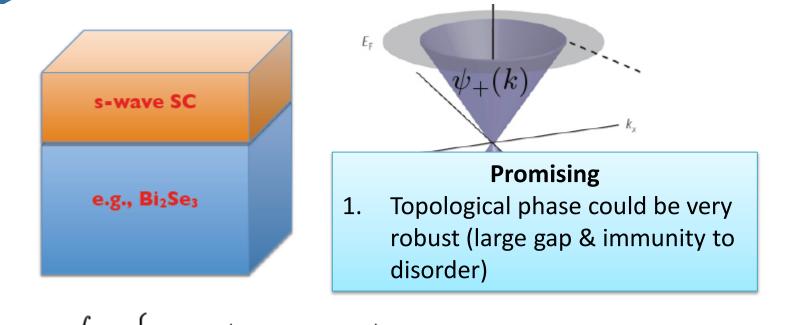


D. Hsieh et al., Nature 460, 1101 (2009)

$$H = \int d^2 \mathbf{r} \psi^{\dagger} (-iv\vec{\sigma} \cdot \nabla - \mu) \psi$$

(Fu, Kane, & Mele 2006; Moore & Balents 2006; Roy 2006; Fu & Kane 2008) "Fermion doubling" solved, but need to generate topological superconductivity...

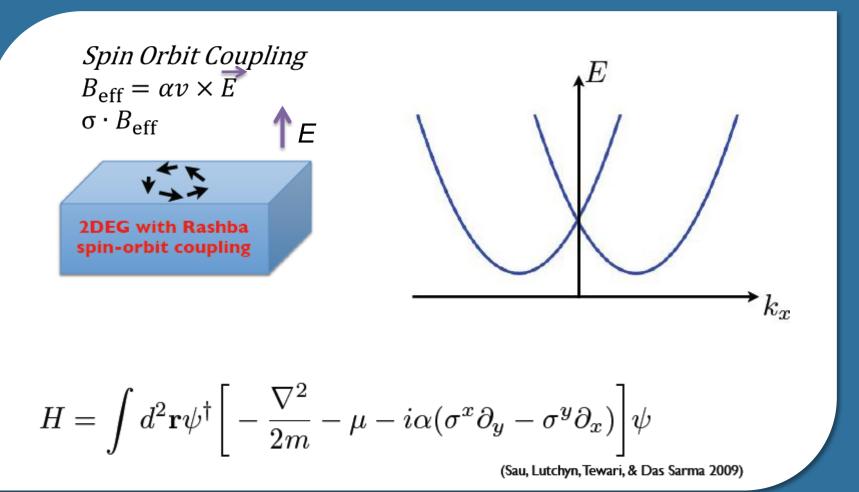
Majoranas in 3D topological insulator



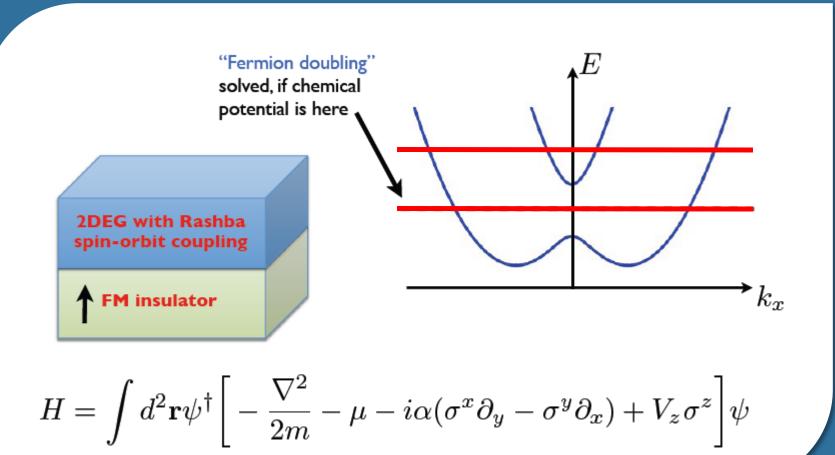
$$H = \int d^{2}\mathbf{k} \left\{ \begin{bmatrix} \epsilon_{+}(k)\psi_{+}^{\dagger}\psi_{+} + \epsilon_{-}(k)\psi_{-}^{\dagger}\psi_{-} \end{bmatrix} \right\}$$

$$Pairing is p+ip$$
in this basis!
$$+\Delta \left[\left(\frac{k_{x} - ik_{y}}{2k} \right) \left[\psi_{-}(k)\psi_{-}(-k) - \psi_{+}(k)\psi_{+}(-k) \right] + h.c. \right] \right\}$$

Majoranas in Semi Conductors

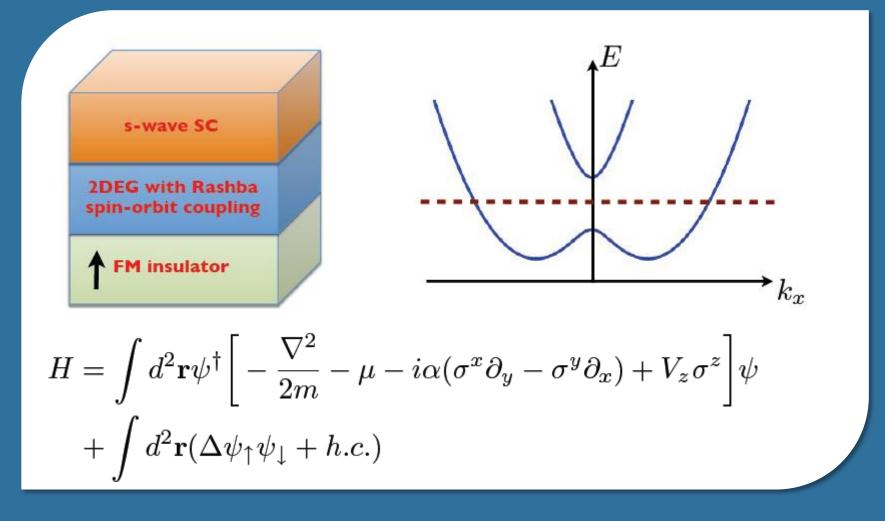


Majoranas in Semi Conductors

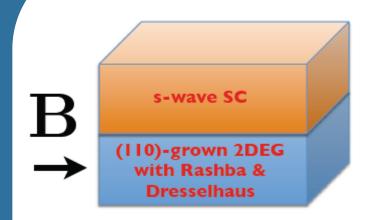


(Sau, Lutchyn, Tewari, & Das Sarma 2009)

Majoranas in Semi Conductors



Majoranas in Semi Conductors without the FM



Proximity effect generates a topological SC supporting Majorana fermions!

> In-plane field plays the role of the FM insulator!

$$\begin{split} H &= \int d^2 \mathbf{r} \psi^{\dagger} \bigg[-\frac{\nabla^2}{2m} - \mu - i\alpha (\sigma^x \partial_y - \sigma^y \partial_x) - \underbrace{i\beta \sigma^z \partial_x}_{l} + V_y \sigma^y \bigg] \psi \\ &+ \int d^2 \mathbf{r} (\Delta \psi_{\uparrow} \psi_{\downarrow} + h.c.) \end{split} \qquad \begin{array}{l} \text{Dresselhaus: tends to} \\ &\text{align spins normal} \\ &\text{to the 2DEG} \end{split}$$

Alicea 2010

Outline

olntroduction:

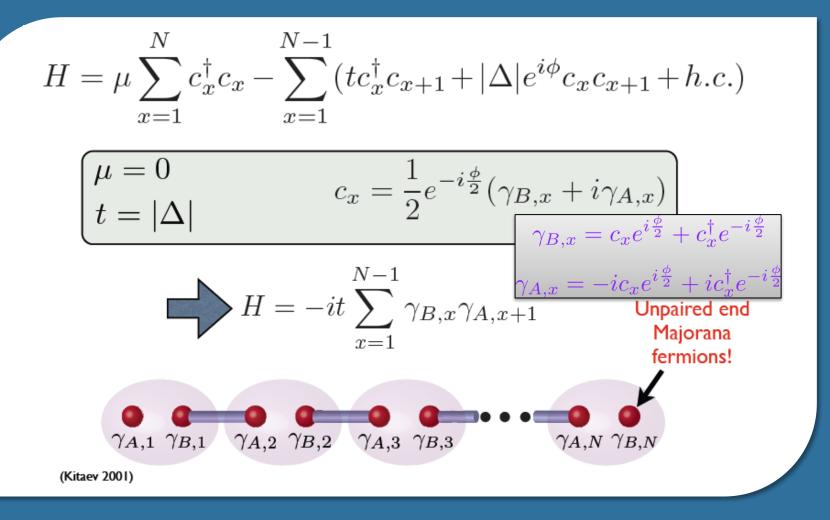
- p Wave SC, and Majorana fermions
- Realization in FQHE

o Realization in 3D TI, 2D semi conductors with and without FM

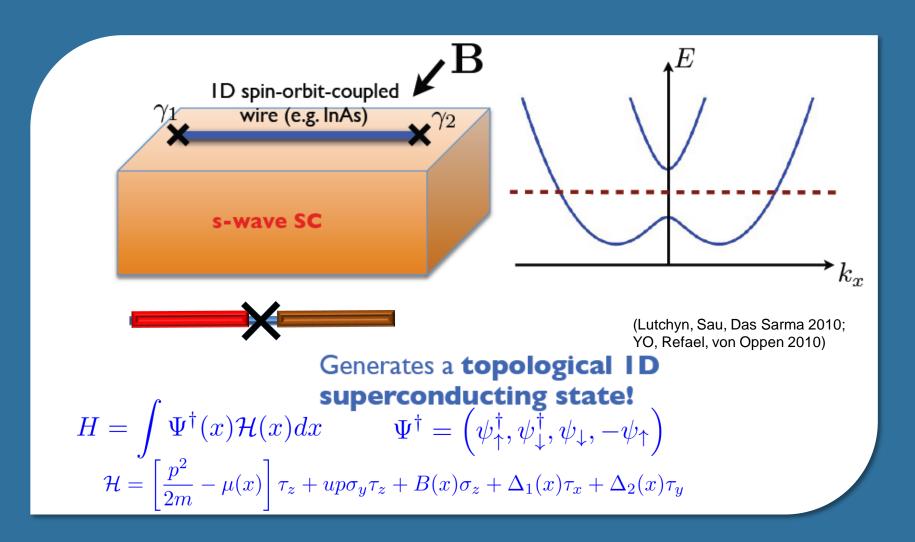
Majoranas in 1D wires

- Five phases: N,V,H,S,T tuned by μ and TDOS
- Josephson "transistor"
- Topological numbers
- Examples for wave functions
- Exchange and non Abelian physics in 1D wires (embedded in 3D)
 - Relation to effective Spinors, calculation of the Berry phase.

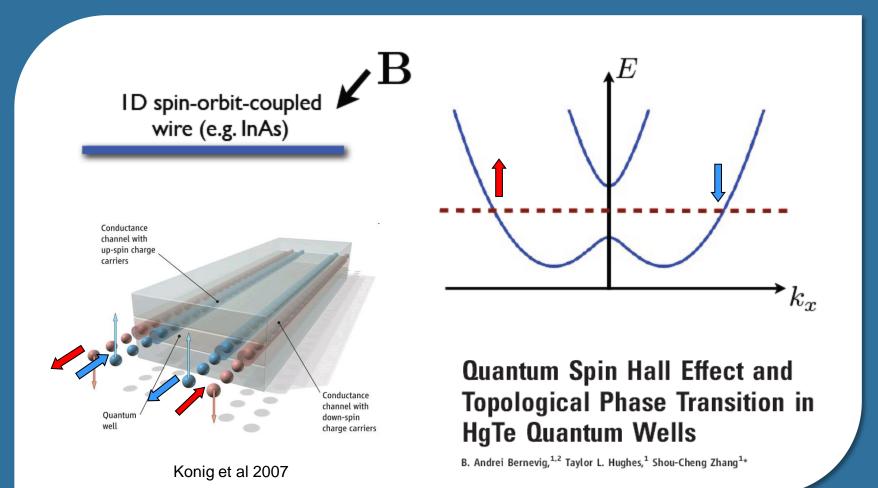
1D spin-less P wave SC: Kitaev's Model



Semi conducting wires



Equivalence to edge states of 2DTI



Recent Developments

Potter and Lee

sufficient to have odd number of channels in a wire. Duckheim & Brouwer, Chang & Zhang et al.

Half metal in proxy to superconductor with SOI

Akhmerov, Beenakker, Hassler et al.

Measurement schemes, effects of disorder, Coulomb Island...

Lutchyn and Bonderson

Transfer to a standard qubit

<u>Clarke, Sau & Tewary (Das Sarma)</u>

General properties of exchanging Majoranas on a network

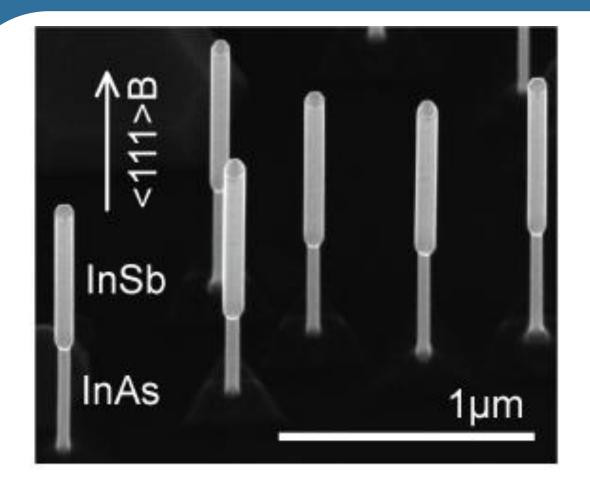
Gangadharaiah, Loss et al.

Interaction effects, helical liquid in CNT.....

Cook and Marcel Franz,

TI wires

InAs/InSb nanowires by MOVPE (Lund)



Outline

olntroduction:

- p Wave SC, and Majorana fermions
- Realization in FQHE
- o Realization in 3D TI, 2D semi conductors with and without FM

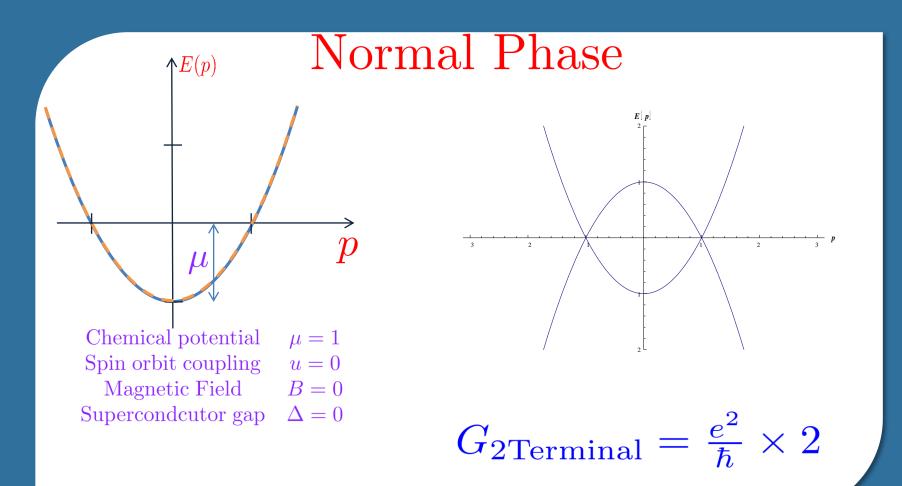
o Majoranas in 1D wires

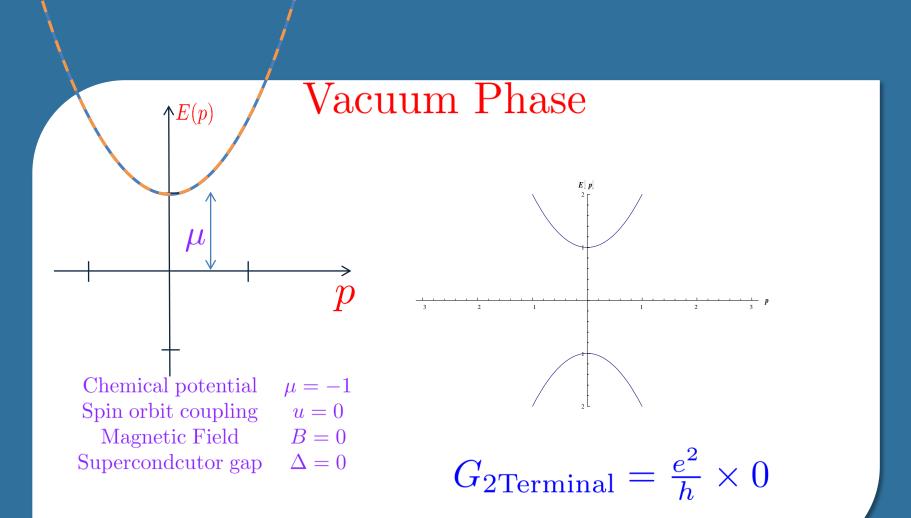
- Five phases: N,V,H,S,T tuned by μ and TDOS

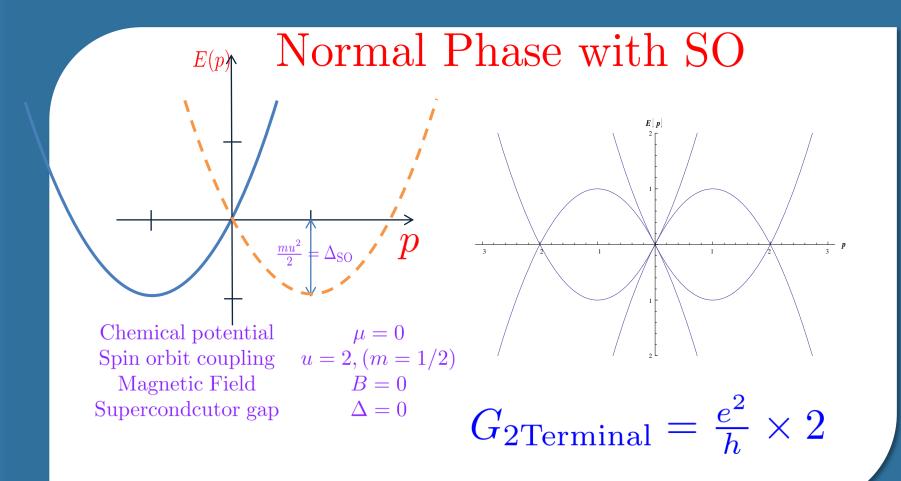
- Josephson "transistor"
- Topological numbers
- Examples for wave functions
- o Exchange and non Abelian physics in 1D wires

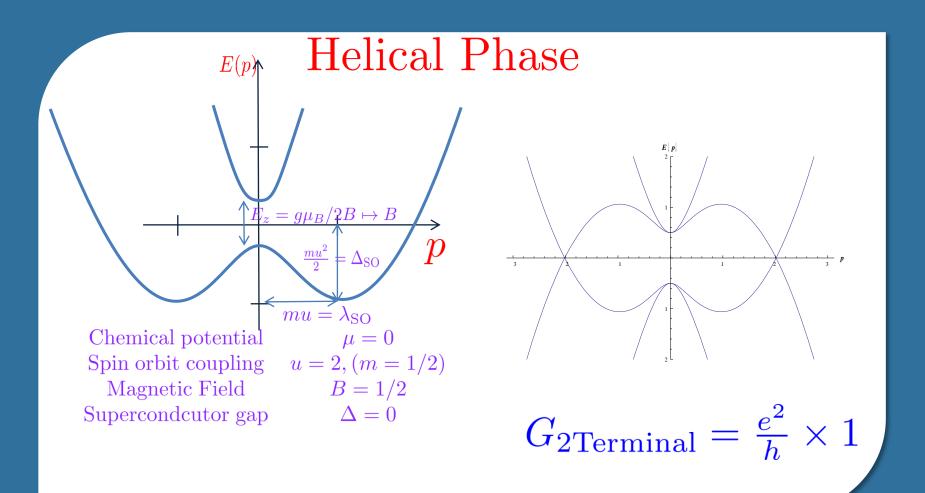
(embedded in 3D)

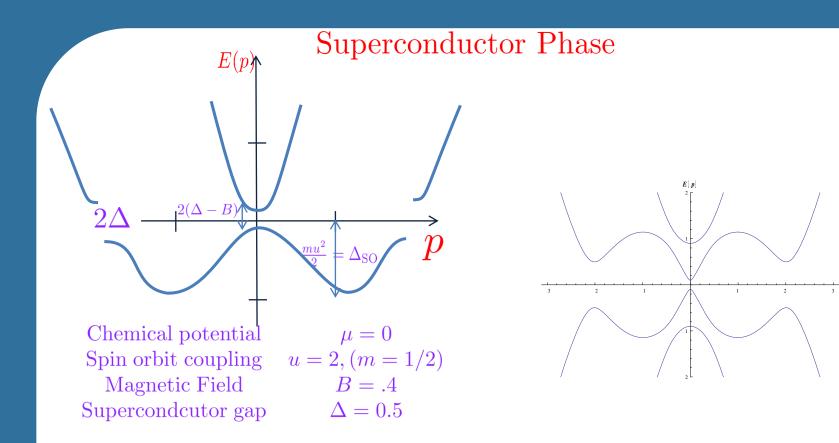
Relation to effective Spinors, calculation of the Berry phase.

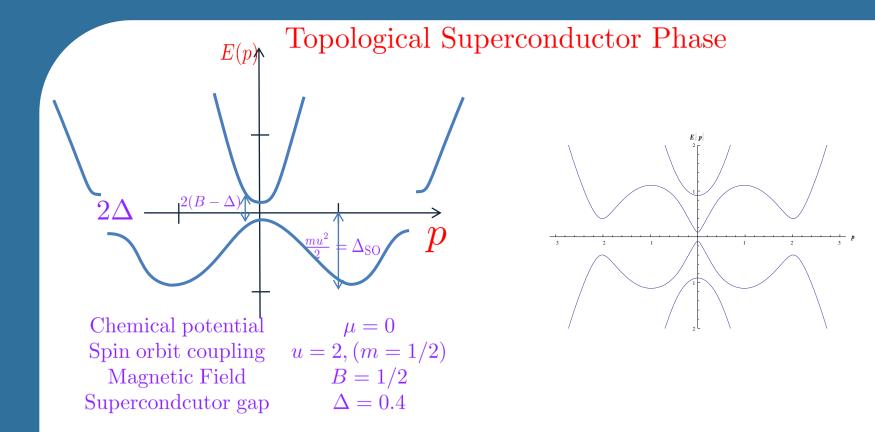












Outline

olntroduction:

- p Wave SC, and Majorana fermions
- Realization in FQHE
- o Realization in 3D TI, 2D semi conductors with and without FM
- o Majoranas in 1D wires
 - Five phases: N,V,H,S,T tuned by µ and TDOS
 - Josephson "transistor"
 - Topological numbers
 - Examples for wave functions
- o Exchange and non Abelian physics in 1D wires

(embedded in 3D)

Relation to effective Spinors, calculation of the Berry phase.

$$\mathcal{H} = \begin{pmatrix} \frac{p^2}{2m} - \mu + up & B & \Delta & 0 \\ B & \frac{p^2}{2m} - \mu - up & 0 & \Delta \\ \Delta & 0 & -\frac{p^2}{2m} + \mu - up & B \\ 0 & \Delta & B & -\frac{p^2}{2m} + \mu + up \end{pmatrix}.$$
 (1)

Green's function:

$$G(\epsilon) = \int_{-\infty}^{\infty} dp (\epsilon - \mathcal{H})^{-1}.$$
 (2)

In the Green's function matrix, the element for spin-up electrons is G_{11} . Using $\mathcal{H}|\phi^{(n)}\rangle = E^{(n)}|\phi^{(n)}\rangle$:

$$G_{11}(\epsilon) = \int_{-\infty}^{\infty} dp \langle 1 | (\epsilon - \mathcal{H})^{-1} | 1 \rangle$$

=
$$\int_{-\infty}^{\infty} dp \langle 1 | \sum_{n} |\phi^{(n)}\rangle \langle \phi^{(n)} | (\epsilon - \mathcal{H})^{-1} | 1 \rangle$$

=
$$\int_{-\infty}^{\infty} dp \sum_{n} \frac{\left| \langle 1 | \phi^{(n)} \rangle \right|^{2}}{\epsilon - E^{(n)}}, \quad \text{Most \& YO in preparation}$$

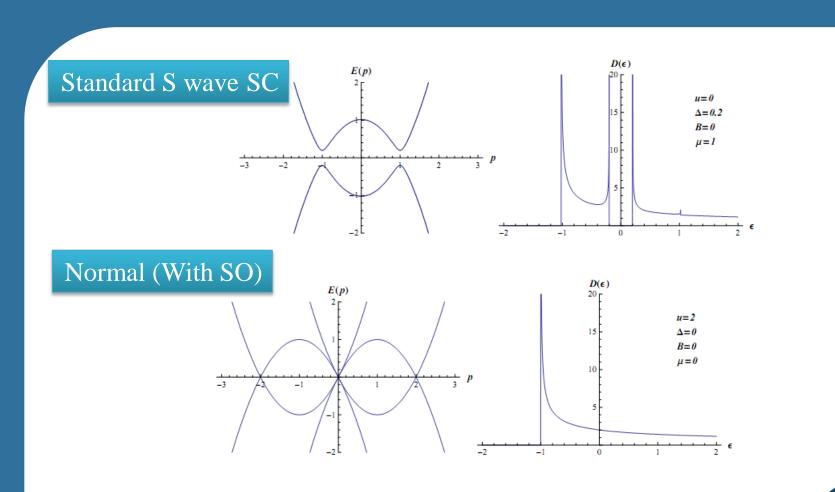
 \mathbf{n}

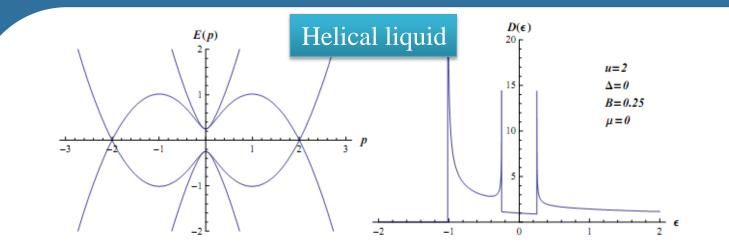
The spin up density of states is:

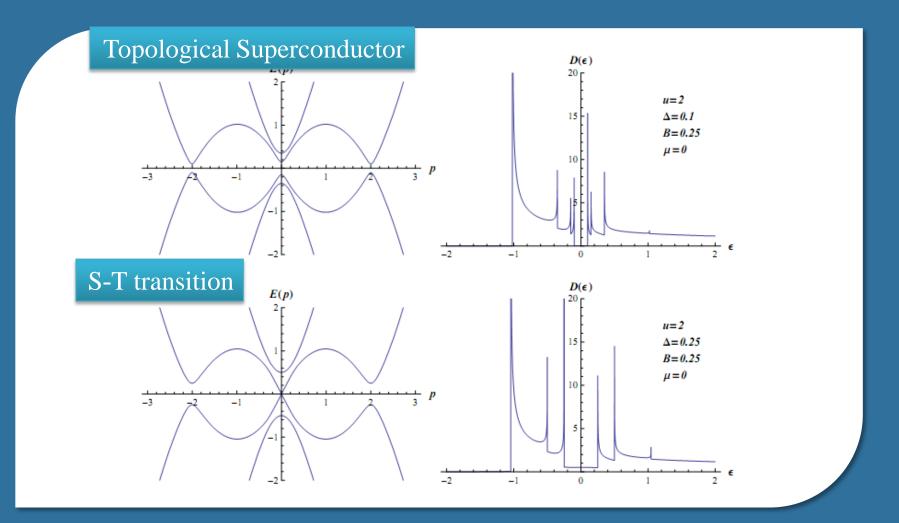
$$D_{\uparrow}(\epsilon) = \frac{1}{\pi} \operatorname{Im} \lim_{\delta \to 0^{+}} G_{11}(\epsilon - i\delta) = \sum_{\{p \mid E(p) = \epsilon\}} \frac{|\phi_{1}(p)|^{2}}{|E'(p)|}$$
(3)

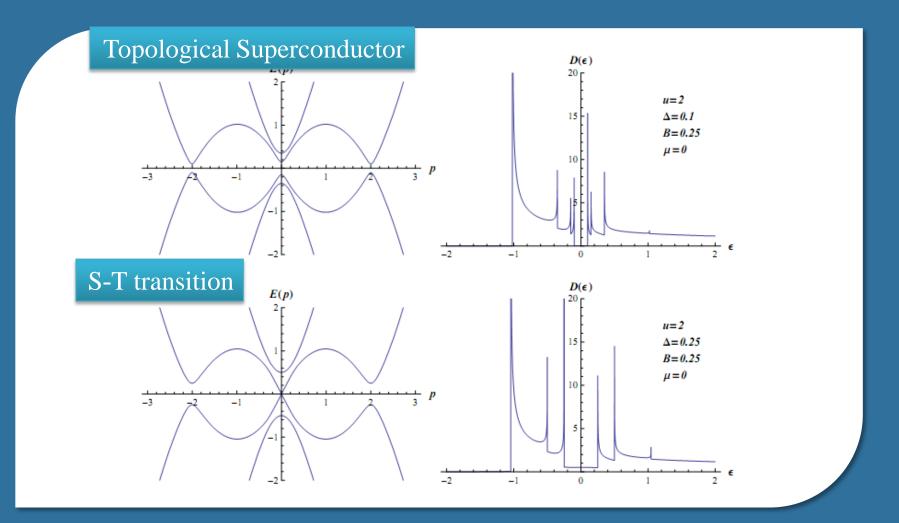
The spin down density of states is:

$$D_{\downarrow}(\epsilon) = \frac{1}{\pi} \operatorname{Im} \lim_{\delta \to 0^{+}} G_{22}(\epsilon - i\delta) = \sum_{\{p \mid E(p) = \epsilon\}} \frac{|\phi_{2}(p)|^{2}}{|E'(p)|}$$
(4)

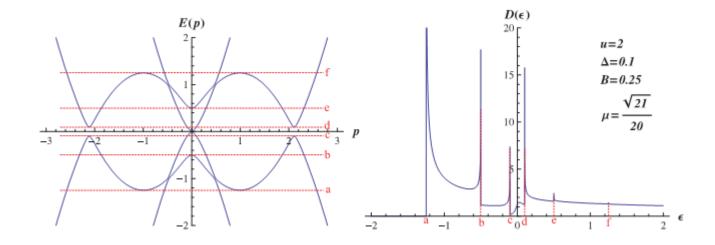


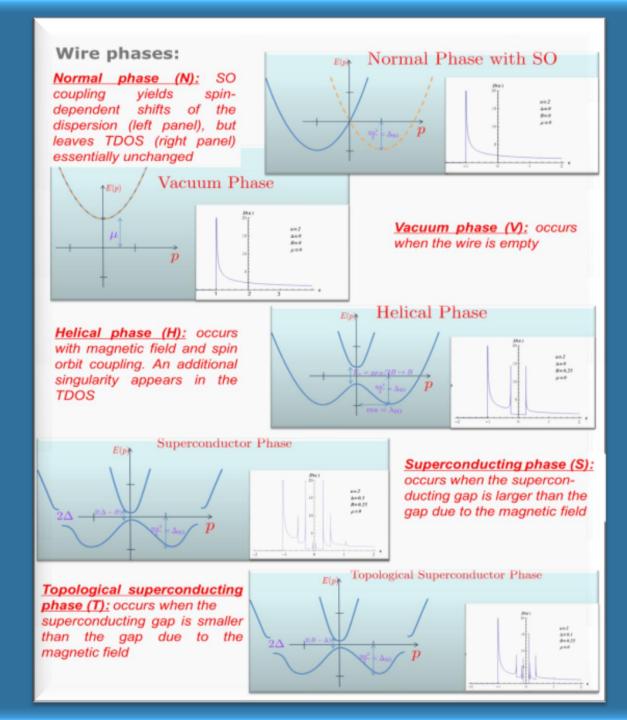


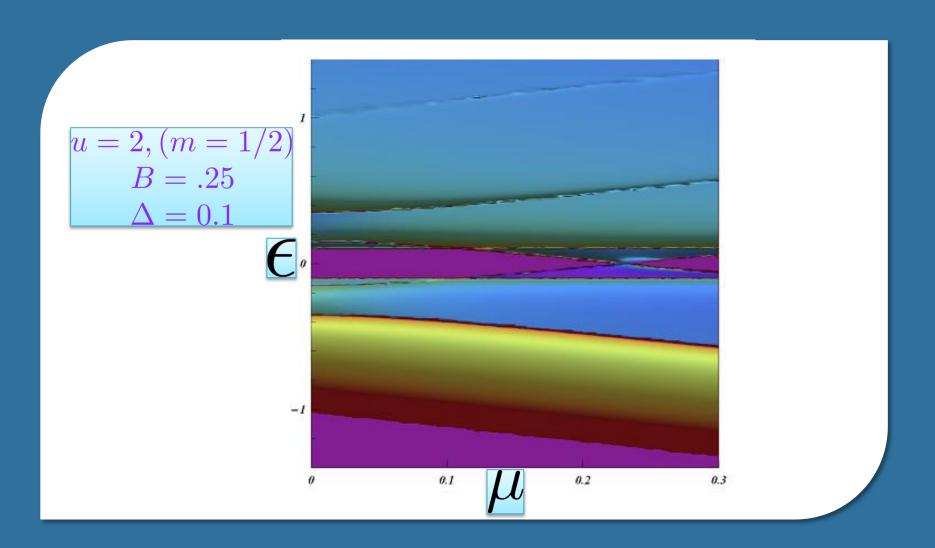


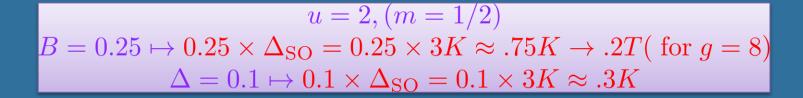


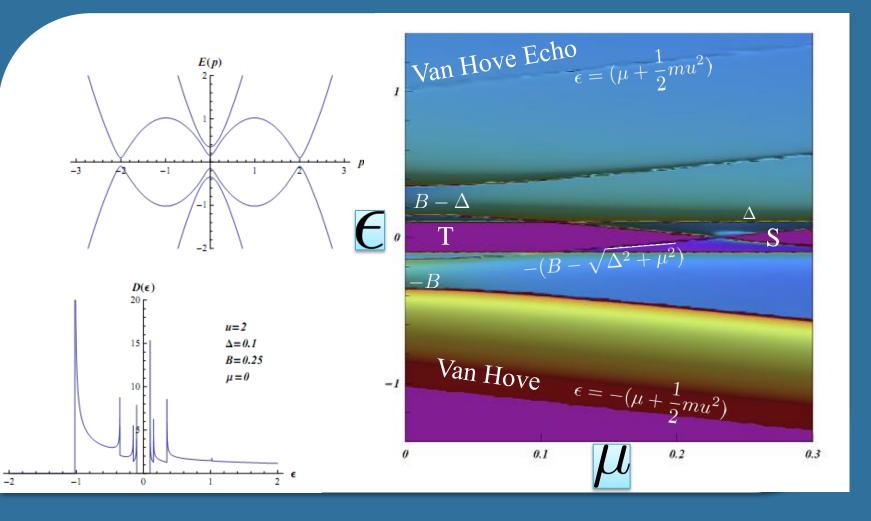
S-T transition











Outline

olntroduction:

- p Wave SC, and Majorana fermions
- Realization in FQHE
- o Realization in 3D TI, 2D semi conductors with and without FM

o Majoranas in 1D wires

Five phases: N,V,H,S,T tuned by µ and TDOS

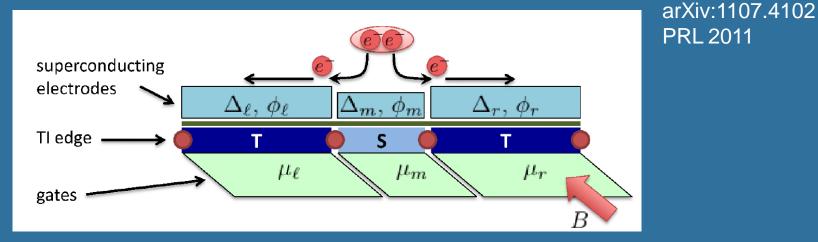
• Josephson "transistor"

- Topological numbers
- Examples for wave functions
- o Exchange and non Abelian physics in 1D wires

(embedded in 3D)

Relation to effective Spinors, calculation of the Berry phase.

Unconventional Josephson signatures



$$\delta H = -t_m (c_{\ell,N}^{\dagger} c_{r,1} + h.c.) - \Delta_m (e^{i\phi_m} c_{\ell,N} c_{r,1} + h.c.)$$

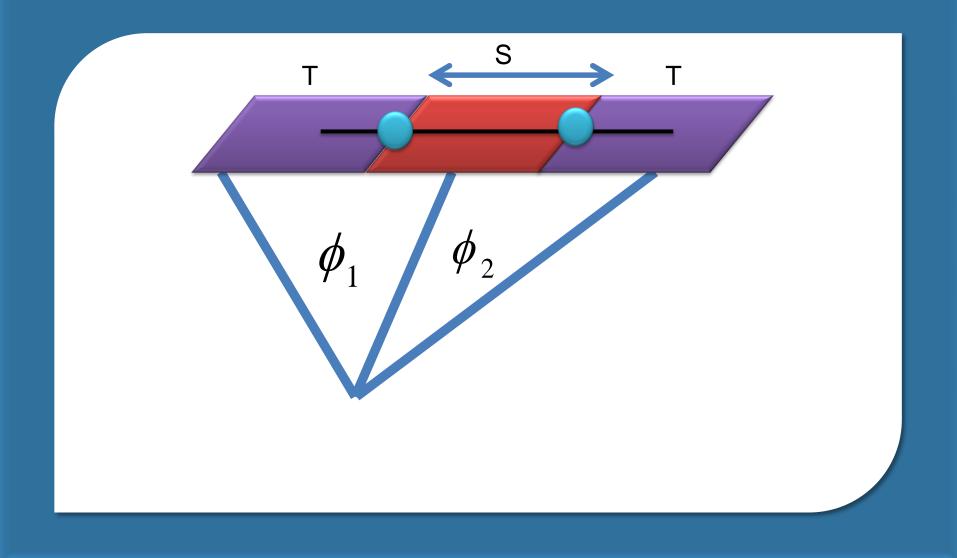
$$\delta H \rightarrow (2f^{\dagger}f - 1)\{J_M \cos[(\phi_{\ell} - \phi_r)/2] + J_Z \cos[(\phi_{\ell} + \phi_r)/2 - \phi_m]\}.$$

$$I' = \frac{e}{\hbar} J_Z \sin\left(\frac{\phi_\ell + \phi_r}{2} - \phi_m\right)$$

Fu & Kane

Josephson "transistor"

Experimental realization



Wire Hamiltonian

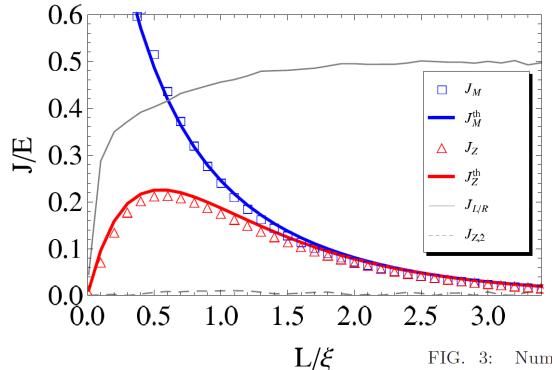
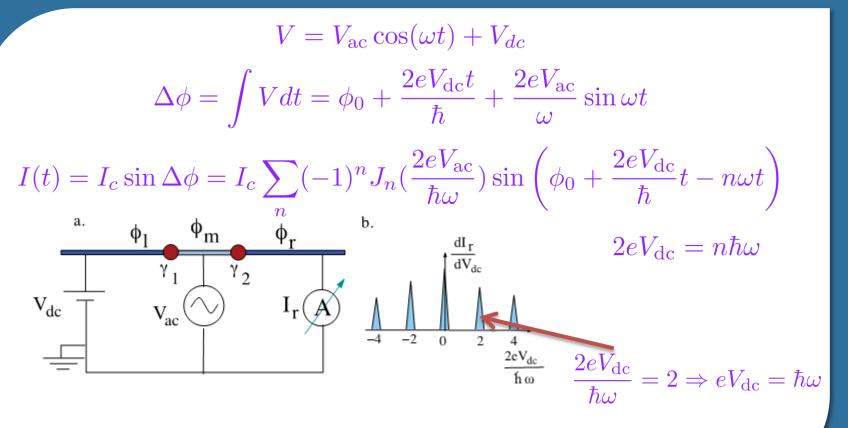


FIG. 3: Numerically determined coefficients of conventional Josephson couplings $(J_{L/R})$, Majorana-induced terms $(J_{M/Z})$, and second harmonic of the J_Z term $(J_{Z,2})$. Our analytical estimates of J_M^{th} and J_Z^{th} agree well with numerics. The energy unit is E and the length unit is $\xi = v/E$. The parameters are $\mu_{l,r} = E, \mu_m = 0, \ \Delta_{l,r} = \sqrt{8E}, \ \Delta_m = E,$ and $B_{l,r} = B_m = 2E$. The characteristic lengths are $\lambda_{m+} = \xi/3$ and $\lambda_{m-} = \xi$. For E = 0.1meV and $v = 10^4$ m/s, the length unit is $\xi = 66$ nm and the maximum current is $I_Z = \frac{e}{\hbar}J_Z \approx 5.3$ nA.

Shapiro steps

PRL Jiang Pekker, Refael, von Open, YO, Alicea



Half of the peaks disappear + Nonlocal effect

Outline

olntroduction:

- p Wave SC, and Majorana fermions
- Realization in FQHE
- o Realization in 3D TI, 2D semi conductors with and without FM

o Majoranas in 1D wires

- Five phases: N,V,H,S,T tuned by μ and TDOS
- Josephson "transistor"

Topological numbers

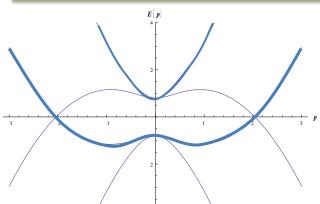
- Examples for wave functions
- o Exchange and non Abelian physics in 1D wires

(embedded in 3D)

Relation to effective Spinors, calculation of the Berry phase.

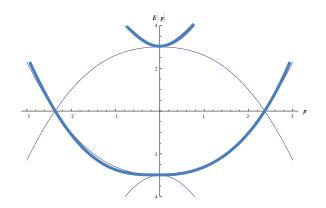
Topological Quantum Numbers & Phase Transitions

Strong Magnetic Field – Maping to a P-wave



Chemical potential $\mu = 0$ Spin orbit coupling u = 2, (m = 1/2)Magnetic Field B = 1

Superconductor gap $\Delta = 0$



Chemical potential Spin orbit coupling u = 2, (m = 1/2)Magnetic Field B = 3Superconductor gap $\Delta = 0$

 $\mu = 0$



Outline

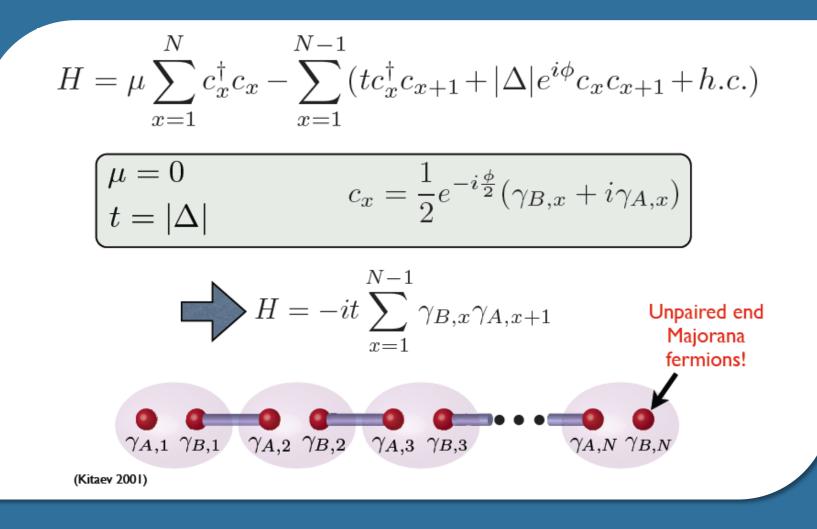
olntroduction:

- p Wave SC, and Majorana fermions
- Realization in FQHE
- o Realization in 3D TI, 2D semi conductors with and without FM

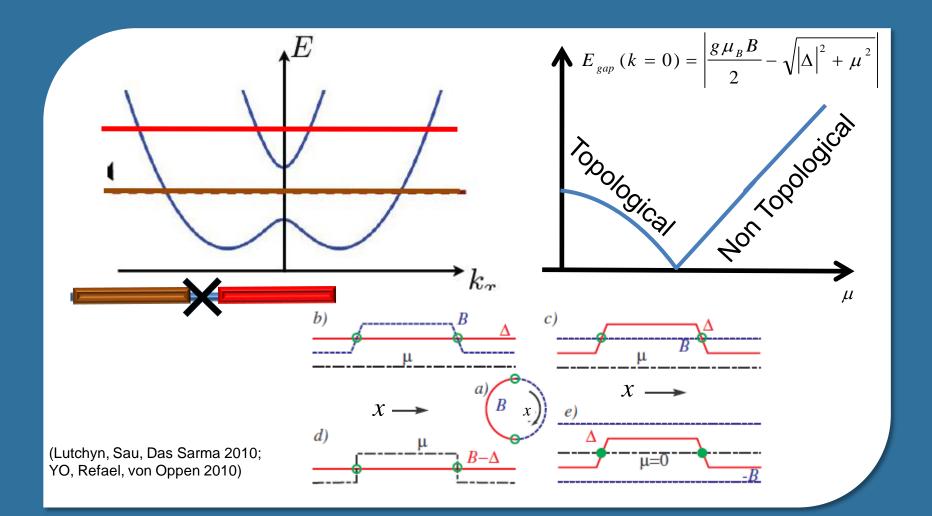
o Majoranas in 1D wires

- Five phases: N,V,H,S,T tuned by µ and TDOS
- Josephson "transistor"
- Topological numbers
- Examples for wave functions
- Exchange and non Abelian physics in 1D wires (embedded in 3D)
 - Relation to effective Spinors, calculation of the Berry phase.

1D spin-less P wave SC



Majoranas

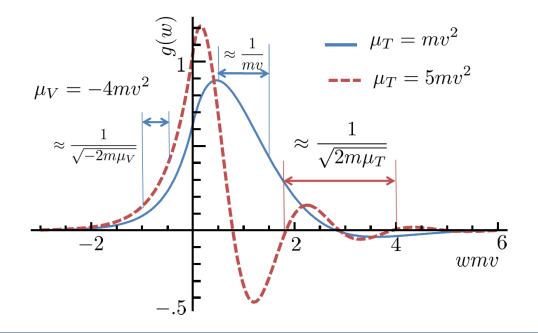


Shape of GS wave function

$$H = up \,\sigma_z \tau_z - \mu(x)\tau_z + B(x)\sigma_x + \Delta(x)\tau_x$$
$$B(x) = \Delta + bx$$
$$\Delta$$
$$\Phi_0(x) = \left(\frac{b}{u\pi}\right)^{1/4} e^{-\frac{bx^2}{2u}}$$
$$\gamma = \gamma^+ = \frac{1}{2} \left(\psi_{\uparrow} - i\psi_{\downarrow} + i\psi_{\downarrow}^+ + \psi_{\uparrow}^+\right)$$

$$h_{p-} = \begin{pmatrix} \frac{1}{2m_{\text{eff}}}p^2 - \mu_{\text{eff}} & iv_{\text{eff}}pe^{-i\phi} \\ -iv_{\text{eff}}pe^{i\phi} & -\frac{1}{2m_{\text{eff}}}p^2 + \mu_{\text{eff}} \end{pmatrix} \mapsto (p^2 - \mu)\tau_z + 2p\tau_y$$

 $\mu_{\text{eff}} = \mu + B; \ v_{\text{eff}} = u\Delta/B; \ 1/m^* = 1/m(1 - mu^2/B).$ The 2 × 2 is in the particle-hole (describes by pauli τ -matrices space).



Outline

olntroduction:

- p Wave SC, and Majorana fermions
- Realization in FQHE
- o Realization in 3D TI, 2D semi conductors with and without FM

o Majoranas in 1D wires

- Five phases: N,V,H,S,T tuned by µ and TDOS
- Josephson "transistor"
- Topological numbers
- Examples for wave functions

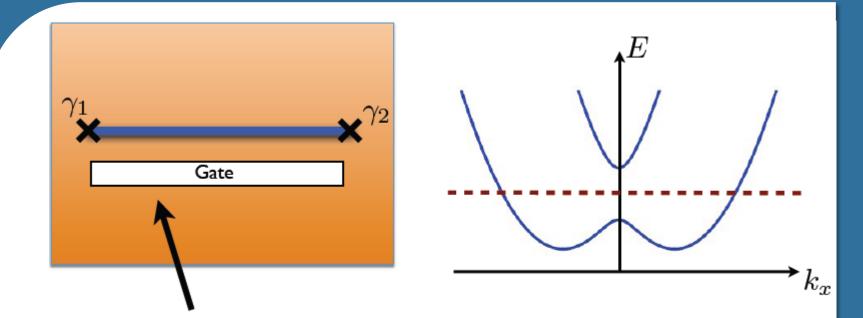
\odot Exchange and non Abelian physics in 1D wires

(embedded in 3D)

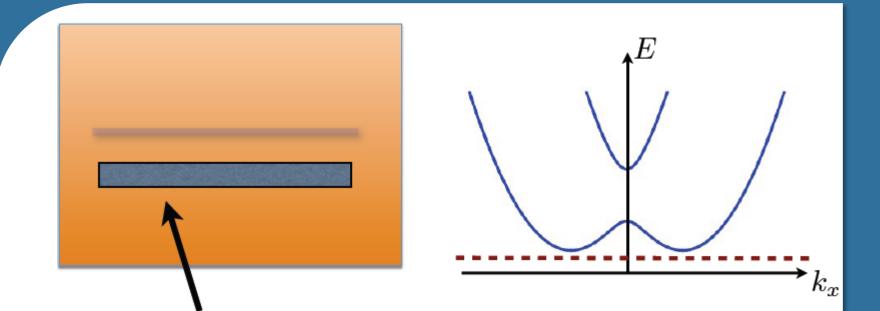
• Relation to effective Spinors, calculation of the Berry phase.

Quantum computing with 1D wires??

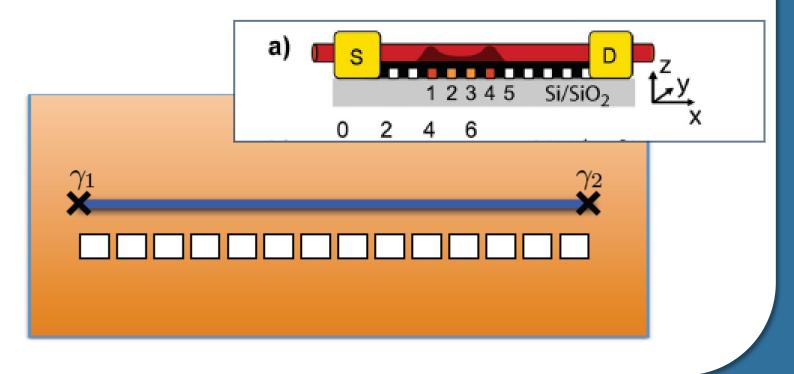
- At a minimum, we'd need the ability to
 - Adiabatically transport Majoranas
 - Create pairs of Majoranas out of the vacuum
 - Fuse Majoranas back into the vacuum
 - Braid Majoranas
 - Realize non-Abelian statistics

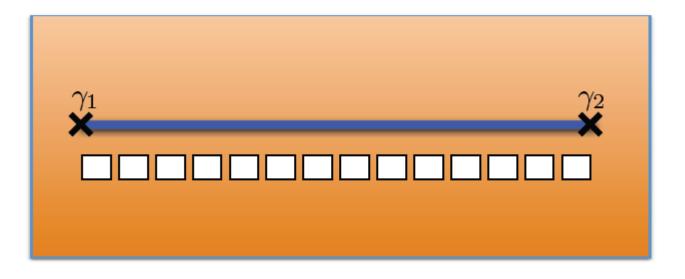


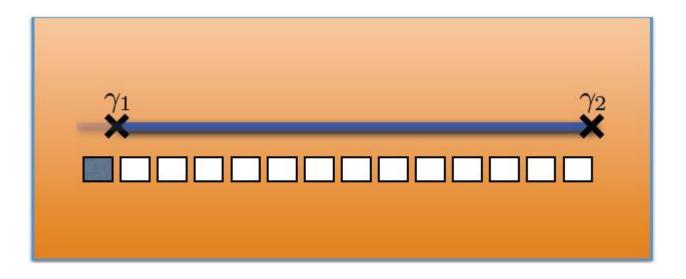
Manipulate Majoranas by changing chemical potential via gate voltage

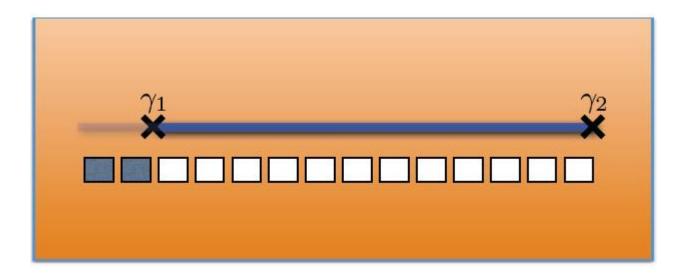


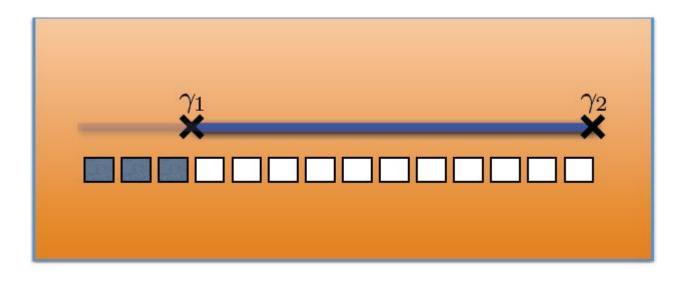
Manipulate Majoranas by changing chemical potential via gate voltage

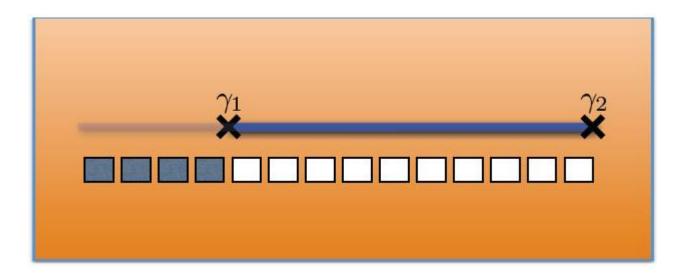


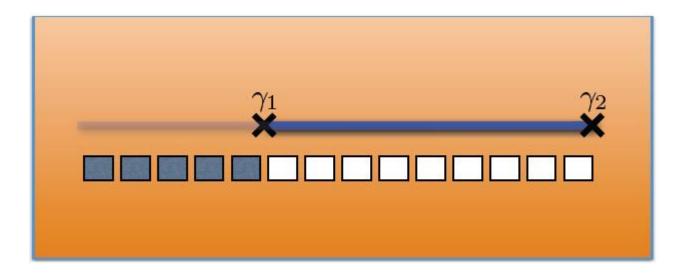


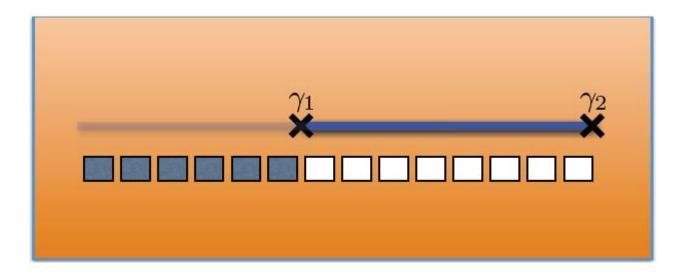


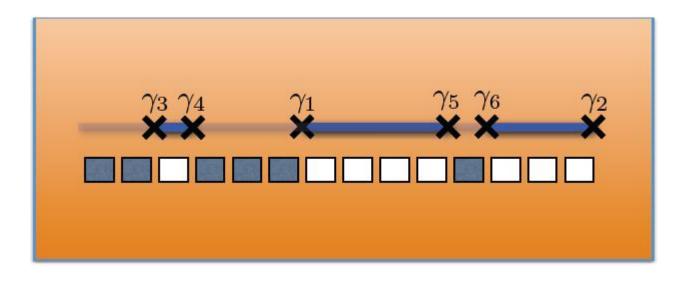


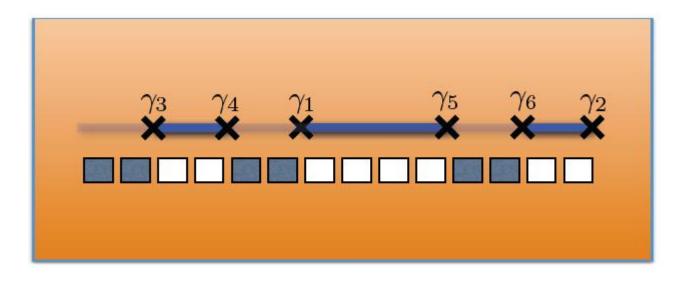


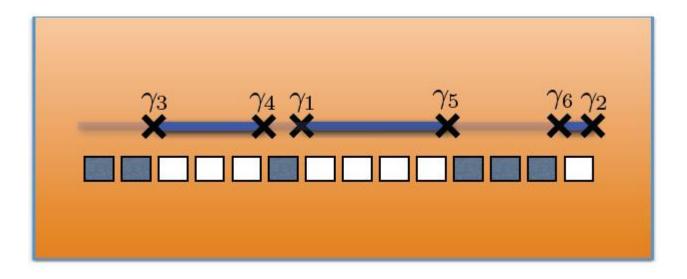






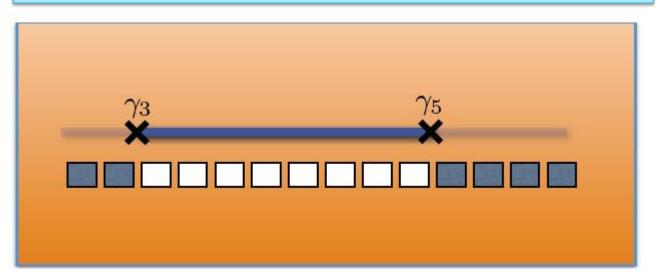




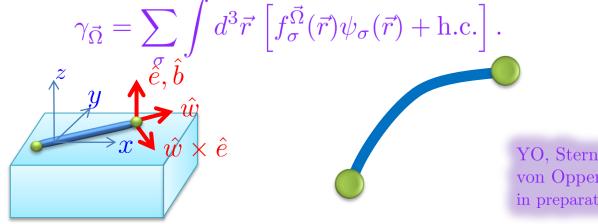


Better: use a `keyboard' of gates!

Can manipulate shift and fuse, what about braiding?



Exchange in 3D : weak B (4 components)

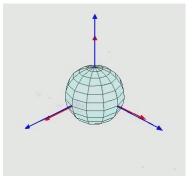


YO, Stern, Halperin von Oppen, Refael, Alicea, in preparation

 $\vec{\Omega} = \begin{array}{ll} \text{Superconducting gap phase (and amplitude)} & \theta \\ \text{Direction of the wire end} & & \hat{w} \\ \text{Direction (and amplitude) of the electric field} & & \hat{e} \\ \text{Direction (and amplitude) of the magnetic field} & & \hat{b} \end{array}$

Exchange in 3D :

$$\underbrace{|MF\rangle}_{|MF\rangle} = \frac{1}{2} \begin{pmatrix} f_{\uparrow} \\ f_{\downarrow} \\ f_{\downarrow}^{\dagger} \\ -f_{\uparrow}^{\dagger} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \psi_p \\ \hat{T}\psi_p \end{pmatrix}.$$



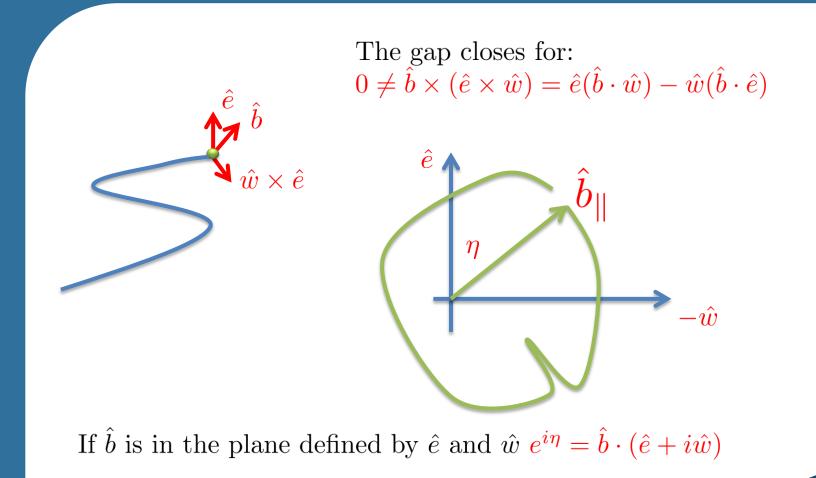
Manipulation of the wire \Rightarrow Rotation of the 2 comp spinor.

- Rotation by an angle α around $\hat{e}||\hat{b} \perp w \Rightarrow \psi_p \rightarrow e^{-i\sigma_z \alpha/2}\psi_p$
- Rotation around \hat{w} ...

 \hat{e}

- Rotaion of the tripod $\hat{e},\hat{w},\hat{e}\times\hat{w}$ by 360° causes a multiplication of the Majoranas by -1
- Rotaion around e by 180 causes only one of the Majoranas to be multiplied by -1

Exchange in 3D



Strong Magnetic field 2 components vector

$$|gs(\phi)\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-i\phi/2} \\ e^{i\phi/2} \end{pmatrix}$$

Single-valued vs. Multi-valued

Reminder: Berry phase: Toy problem: spin in magnetic field

$$H = B\sigma_x \cos(\phi) + \sigma_y \sin(\phi)$$
$$= B \begin{pmatrix} 0 & e^{-i\phi} \\ e^{i\phi} & 0 \end{pmatrix}$$

$$\vec{B} = B \left(\begin{array}{c} \cos \phi \\ \sin \phi \end{array} \right)$$

adiabatic ground state

w/ arbitrary

 $\chi(\phi)$

$$|gs(\phi)\rangle = e^{i\chi(\phi)} \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-i\phi} \\ 1 \end{pmatrix}$$

Geometric phase

Adiabatic evolution of ϕ (from ϕ_0 to $\phi(t)$):

1.) Dynamical phase

 e^{iBt}

2.) Berry phase

$$e^{-i\theta_B}$$

 $\theta_B[\phi(t)] = \operatorname{Im} \int_{\phi_0}^{\phi(t)} d\phi \langle gs(\phi) | \partial_\phi | gs(\phi) \rangle$

3.) Explicit monodromy of $\chi(\phi)$

geometric phase = Berry phase + monodromy

Berry vs monodromy

Berry phase

$$\theta_B[\phi_0 + 2\pi] = -\pi + [\chi(\phi_0 + 2\pi) - \chi(\phi_0)]$$

$e^{-i\theta_B} = e^{-i\theta_B[\phi_0 + 2\pi] = -\pi + [\chi(\phi_0 + 2\pi) - \chi(\phi_0)]}$

cancelled by monodromy

Full rotation of

 \vec{B}

Geometric phase of

Berry vs monodromy

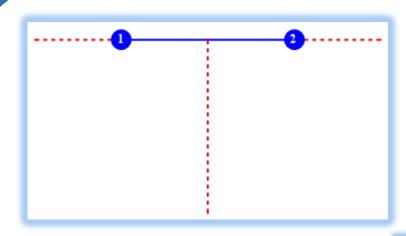
1.) Single valued and continous

 $\chi(\phi)=0$ vanishing monodromy geometric phase = Berry phase

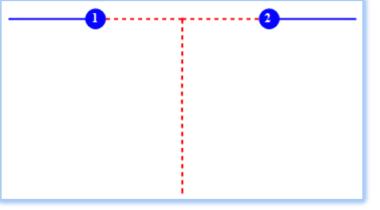
2.) Multi- valued and continous $\chi(\phi) = \phi/2$ $|gs(\phi)
angle = rac{1}{\sqrt{2}} \left(egin{array}{c} e^{-i\phi/2} \\ e^{i\phi/2} \end{array}
ight)$ vanishing Berry phase geometric phase = monodromy

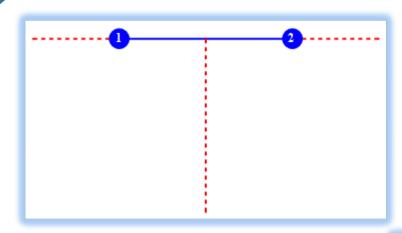
3.) Singled valued Majorana representation $\chi(\phi) = (\phi \mod 2\pi)/2)$

vanishing monodromy; stepwise accumulation of Berry

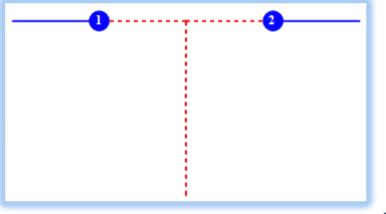


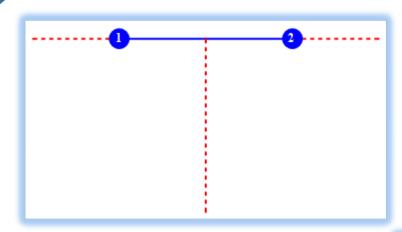
Use a T (or Cross) Junction



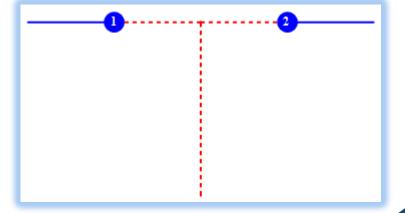


Use a T (or Cross) Junction

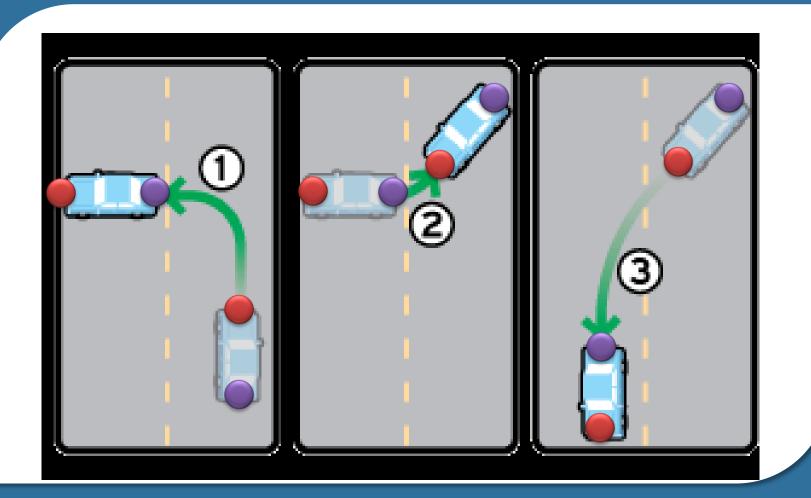


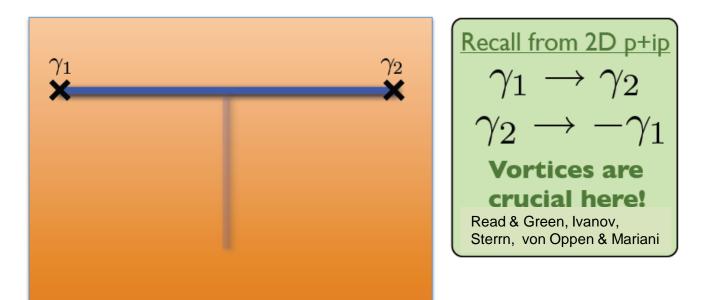


Use a T (or Cross) Junction



There Point Turn

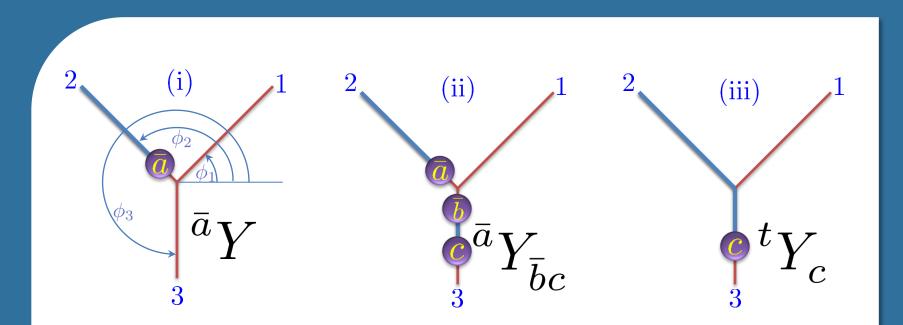




Statistics encoded in Berry phase...

$$\chi_n \equiv \operatorname{Im} \int dt \langle n | \partial_t | n \rangle$$

Y-junction



See also recent paper by B. van Heck, A. R. Akhmerov, F. Hassler, M. Burrello, and C. W. J. Beenakker arXiv:1111.6001v1 [cond-mat.mes-ha] 25 Nov 2011

At strong magnetic field

$$\mathcal{H} = i\gamma_a \gamma_b g_{ab} \sin\left(\frac{\alpha_a - \alpha_b}{2}\right) + i\gamma_b \gamma_c g_{bc} \sin\left(\frac{\alpha_c - \alpha_c}{2}\right) + i\gamma_a \gamma_c g_{ac} \sin\left(\frac{\alpha_a - \alpha_c}{2}\right).$$

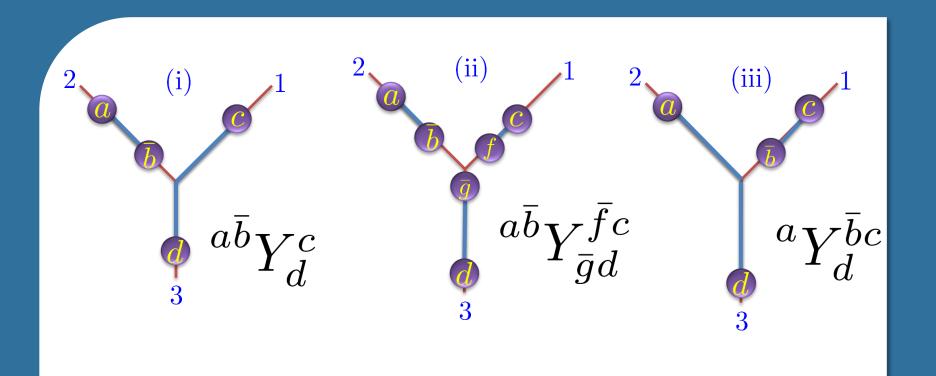
$$\gamma[t] \sim g_{bc}(t) \sin\left[\frac{\alpha_c - \alpha_b}{2}\right] \gamma_a - g_{ac}(t) \sin\left[\frac{\alpha_a - \alpha_c}{2}\right] \gamma_b + g_{ab}(t) \sin\left[\frac{\alpha_b - \alpha_a}{2}\right] \gamma_c$$

$$\mathcal{H} = i\gamma_a\gamma_b g_{ab}\sin\left(\frac{\alpha_a - \alpha_b}{2}\right) + i\gamma_b\gamma_c g_{bc}\sin\left(\frac{\alpha_c - \alpha_c}{2}\right) + i\gamma_a\gamma_c g_{ac}\sin\left(\frac{\alpha_a - \alpha_c}{2}\right)$$

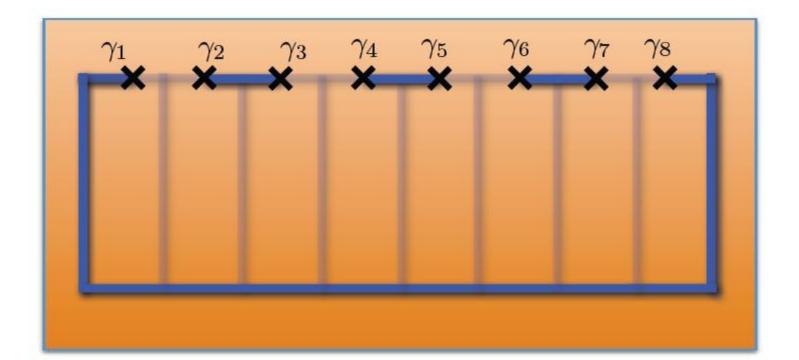
•

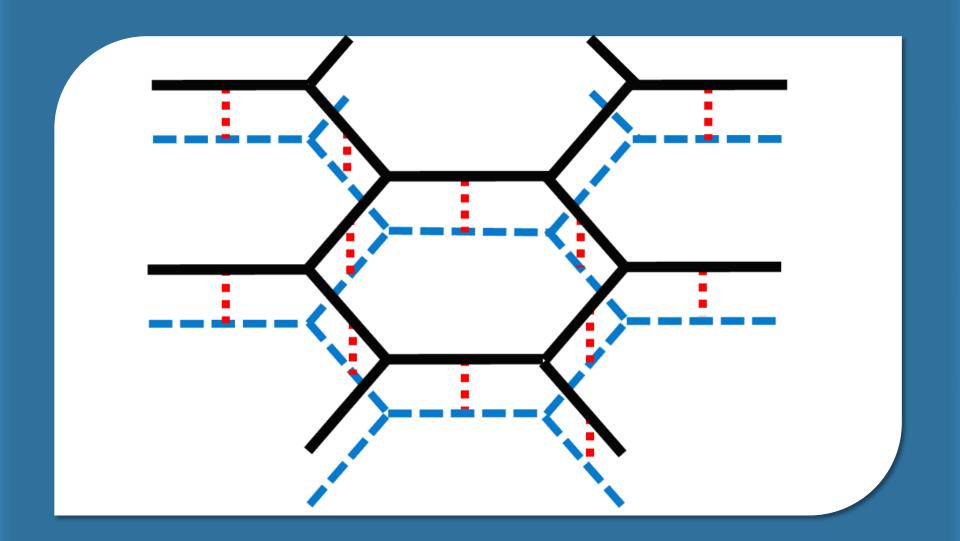
$$\begin{pmatrix} 0 & ig_{ab} & ig_{ac} \\ -ig_{ab} & 0 & ig_{bc} \\ -ig_{ac} & -ig_{bc} & 0 \end{pmatrix} \begin{pmatrix} g_{bc} \\ -g_{ac} \\ g_{ab} \end{pmatrix} = 0$$

$$\gamma[t] \sim g_{bc}(t) \sin\left[\frac{\alpha_c - \alpha_b}{2}\right] \gamma_a - g_{ac}(t) \sin\left[\frac{\alpha_a - \alpha_c}{2}\right] \gamma_b + g_{ab}(t) \sin\left[\frac{\alpha_b - \alpha_a}{2}\right] \gamma_c$$



A net work?





Nature Physics 2011 (cover)

Summary

- Spin orbit with magnetic field in proxy to superconductors can host Majoranas & non-Abelian statistics in 1D+
- All that without vortexes
- Topological insulator & semiconductor heterostructures
- Many open questions! (Which materials to use, universal quantum computation, better measurement schemes, connection to 2D p+ip, etc.)
- Manipulations of Majoranas at the ends of 3D wires.