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Outline:

1. The context, the goal and the results

2. Construction of an exactly solvable model for a 

fractional topological insulator

3. The properties of the fractional topological insulator, 

particularly the stability of its gapless edge modes 



The context:  Topological phases of matter

• The Hall conductivity as a 

topological quantum number 

• Protected as long as the bulk 

energy gap does not close

• Gapless modes at the edges

The quantum Hall effect 
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Interactions enable the Fractional Quantum Hall Effect –

fractionalized charges, anyonic statistics, topological ground 

state degeneracy etc. etc.  



A useful toy model – two copies of the IQHE

Red electrons experience a magnetic field B

Green electrons experience a magnetic field -B

=odd per each color – a topological insulator

Gapless edge protected by time reversal symmetry

=even per each color – a trivial insulator, no protection 

These are examples of 2D non-interacting topological/trivial 

insulators.

Will interactions introduce new fractionalized states?

Quantized spin Hall effect - a generalization of the QHE to 

systems that are symmetric under time reversal 



Three dimensional (3D) non-interacting topological insulators 

• Gapless edge modes are now Dirac cones on each of the 

surfaces

• The Dirac cone cannot be gapped without breaking of time 

reversal symmetry. 

• When time reversal symmetry is broken on the surface, a 

quantum Hall state forms, with half-integer Hall conductivity.  

• When a finite thin solenoid is inserted into the 3D bulk, 

charges of ±e/2 are bound to its ends (“charge-monopole 

binding”). 

Will interactions induce new fractionalized states (FQHE on the 

surface, “fractional charge-monopole binding” ?)



The answer: Interactions may give rise to fractionalized 

topological insulators 



The first example                                           (Bernevig et al)

Red electrons at a fraction 

Green electrons at a fraction -

The question – can the edge states be gapped out without 

breaking time reversal symmetry ? 

The answer is determined by the parity of /e*:

Even –Yes

Odd - No (Levin & Stern)

Not directly generalizable to three dimensions



Creating fractional charges:

1. The quantum Hall example – by inserting flux and using the 

Hall conductance 

2. The quantum spin Hall effect – a simple modification

But – 3D ? 

A different route is needed.



Our method:

• constructing an Hamiltonian of electrons on a lattice, where 

the low energy degrees of freedom are non-interacting 

fermions of fractional charge qF. 

• The fermions may be put in a metallic state, a quantum Hall 

state, a topological insulator state.

• At high energy, there are bosonic excitations of two types, 

carrying charge and flux. There is a mutual fractional 

statistics between the two. The charge is e*. The ratio qF / e*

is an integer. The bosonic spectrum is gapped, and the gap 

does not close at the edges. 



Spectrum: 

Fermionic spectrum -

Bloch band of fermions 

of Charge qF

bosonic spectrum

Charge 2e

Fractional excitations

The fermions can be put into metallic states (partially filled 

band), fractional quantum Hall states (fractionally charged but 

no low energy fractional statistics). 

Our focus – topological insulator states. 



Properties of the fractional topological insulator:

2D (=±1 for the two spin directions):

1. Quantum spin Hall effect with e replaced by qF. 

2. The spectrum of an annulus is periodic with respect to an 

Aharonov-Bohm flux, with a period that is consistent with 

the Byers-Yang theorem for an electron charge

3. Edge modes are stable for qF / e* odd, unstable for qF / e*

even (same criterion as in the earlier example). 



Properties of the fractional topological insulator – three dimensions:

1. Bulk is gapped, edge has a Dirac cone of fractionally charged 

fermions

2. In a weak magnetic field, the surface exhibits fractional quantum 

Hall effect, with e replaced by qF

3. Charge-monopole binding: 

a. A monopole-antimonopole pair of Dirac monopoles is “confined”

b. An unconfined pair requires monopoles larger by a factor of 

e/e*.

c. For those monopoles, the bound charge is 

e* / 2  when qF/e* is odd.

zero when qF/e* is even. 



Properties of the fractional topological insulator – three dimensions 

(cont.):

4. Surface modes are stable for qF / e* is odd. 

5. We do not know whether the modes are stable when qF / e* is even.

The ratio qF / e* is significant also in 3D. 



How is the model constructed?

1. Constructing a model Hamiltonian with fractionally charged 

excitations that are bosons 

Senthil & Motrunich

Kitaev’s toric code

2. Creating fermions that are fractionally charged by gluing an 

electron to fractionally charged bosons

3. Creating a topological insulator out of these fractionally 

charged fermions 



1. Square lattice 

2. Bosons of charge 2e (pairs of 

electrons) may live on lattice sites s

and on link sites ss’

3. The Hamiltonian includes a charging 

term and a hopping term 
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The building blocks: 

Step 1: The bosonic part

4. Exact solvability requires 

Number of commuting terms = number of degrees of freedom
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Ground state – all Qs ‘s are zero

The paradigm of a bosonic Hamiltonian is 

 
2

. .

co s
c s J i j

s ite s n n s ite s

H E n E      Too many terms!

Charging terms only on sites, not on links!



'

'

s

sssss
nmnQ 

Fractional charge: 

A fractional expectation value for ns when qs = 1

Instead: 



The hopping term should split the degeneracy of the ground 

state subspace of the charging term, without mixing states 

from different subspaces. 

And – it should have a discrete spectrum. 

all Qs =0

all Qs =0 except one

Fixing all Qs does not fix all charges. The spectrum 

consists of highly degenerate subspaces.



To get a discrete spectrum:

1. Bp should be unitary

2. It should satisfy (Bp)
m =1                  eigenvalues

Hopping terms we know and love:

1. Fermion hopping:             - vanishes when applied twice

2. Boson hopping
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None of these gives a discrete spectrum
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Two basic properties:

1. The hoppoing involves an entire plaquette
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Our solution:

Uss’ changes qs by +1 and qs’ by -1 
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2. For the link variables –

• Only m possible states 

• Hopping is ±1 on the “modulo” scale.

2. For the site variables – all states are allowed. 

3. The site variables supply/absorb bosons to 

guarantee conservation of charge.
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First consequence of the modular structure:

(Bp)
m =1                 discrete spectrum

has the spectrum:
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• qs , jp are integers

• The spectrum is gapped. Ground state has qs = jp = 0. 

• Charge excitations qs = 1. Flux excitations  jp = 1. 
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The Hamiltonian:



Second consequence of the modularity of nss’ : all allowed 

values are equally probable, for all eigenstates (Zm symmetry).

〈 nss’ 〉 is the same for all values of qs , jp
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A change of 1 in qs changes the expectation value of ns by 1/m 

An excitation that carries a fractional charge 2e/m (both 2D and 3D)



Coupling to a static magnetic field
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• Exciting jp amounts to a flux excitation of hc/2e flux quantum.

• When a charge of 2e/m goes around a vortex of h/2e, a phase 

of 2/m is accumulated – fractional mutual statistics  

• In three dimensions, flux particles become flux loops, that 

have fractional mutual statistics with the charge quasi-particles

• Ground state degeneracy on a torus, as needed. (Swingle et al., 

Maciejko et al.)

• No gapless edge modes (as in the toric code)



Step 2: Binding electrons to fractional bosonic charges
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• Electrons live on lattice sites only

• Two spin directions

• They affect (for now) only the charging term

The presence of an electron on a lattice site enforces k charge 

excitations on that same site, making the total charge 
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Step 3: making the composite object hop “in one piece”

If an electron hops “alone”, a charging energy will be paid
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To avoid that energy cost, Qs must be changed by ±k in the 

site from/to which the electron hops. The operator that 

“moves” a fractional charge 2e/m from s to s’ is Uss’ . 

',,',,
~

 jij

k

ijihopping
ddcUcH






So far, low energy fermionic part and a high energy 

fractionalized bosonic part.  

Do the fermions have a fractional charge?
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The hopping part 
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The bosonic part 
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Couple to an electro-magnetic field by the Peirles substitution 



The correct Byers-Yang periodicity is guaranteed by the 

bosonic part. Adding    0 / 2 and changing j by -1 brings 

the system back to the initial energy 
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So, we have 

Fermionic spectrum -

Bloch band of fermions 

of Charge qF

bosonic spectrum

Charge 2e

The fermions can be put into metallic states (partially filled 

band), fractional quantum Hall states (fractionally charged but 

no low energy fractional statistics). 

Our focus – topological insulator states. 



2D: Quantum Spin Hall effect of the fractionalized fermions.

Quantized spin Hall conductance

Two types of fractional charges:

Fermionic – of charge qF

“Bosonic”/mixed – of charge e* =             for m even

for m odd

One pair of gapless counter-propagating edge states. 

Are they protected by time reversal symmetry? 
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Flux insertion argument – the general idea (Fu&Kane)

For                      there are pairs of states that are 

degenerate due to time reversal symmetry. 

Their splitting at zero flux will be small (~1/L)

Indication for a gapless edge mode

0
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n 
  

If the degeneracy cannot be lifted in a 

time-reversal-symmetric way 

protection



Turn on a            in the hole. 

• A spin imbalance of ±sH (integer number) is created on each 

edge. 

• Two states that are degenerate in energy and time reversed of 

one another.

• The degeneracy may be lifted in a time-reversal-symmetric 

way only if sH is even. 
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spin-ups

spin-downs

Flux insertion argument – Non-interacting QSHE (Fu&Kane)



For the fractional case, a complication – two types of degeneracies

Reminder: FQHE disk (say, =1/3)

• Degeneracy associated with different topological sectors, not 

with the existence of a gapless mode.

• May be removed only by tunneling of fractional charges between 

interior and exterior. 

This is not what we are interested in.



We should focus on excitations where the edges are uncoupled

• We should insert the flux needed to bring each edge back to 

the topological sector from which it started. 

• The number of flux quanta needed for that is 1/2e*. 

• The imbalance is then sH /e*. It is the parity of this number 

that determines the protection of the gap. 

• parity of sH /e*                                        parity of qF/e* 

spin-ups

spin-downs



By this argument, if   qF / e* is odd, the gapless modes are 

protected as long as time reversal symmetry and charge 

conservation are maintained.

When this ratio is even, there is no protection. 

Can the modes be gapped then?

We look for an edge perturbation that is

a. Charge conserving

b. Possibly strong (“relevance is irrelevant”)

d. symmetric to time reversal

And gaps the edge



A microscopic calculation

The field theory of the edge modes
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The Integer case:
(Wen…)



Our case is more complicated
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Perturbations:    
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l is an integer vector 

To conserve charge 0 tl
  5133 l



The presence of the bosons allows more perturbations as 

compared with the case of a 2D =1 quantum spin Hall state. 

Two important ones:

1. Breaking a boson into two electrons (one of each spin 

direction)

2. Backscattering an even number of electrons together with 

creating flux quanta

The combination of these two perturbations gaps the edge of 

the 2D system in the case of even qF / e*.



Three dimensions:

• The same construction gives a fractional topological insulator

• FQHE on the surface, with

• Unique charge-monopole binding (not to be detailed here)

• Surface modes are protected by a modified flux insertion 

argument (the Corbino disk is replaced by a Corbino donut, a 

thickened torus) when qF / e* is odd. 

• We do not know how to gap the surface states when they are 

not protected.
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Summary:

1. Fractional topological insulators are possible in 2D and in 

3D.

2. Explicit construction using the “gluing” of fractionalized 

excitations of a bosonic system with electrons. The 

resulting composite particles are stable, are fermions, and 

carry a fractional charge. 

3. The crucial component – Zm symmetry of the link bosons

4. The gapless modes of these fractional topological 

insulators are protected by time reversal symmetry when 

qF / e* is odd, not protected when it is even in 2D, and 

unknown when it is even in 3D. 


