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Integer quantum Hall (IQH) state

Oxy = ne?/h  (KvonKiitzing 1980) ]

o Topological origin of the quantized |
Hall conductance: L

e Bulk gap (Landau level gap)
¢ The first Chern number (TKNN number)

(Laughlin PRB 1981, Thouless, et al, PRL 1982)
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(Integer) Quantum Anomalous Hall States
En(k)

e A lattice model with nonzero Chern T\/

number in the occupied band

e General lattice Hamiltonian with
translation symmetry H = Y., ¢; h(k)cy,

* There are n bands |n, k) (b)
Chern number C; = %f d?kV xd, .

[

defined for each band, a,,(k) = s
— i(nk|0;|nk) -

* Example: two-band models H = @)
Ya Ag(k)T% (Haldane 1988, Qi wu Zhang 2005)

; -I‘
* Mateiral proposals: Hg(Mn)Te/CdTe (Liu et al ‘:‘:‘

PrL 2008), Cr or Fe doped Bi2Se3 film (vu et al
Science 2010)




Fractional Quantum Hall (FQH) States

* In partially filled Landau levels, electron interaction can
lead to FQH states with nontrivial topological order and
fractionalized quasiparticles (Tsui et al 1982)

* FQH states can be described by many-body

wavefunctions such as the Laughlin wavefunction
(Laughlin 1983)

m
* Yi({z}) = Hi<j(Zi — j) exp(— Zilzilz/ZILZ?)
e Moore-Read wavefunction for a non-Abelian state

. Wa({z) =
Pf(——) [T;<; (2 — )" exp(— X;lz1%/213)

Zi—Zj
 Wavefunctions can be constructed systematically to

describe many FQH states (e.g., Bernevig&Haldane2008,
Wen&Wang 2008)




Can the QAH state be generalized to
fractional QH states?

With magnetic field | No magnetic field

Nontrivial band

structure
Integer filling Integer Quantum Quantum
non-interacting Hall anomalous Hall
Fractional filling Fractional Quantum Fractional quantum
interacting Hall anomalous Hall
® o ®




Fractional quantum anomalous Hall (FQAH)

States

* FQAH can be realized in a topologically nontrivial

flat band (Sun et al, Neupert, et al, Tang et al, PRL 2011, Sheng et al
Nat. Comm. 2011)

Flat band for
t = 1,t' =
1 144 —
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(Sunetal 2011)

 Numerical evidence of FQH states have been found
(Neupert, et al, Tang et al, PRL 2011, Sheng et al Nat. Comm. 2011,
Regnault&Bernevig 1105.4867, Wu, Bernevig&Regnault
arXiv:1111.1172)



Wave-function description of FQAH states

 What are the many-body wavefunctions describing
FQAH states?

* Related to many other questions about FQAH, e.g.,
what states can be realized on the lattice?

* |dea: Finding the single-particle basis corresponding
to the Landau level wavefunctions in the ordinary QH
states.

FQH



Wave-function description of FQAH states:
1D Wannier functions

 The proper basis can be found by
using 1D Wannier functions

* Consider FQAH state on a cylinder
* The states for each fixed k,, U ky eigenstates

forms a 1D chain. 0000000
e 1D ' ' :
Wannier functions Ry (k)

a local basis for the 1D system.

1
Fourier transform of Bloch states & v

1 . .
. |Wnky> = \/_szkx etkxnolo() | ky)‘




1D Wannier functions

* |Wnky> _\/Lka elkxn lgo(k)lkx: ky)

* The ambiguity of ¢ (k) can be fixed by requiring the
Wannier functions to be maximally localized, i.e., by
minimizing

(Ax)z — (Wnkyllewnky> — (Wnkylxlwnky>2

* In 1D, the maximally localized Wannier function
(MLWF) can be obtained by diagonalizing the
projected x operator (kivelson 1982):

* X = P_xP_ with P_ = ), |k){k| projection to the

occupied band. A

* X|Whk,) = Xnk, |Whk,,) 0000000

* Xpp. =n—0(k,)/2m Xnk, 'n



1D Wannier functions

* Wannier functions are shifted by 8 /2m
with respect to the lattice sites

* Correspondingly, charge polarization
P=-0/2m.

* Since x = id/dk,, the projected
position operator X = iaikx — Ay,
a,(k) = —i(k‘(’)kx‘k) is the Berry’s

phase gauge field
OO0 O0O00O0O0

* The shift of eigenvalues of X is ¥
determined by the flux of a, |
X space

Coh & Vanderhbilt, 2009 PRL



1D Wannier functions and the Chern number

e Chern number on the Brillouin zone torus is the
winding number of the flux 6(k,,)

o 1 2T
P, =——] 0,0(k,)dk
h/e? G = N A
6 (k
(y) __________________________ 2T
ky




1D Wannier functions in QAH states

e “Twisted” boundary condition for Wannier functions
° ky — ky + 2, |Wnky> — |Wn+1,ky>

A extended momentum K can be defined, only if the
1 2 3

Chern number is nontrivial
 Waky) = [Wic)




Using 1D Wannier functions to describe
FQAH states

* After the redefinition, Wannier functions |Wx)
are analog of Landau level wavefunctions

C 1/)K(x’ y) — eikye_(x_l{l?? )2/211_%3’

k)

FQH



Using 1D Wannier functions to describe
FQAH states

e Using this mapping of basis, every °

FQH wavefunction is mapped to the Xk’
attice FQAH states 2
° :QH: 0
W)= > o) | | 1w
{nk} ng=1
 =»FQAH:

W)= > o)) | | 1w

{nk} ng=1



Using 1D Wannier functions to describe

FQAH states
* The occupation number wavefunction ®({ng})
is known for many FQH states

* For Laughlin state (rezayi&Haldane 1994 PrB)
Z2N /N

W13) =00 ®© 00800 800800

* A generic construction by Jack polynomials
(Bernevig&Haldane 2008 PRL)

* All knowledge on FQH wavefunctions can now be used
to construct lattice wavefunctions with the same
topological properties.

e Pseudo-potential Hamiltonians can be constructed on
the lattice



FQAH state with higher Chern number

Are there new states in the FQAH system that are
absent in the ordinary FQH?

Similar approach can be generalized to bands with
Chern number >1

Higher winding number of the Wannier state position

(0) 2

1B ——— == — — - i




Realizing multi-layer FQH states in one band

* For Chern number C; = 2, the Wannier states form two
groups |W.1), |[W.2), with each group equivalent to a
Landau level

 =»Double-layer FQH states can be realized in a single
band




Nontrivial representation of lattice translation
symmetry

* Lattice translations T, Ty, acts differently on this
basis

* T, Wr}> = |Wn2>: Tx|Wn1> — |Wn1>
© Ty|Wyp®) = ety W)




Topological nematic states
* Consider the Halperin (mnl) states (Halperin ’83)

+ (z;,w;) =
m n l
[Micj(zi — )" (Wi —w;) [1;,j(zi — wy)
* Lattice translation T,, exchanges the two “layers”.

* For m = n the state is translation invariant. However,
the 4-fold lattice rotation symmetry (for a square
lattice) is broken.

* We name such a state as a topological nematic state

* Lattice dislocations in a topological nematic state
carry nontrivial topological degeneracy



Dislocations in topological nematic states

* Dislocations are described by the Burgers vector
b = (by, by)

% /=/==/= /X N

|
7
%=/ X

x-dislocation B =X y-dislocation B =9

e Across the “branch-cut” of the x-dislocation, the two
layers are exchanged!



Dislocations in topological nematic states

* A pairs of x-dislocations is equivalent to a “worm-
hole”




Dislocations in topological nematic states

Consider a simple case of (mm0) state, which
is a direct product of two Laughlin states

|P) = |(D1> X |D;)

Consider two pairs of dislocations on the torus

Ground state degeneracy N = m3

Degeneracy d = +/m per dislocation




Dislocations in topological nematic states

* For more general (mml) states, the topological
degeneracy with n pairs of dislocation is

° N — |m2 _ 12| . |m_ lln—l
 The degeneracy per dislocation, i.e., quantum
dimension is d = \/Im — ]

* This degeneracy can be obtained by studying
the Chern-Simons theory with branch-cuts

1
L = E aZLKI] (3v Cl{ (Barkeshli&Wen 2010)

* Alternatively, it can be understood from an
edge state picture



Edge state picture of dislocation-induced
degeneracy
* Consider the torus as a cylinder glued along the edge

* Inter-edge tunneling exchanges the two layers across
the branch-cut

cut
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Edge state picture of dlslocatlon mduced

degeneracy A B A
\ i A i A
L e I e S AL

* The edge states are described by the chiral Luttinger
liquid theory

1
1
o (0 PRK1Ox P = 0 PRV1y0xPr) + Liny

* Electron operators CLR = elKU‘l’L,R
* Interedge tunneling

g(citciq + c#tci + h.c.), Aregion

1+2 2+1

. [.
me {g(cL ¢t +c; cg + h.c.),Bregion



K K> K G
e e B — e = S

|2 . | 4 o K . 4 — K'
a, | a; | a3 Xy

Without dislocation, the inter-edge coupling potential

g . COS K,,(qb,{ — gbé) has det |K| number of minima in the
“Brillouin zone” qbé’z — ¢}1?,2 € [0,2m), leading to the
degeneracy of det|K| = m? — [? of the torus

With n pairs of dislocations, each A region contributes
m? — 1%, each B region contributes m + [, because the two
operators ¢; — ¢% in Aand ¢p; — 3 in B do not commute

Each dislocation has a constraint
04}
Qi = J** x(pr+¢2)dx = 0

=>» Degeneracy
_ (mz—lz)n(m+l)" .
N = (m+0)2n-1 (

2 12)(m + l)n—l



Classification of topological nematic states
* The topological nematic states discussed ky

above are sensitive to x-dislocations but not

y-dislocations.

* Apparently, different topological nematic

: k,
states can be obtained.

* Generically, 1D Wannier functions can be
defined along any reciprocal lattice direction

K = 2n(ny,n,)

 The corresponding topological nematic states
is sensitive to dislocations with burgers vector

b - —— odd.
« =>» 3 types of topological nematic
states (0,1), (1,0), (1,1)

 The ordinary Halperin state can be viewed as
a trivial class (0,0)




A topological field theory description of
topological nematic states

* Without dislocations, the effective theory is an
Abelian U(1) X U(l) Chern-Simons theory

L——a . K0, a

* Around a dislocation, ay

* To describe this effect we introduce a U(2) gauge
field A, and a Higgs field H = o - rie'® which breaks
U2) » U(1) X U(1) The manifold of the Higgs
field is
S2xU(1)/Z, <&

and a;; are exchanged




A topological field theory description of
topological nematic states

Consider the Chern-Simons-Higgs theory t7 5 6 =0

0 =
__ m-—l 2 R T o=m
L= Efﬂwtr [AﬂavAr +34pdy AT] NT
+ - e"tr|A,|o,tr[A] + Jtr[D,HTD,H]

A constant H breaks U(2) to diagonal U(1) x U(1),

leading to the Abelian Chern-Simons theory.
A dislocation corresponds to a half vortex of H = o -
ne'?.

The two U(1) are exchanged around the dislocation

Generically, 8 = 71 - N with 4 displacement field, and
N = (nx, ny) the type of the topological nematic state.



Summary

1D Wannier functions provide the proper basis for
characterizing fractional topological states in
lattice systems with nontrivial band structure.

FQH states can be mapped to lattice models

A band with higher Chern number is mapped to a
multi-layer FQH state

New states named as topological nematic states
can be realized, with non-Abelian dislocations
even if the state itself is Abelian.

Provide the possibility of experimentally observe
the topological degeneracy, which otherwise
requires a high genus surface.



