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Integer Quantum Hall Effect
& Edge State
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Figure 4 | QHE for massless Dirac fermions. Hall conductivity o, and
longitudinal resistivity p .. of graphene as a function of their concentration

at B=14Tand T=4K. 04, = (4(32/’1)1! is calculated from the measured
dependences of p,,(V,) and p (V) as 0, = pxy/(Pfy + p2.). The

behaviour of 1/p,, is similar but exhibits a discontinuity at V, = 0, which is b
avoided by plotting o, Inset: 0, in ‘two-layer graphene’ where the
quantization sequence is normal and occurs at integer ». The latter shows

that the half-integer QHE is exclusive to ‘ideal’ graphene.
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~ Half-Quantized Hall
Conductance In
Graphene?
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Figure 2 | Quantized magnetoresistance and Hall resistance of a graphene
device. a, Hall resistance (black) and magnetoresistance (red) measured in
the device in Fig. 1 at T = 30 mKand V, = 15 V. The vertical arrows and the
numbers on them indicate the values of B and the corresponding filling

factor » of the quantum Hall states. The horizontal lines correspond to h/e’»
values. The QHE in the electron gas is shown by at least two quantized

plateaux in Ry,, with vanishing R, in the corresponding magnetic field

regime. The inset shows the QHE for a hole gas at V, = —4V, measured at
1.6 K. The quantized plateau for filling factor » = 2 is well defined, and the
second and third plateaux with » = 6 and » = 10 are also resolved. b, Hall

resistance (black) and magnetoresistance (orange) as a function of gate
voltage at fixed magnetic field B = 9T, measured at 1.6 K. The same
convention as in a is used here. The upper inset shows a detailed view of
high-filling-factor plateaux measured at 30 mK. ¢, A schematic diagram of
the Landau level density of states (DOS) and corresponding quantum Hall
conductance (6,9,) as a function of energy. Note that, in the quantum Hall
states, 0, = —nyl. The LL index n is shown next to the DOS peak. In our
experiment the Fermi energy E . can be adjusted by the gate voltage, and R,\,,|
changes by an amount g.e*/h as E: crosses a LL.

Zhang et al, Nature 438, 201 (2005)



Band Structure of Graphene in B field

N=50,phi=0.0 N=50,phi=0.009

The zero mode edge states connects two valleys. So the zero-mode conductance

originates from the one edge state connecting two valleys, NOT from two one-halfs
of two valleys



The Hall Conductance
and the Chern Number

The system Hamiltonian Thouless, Kohmoto’, Nightingale, and
| den Nijs, Phys. Rev. Lett. 49, 405(1982)
H=¢€(p)+ > d,(p)o,

a=x.y.z

The Kubo formula for the conductance: a result of linear response theory
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Hall conductance The Chern number is an integer if the
Brillouin zero is finite.




Half-Quantized Hall Conductance
for Two Dimensional Massive Dirac Gas

Redlich, PRD 29, 2366(84); Jackiw, PRD 29, 2375(84)
Qi et al, PRB (2008)
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Integer Quantized Hall Conductance

Lu, Shan, Chu, Niu & Shen, PRB 81, 115407(10)

H =v hk-o+(mv; — Bk )o.

Oy = -%[Sgn(m) +sgn(B) |



Half-Quantization in B-field
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Q: Is this formula correct?
If yes, can we measure one half-
quantized Hall conductance?



3D Topological Insulator

Under the time reversal
OH (k)O™" = H(-k)
Time Reversal Invariant Momentum

k=-k+G; k=G/2

(Reciprocal lattice vector G)
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FIG. 1. Schematic surface (or edge) state spectra as a function
of momentum along a line connecting A, to A, for
(a) w7, = —1 and (b) 7,7, = +1. The shaded region shows

the bulk states. In (a) the TRP changes between A, and A,,
while in (b) it does not.

Fu and Kane, PRL 98, 106803 (2007)

The surface states in the gap:

1.The Fermi surface encloses an odd
number of Dirac cones;

2.The Fermi surface has a single spin state
at each momentum, the lock-in relation of
electron momentum and spin;

3.The Berry phase arround the Fermi surface
is TT.
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FIG. 1: (Color online) (a) Schematic of a 3D TI in a weak
magnetic field, and the formation of chiral current on the
top and bottom surface boundaries. (b) A bound state at
the interface of 2D Dirac fermions with positive and nega-
tive masses, whose wave function is illustrated. The arrow
indicates the flow of edge current. (¢) Splitting of the bound
state separated by massless Dirac fermions in the side surface,
which wave function is illustrated.



Effective Model for Surface States
with the Zeeman Splitting

S Secccsccccccagfecccaccacans

Heg(k)=v(k xo)-n—guphjoy—gLpuph, o,



1D example:
Zero Energy Bound State:

Jackiw & Rebbi, PRD 13, 3398(76)

+m1 —m2

2 2
H=cpo +mco,|H=cpo. —mcoO,

¢ nym l —m;c|x
Zero-energy mode: W(x) =\/ L2 ( )e x|/
hm +m,|1



2D example: Chiral Bound State
carrying 1 e4/h conductance

A

H=p-o+mo_ |H=p-0-m,0,

+ m,

Chiral mode: W(x,y) o (

l )e—(lxﬂkyy)/h Dispersion:

] E = vhky



A Topological Insulating Ball
in a Zeeman Field

A >0




1D Quantum Conductance

The current for a quantum wire

I =evD(u, — uz)

v: the effective velocity
D: the density of the states
M-J: the potential difference between two ends
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Separated by conducting area

A




3D Model for Tl
H =v_ hk- a+(M - Bk*)f

ai =Gx®gi;ﬁ = GZ ® GO

The Zeeman field: A,0, ® 0,

Take a tight binding model by
mapping the continuous model
on a cubic lattice.

1
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Calculation of surface Green's function
using the transfer matrix

The system is finite or semi-infinite.

{ ]_[ 1 ]_ .
J U J L
GOO
Hy, and Hy, are matrix elements of the Hamiltonian between layer Bloch states

Goolw)=(w—Hy — Hy T(w))™"

Nw)=(w—Hy — Ho; Mw)) ™' Hg,

Transfer matrix T is calculated iteratively until self-
consistency is achieved

Lopez Sancho and Rubio, Phys. F: Met. Phys. 14, 1205(84).



Surface local density of states is given by

p(K) = = Tr{Im Gy ()

Current Density

(j.(»)=ie [, Trv(nk )G (y.k,)



Surface States
In a Zeeman Field
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FIG. 2: (Color online) Local density of state on an infinite xy
surface of a semi-infinite 3D system. (left) gapless single Dirac
cone of the surface state; (right) gap opening by application of
a Zeeman splitting term. The model parameters are A = 0.5,
B =025 M =0.3, and A. = 0.07.
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FIG. 3: (Color online) LDOS on the top surface of a structure
that is infinite in X, finite in Y and semi-infinite in Z direction.
Sampling is taken correspondingly in a, b and ¢ regions as
illustrated in the upper panel A. = 0.15,M =04, and L, =
30a (a is the lattice space).



Current Distribution at the Top and Side Surfaces
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Transmission Coefficients In a
Four-Terminal Device

2D Lead 2
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@) Schematic illustration
of the 3D device with 2D
semi-infinite metallic
leads, the sample is semi-
infinite in Z direction, the
top surface size is 30x30;
(b) Transmission
coefficients of the 4-
terminal device, Ef2 is
fixed, the dashed line
Indicates the gap position;

(c) E1 is fixed. Az = 0.15,
M=0.4.



Thickness Dependence of the
Difference
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(upper) Schematic
illustration of the 3D
device with 2D semi-
infinite metallic leads, the
sample has finite
thickness in Z direction,
the top surface size is
LxL; (lower) Transmission
coefficients T14 — T12 of
the 4-terminal device as a
function of the sample

thickness in Z. Az = 0.15,
M=0.4, Er1 =0.001, Ef2 =
0.04.



Measurement

The Landauer-Buttiker formula

IE E

The Hall conductance 10

2:+V/2

2

1 e
G, =]13/V24 =5(T12 _7714);




Half Quantized?

IQHE: chiral edge state (n=1)
lL,=T,=1,=1,=1 1, -1,
L, =1,=1,=1,=0 G =l(];2_Tl4)e —
l,=1,=1,=1,=0

Surface states in Zeeman field: surface-edge state

T,,T,,T,,T, =(?=)0+1/2 1,-T,=1/2
T219T329T439714 ~ 0 G. =%(712 —714)%2*'%2—2
713aT,%19Tz4’T42 ~ ()

In this setup, the Hall conductance is 7 for the
surface states of 3D topological insulators. It is
Y2 for IQHE.




Q: Can we measure one half-
quantized Hall conductance?

A: Yes, the surface-edge
state carries one half of
gquantum conductance.
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Fig. 1.3. The magnificent FQHE skyline. Diagonal resistance as a function of the magnetic field
for a two-dimensional electron system with a mobility of 10 million cm?/V s. A FQHE or an IQHE
state is associated with each minimum. Many arrows only indicate the positions of filling factors (for
example, 1/2, 1/4, etc.) and have no FQHE associated with them. Source: W. Pan, H. L. Stormer,
D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lert. 88, 176802 (2002).
(Reprinted with permission.)



Fractional Quantum Hall Effect

Fractional Charge, Composite Fermions and Edge States
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FIG. 1. p,, and p,, vs B, taken from a GaAs-Alg, ;-
Gag, 7As sample with =1.23%101/cm?, p=90000 cm?/
V sec, usingZ=1 uA. The Landau level filling factor is
defined by v=nk/eB.

D.C. Tsui, H.L. Stormer, and A.C. Gossard,
Two-Dimensional Magnetotransport in the
Extreme Quantum Limit

Phys. Rev. Lett. 48, 1559 (1982)
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Tsui et al, 82; Laughlin, 82; Jain, 88

Laughlin wavefunction (1982)

[ I1 (:i—:j)”]Hc'(:A~) Fractional charge: e/n
k=1

Nzizjzl

Jain’s composite fermion theory (1988)

Electron Flux Quantum
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METAMORPHOSIS OF INTERACTING ELECTRONS INTO FREE
COMPOSITE FERMIONS



