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Outline

olntroduction:
 p Wave SC, and Majorana fermions
* Realization in FQHE
o Realization in 3D TI, 2D semi conductors with and without FM
o Majoranas in 1D wires
Five phases: N,V,H,S,T tuned by n and TDOS
Josephson “transistor”
Topological numbers
Examples for wave functions
o Exchange and non Abelian physics in 1D wires
(embedded in 3D)
e Relation to effective Spinors, calculation of the Berry phase.
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2D Spin less px+ipy SC

Majorana
Uniform SC state Fermion

is gapped in the bulk

Kopnin and Salomaa (1991)




Spin less px+ipy SC vs. S wave SC

[ Spinless P-wave } S-wave

Appt_ + h.c. A@kalp_k¢ + h.c.
Ay o< kg + ik, A = Const

u(r)0pip(r) + h.c. A4 (r)aby (1) + h.c.
A = Const
Avpiripi + h.c.

Alet P ah; h.c.
Al Yitbigr + hec A = Const

A = Const

Vo = Uk:C;;T T UkC_ky

- [ Fermion Doublin }
Vi UECy. + vpc_g 8 Y1 = ukC’ti + VEC—kt




Properties of Majorana fermions

*Majorana Fermion is ?/ — 7/ T

its own antiparticle Majorana

_ _ . Fermion
* Existence is topologically protected

* One Majorana = “half” a usual (non local)
Dirac fermion f

g

* 2n Majoranas = 2" dégenerate ground states

* Exhibit non-Abelian braiding statistics




Majoranas & non Abelian Physics

Four Majoranas Two non local 4 degenerate
Dirac Fermions states

10,05 ),]0,25)
1,00 )14 25)

What happens when we braid 7, around y, ?

Quantum state changes

‘0 A 0 B > — % (‘ 0 A 0 B > — i‘lA ,18 >) Braiding implements unitary rotation within
degenerate manifold

‘1A 0, > — %(‘h 05 > - i‘O arlp >) Urgently wanted for topological
quantum computation

Read & Green 2000; Ivanov 2001, o oo gy - e & Das sarma
Stern, von Oppen & Mariani 2004 ’




How to experimentally
realize Px+iPy SC

* Not so easy: - We live in 3D

* Fermions come usually in pairs (e.g. spin)

 P+iP are rare (currently St,RuQ,)

* One elegant solution v=5/2

Very challenging V=572

Composite Fermi sea is
unstable towards p+ip
pairing!

1.) Only numerical evidences to
Moore Read state

2.) If exist its fragile o = PH(—

b e—
e

=

3.) Requires strong magnetic

field and low temp




How to experimentally
realize Px+1Py SC

* Not so easy: - Welivein 3D

- Fermions come usually in pairs (e.g. spin)
- P+iParerare (currently St,Ru0O,)

* One elegant solution v=5/2
* Additional promising
settings recently proposed

- Topological insulators
- Semiconductor heterostructures

See Marcel Franz, Physics 3, 24 (2010)
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Majoranas in 3D topological
Insulator

3D topological insulators: inert
bulk but odd # of Dirac
cones on the surface

-0.1 0.0 O.1
k, (A1)
D. Hsieh et al., Nature 460, 1101 (2009)

“Fermion doubling”

H = /d2r,¢f(_iv&' i N :U')"nb solved, but need to

generate topological

(Fu, Kane, & Mele 2006; Moore & Balents superconductivity...
2006; Roy 2006; Fu & Kane 2008)




Majoranas in 3D topological
Insulator

Promising
Topological phase could be very
robust (large gap & immunity to
disorder)

H= /dgk{ e (k)yl oy + e (Rl v] Pairing is p+ip
in this basis!

+a] (B5 ) 1o (0 (1) = b )i (-] + | |




Majoranas in Semi Conductors

Spin Orbit C 0_L>1p1ing
Beff =aqv X E

G * Beff 'TE

€w
i Vo or ’

2
H = /d2r1,bT [ - j—m —p —ia(d* 0y — a¥0;) [V
(Sau, Lutchyn, Tewari, & Das Sarma 2009)




Majoranas in Semi Conductors

“Fermion doubling™
solved, if chemical

\

potential is here

T FM insulator

H = /dger[——p—m{( 9, — 0V0y) 4+ V.07 |

(Sau, Lutchyn, Tewari, & Das Sarma 2009)




Majoranas in Semi Conductors

T FM insulator

)km

2m

2
H = /dgrwJr [ — V— —p—ta(c*0y —o¥0;) + Vzcrz] Y

+ /dgr(ﬁ’tﬂ)T’t/)l -+ hc)




Majoranas in Semi Conductors
without the FM

Proximity effect generates
a topological SC supporting
Majorana fermions!

In-plane field plays
the role of the FM

insulator! ‘
. 9 .i. B V2 . o T Y c Z y
H= [ dry 9 M 1a(0®0y — 0Y0,) - 1B0%0z|+ Vyo¥ |9
m

Dresselhaus: tends to

+ / d2r(A¢T¢l + h.c.) align spins normal
to the 2DEG

Alicea 2010




Outline

Majoranas in 1D wires
* Five phases: N,V,H,S,T tuned by n and TDOS
e Josephson “transistor”
Topological numbers
Examples for wave functions
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1D spin-less P wave SC:
Kitaev’s Model

N N—-1
H = ,U,ch,cm Z tc$c$+1+\A\ei¢cmcm+1 +h.c.)

r=1

,'_LZO _E-Q . W
& 2 T 1YA

i

0 =cC ei% + cl e_i%
B,x xT e

;2

b3

. = .
'yA o = —icze'Z +icle
* H = —it E YB.xz VA, z+ Unpaired end

Majorana
fermions!

O ) Gl @umo o e ./

CALEH YA 2. 0B QA 3.0 YA,N YB,N

(Kitaev 2001)




Semi conducting wires

I D spin-orbit-coupled /

/’Yk wire (e.g. InAs) Y2
x X

*km

* (Lutchyn, Sau, Das Sarma 2010;
YO, Refael, von Oppen 2010)
Generates a topological 1D
superconducting state!

= (], p], vy, —ur)




Equivalence to edge states of 2DTI

I D spin-orbit-coupled /

wire (e.g. InAs)

Quantum Spin Hall Effect and
Topological Phase Transition in
HgTe Quantum Wells

. B. Andrei Bernevig,™ Taylor L. Hughes,” Shou-Cheng Zhang™*
Konig et al 2007




Recent Developments

Potter and Lee

sufficient to have odd number of channels in a wire.
Duckheim &Brouwer, Chang & Zhang et al.

Half metal in proxy to superconductor with SOI
Akhmerov, Beenakker, Hassler et al.

Measurement schemes, effects of disorder, Coulomb Island...

Lutchyn and Bonderson

Transfer to a standard qubit
Clarke, Sau & Tewary (Das Sarma)

General properties of exchanging Majoranas on a network
Gangadharaiah, Loss et al.

Interaction effects, helical liquid in CNT
Cook and Marcel Franz,

T] wires




InAs/InSb nanowires by MOVPE
(Lund)
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Five Phases

Normal Phase

g
7

NI

Chemical potential pu =1
Spin orbit coupling u =0

Magnetic Field B=0
Supercondcutor gap A =0

2
e
GZTerminal — R X 2




Five Phases

Chemical potential = —1 /

Spin orbit coupling  u =0
Magnetic Field B=0
Supercondcutor gap A =0

2
__ e
GZTermina,l — X 0




Five Phases

Normal Phase with SO

Chemical potential w=70
Spin orbit coupling u =2, (m = 1/2)
Magnetic Field B =0

Supercondcutor gap A=0 2

__ e
GQTerminal — X 2




Five Phases

. Helical Phase

/

—g/LB/QB%B >

Chemical potentlal
Spin orbit coupling
Magnetic Field
Supercondcutor gap o2

GQTerminal — R X 1




Five Phases

Superconductor Phase

Chemical potential
Spin orbit coupling
Magnetic Field
Supercondcutor gap




Five Phases

Topological Superconductor Phase

Chemical potential
Spin orbit coupling
Magnetic Field
Supercondcutor gap




-~ TDOS
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Tunneling DOS

A
;:1 — = up ()
5
i) —i—+pu—up B

A B f+g£+up

Green’s function:

Gle) = [_’-‘f dp(e = H)™". (2)

e ]

In the Green's function matrix, the element for spin-up electrons is &;;. Using H|¢[”}:ﬁ =

Ein) [_jkﬂ}:} .

G]l[E:I / dp{l (E— H:l_] 1:}

e ]

e
[ 166 e = Iy

(1o " . :
/ dpz |m T Most & YO in preparation




Tunneling DOS

The spin up density of states is:

o1(p)I°

1
Dyle) = =Im lim Ginle—id) = r
: - T

T A=+ —
{p|E(p)=¢}

The spin down density of states is:

oa(p)|*

1
Die) = =Im lim Gale —id) = r
! R

T F—0* —
{p|Elpl=¢}



Tunneling DOS

Standard S wave SC

/\_

Normal (With SO) "




Tunneling DOS




Topological Superconductor




Topological Superconductor




S-T transition




Wire phases: ; Normal Phase with SO

Normal phase (N): SO
coupling yields spin-
dependent shifts of the
dispersion (left panel), but
leaves TDOS (right panel)
essentially unchanged

|
ve / Vacuum Phase

\

Vacuum phase (V): occurs
when the wire is empty

» Helical Phase
Helical phase (H): occurs
with magnetic field and spin
orbit coupling. An additional
singularity appears in the
TDOS

l

Superconductor P hase

Superconducting phase (S):
occurs when the supercon-
ducting gap is larger than the
gap due to the magnetic field

Lopological Superconductor hase

Topological superconducting
phase (T): occurs when the
superconducting gap is smaller
than the gap due to the
magnetic field







= 0.25 — 0.25 x Agpo =0.25 x 3K =~ .75 K — .2T( for g =8
A =0.1+0.1x Ago = 0.1 x 3K ~ 3K
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Unconventional Josephson signatures

arXiv:1107.4102
PRL 2011

superconducting E } k a
electrodes \
MMm

OH — (2fVf~ D{Ja cos[(de — ¢r)/2]

+ JZ COH[(@! + ql)r)/2 - gb-ml}'

Josephson ,transistor”



Experimental realization




Wire Hamiltonian

L/&

FIG. 3: Numerically determined coefficients of conven-
tional Josephson couplings (Ji,r), Majorana-induced terms
(Ja1/z), and second harmonic of the Jz term (Jz2). Our an-
alytical estimates of Ji7 and J4' agree well with numerics.
The energy unit is £ and the length unit is £ = v/E. The
parameters are p;, = E,pum = 0, A, = VSE., A,, = E,
and B;, = B,, = 2E. The characteristic lengths are
At =&/3 and A\, = €. For E = 0.1meV and v = 10°m/s,
the length unit is £ = 66nm and the maximum current is
17 = %JZ ~ 5.3nA.




Shapiro steps

PRL Jiang Pekker, Refael, von Open, YO, Alicea

V = Ve cos(wt) + Ve

2eVact  2eVe .
A¢:det:¢0+ £ + “Yac Ginwt

2€Vdc )
— t — nwt

h

h
2eVy. = nhw

2eVyc
hw

=2 = eVi. = hw

Half of the peaks disappear + Nonlocal effect
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Topological numbers




Topological Quantum Numbers &

Phase Transitions
trong Magnetic Field — Maping to a P-wav

Chemical potential =70

Spin orbit coupling w =2, (m =1/2)
Magnetic Field B=1

Supercondcutor gap A=0

=P

Magnetic Field B=3
Supercondcutor gap A=0

il Chemical potential @w=70
Spin orbit coupling u =2, (m =1/2)




ivegpe"?
1 ey
ot p Heff

pof = fb + B; veg = uA/B; 1/m* = 1/m(1 — mu?/B).
The 2 x 2 is in the particle-hole (describes by pauli 7 -matrices space). 1 7.

/

) — (p? — )7, + 2p7y,

2x Berry Phase = fj;j dp (Yc(p)| 0y |[Wa(p)) = [do = {

N

0 for pegg < 0

27 for Heff >
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1D spin-less P wave SC

N N—-1
H=ypu ch,cm — Z tc;cwrl + \A\ewcmcmﬂ +h.c.)
r=1

r=1

c e_i%( +1Y4.2)
T — A T A,x
. |A| 5 B Y

[,u,:o 1

N—-1
* H = —it Z YB.xz VA, z+1 Unpaired end
r=1

Majorana
fermions!

O ) Gl @umo o e ./

CALEH YA 2. 0B QA 3.0 YA,N YB,N

(Kitaev 2001)




Majoranas

(Lutchyn, Sau, Das Sarma 2010;
YO, Refael, von Oppen 2010)




Shape of GS wave function

H=upo,r, - ,U(X)TZ + B(X)O-x T A(X)Tx

B(X) = A + bx /——

A




1 2 ; —1
hy. = ( Tl Hem  ape
P —epe'® =g —p® + et

) — (p2 — [1)Tx + 2pTy,

et = ft + B; veg = uA/B; 1/m* = 1/m(1 — mu?/B).
The 2 x 2 is in the particle-hole (describes by pauli 7 -matrices space).

—mm pp = 5MV?




Outline

o Exchange and non Abelian physics in 1D wires
(embedded in 3D)
e Relation to effective Spinors, calculation of the Berry phase.




Quantum computing with 1D wires??

* At a minimum, we’d need the ability to

- Adiabatically transport Majoranas

- Create pairs of Majoranas out of the
vacuum

- Fuse Majoranas back into the vacuum
- Braid Majoranas
- Realize non-Abelian statistics




Manipulating Majoranas in 1D wires

Manipulate Majoranas by changing
chemical potential via gate voltage




Manipulating Majoranas in 1D wires

Manipulate Majoranas by changing
chemical potential via gate voltage




Manipulating Majoranas in 1D wires

Better: use a "keyboard’ of gates!
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Manipulating Majoranas in 1D wires

Better: use a "keyboard’ of gates!




Manipulating Majoranas in 1D wires
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Manipulating Majoranas in 1D wires
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Manipulating Majoranas in 1D wires

Better: use a "keyboard’ of gates!




Manipulating Majoranas in 1D wires

Better: use a "keyboard’ of gates!




Manipulating Majoranas in 1D wires

Better: use a "keyboard’ of gates!

Can manipulate shift and fuse, what about braiding?




Exchange in 3D :
weak B (4 components)

YO, Stern, Halperin
von Oppen, Refael, Alicea,
in preparation

Superconducting gap phase (and amplitude)
Direction of the wire end
Direction (and amplitude) of the electric field

Direction (and amplitude) of the magnetic field

0 =




Manipulation of the wire = Rotation of the 2 comp spinor.

e Rotation by an angle o around é||6 1L w=1,— e—iaza/pr

e Rotation around w...

e Rotaion of the tripod é,w,é x w by 360° causes a multiplication of the
Majoranas by —1

e Rotaion around e by 180 causes only one of the Majoranas to be multiplied
by -1




Exchange in 3D

The gap closes for: )
0D x (e xw)==¢eb-w)—wb-eé)

e A

dl

If b is in the plane defined by é and w "




Strong Magnetic field
2 components vector




Single-valued vs. Multi-valued

Reminder: Berry phase: Toy problem: spin in magnetic field

H = Bo, cos(¢) + oy sin(9)

e‘w
0

adiabatic ground state w/ arbitrary

gston) =@ (47 \(6)




Geometric phase

Adiabatic evolution of ¢ (from ¢, to ¢(t)):

1.) Dynamical phase GZBt

—10
2.) Berry phase € B

0p[6(t)] = Im [27) do (95(6)| Dy gs(9))

3.) Explicit monodromy of y(d)

geometric phase = Berry phase + monodromy




Berry vs monodromy.

Berry phase
Opldo + 27| = —7 + [x(¢o + 27) — X (o)

o—108 — p,—i0p[po+2m]|=—m+[x(Po+27)—x(d0)]

—_——

cancelled by monodromy

Full rotation of B Geometric phase of '™

Department of Condensed Matter Physics. Weizmann Institute of Science, Rehovot, Israel



Berry vs monodromy

1.) Single valued and continous

X(ﬁb) — () vanishing monodromy
geometric phase = Berry phase

2.) Multi- valued and continous

(9) = /2

1 e 19/2 vanishing Berry phase
\gs( )> V2 €i¢/2 geometric phase = monodromy
3.) Singled valued Majorana representation

x(¢) = (¢ mod 27)/2)

vanishing monodromy; stepwise accumulation of Berry




Exchanging Majoranas in 1D Wires

Use a T (or Cross)
Junction




Exchanging Majoranas in 1D Wires

Use a T (or Cross)
Junction




Exchanging Majoranas in 1D Wires

Use a T (or Cross)
Junction




There Point Turn




Exchanging Majoranas in 1D Wires

Recall from 2D p+ip
M1 — 72
Y2 — —MN

Vortices are
crucial here!

Read & Green, Ivanov,
Sterrn, von Oppen & Mariani

Statistics encoded in Berry phase...

Xn = Im [ dt(n|0¢|n)




Y-junction

See also recent paper by B. van Heck, A. R. Akhmerov, F. Hassler, M.
Burrello, and C. W. J. Beenakker arXiv:1111.6001v1l [cond-mat.mes-ha] 25
Nov 2011




At strong magnetic field




_ Y A —TA , (. —« _ (o, —
H = 1¥aVbgab Sin (GT) TV YcGbe S ( . 5 C)+37a7cgac S (%) .







A net work?

4

Y3 ’Y ’75 Y6







In 3D7?

Nature Physics 2011
(cover)




Summary

* Spin orbit with magnetic field in proxy to superconductors
can host Majoranas & non-Abelian statistics in 1D+

* All that without vortexes

e Topological insulator & semiconductor heterostructures

* Many open questions! (Which materials to use, universal
guantum computation, better measurement schemes,
connection to 2D p+ip, etc.)

* Manipulations of Majoranas at the ends of 3D wires.




