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Outline

e Introduction.

e Isotropic 3D LLs of non-relativistic fermions from Aharanov-
Casher coupling — strong TI insulators.

e Isotropic 3D LLs of Dirac fermions from non-minimal coupling.

e Generalization to arbitrary dimensions.



2D quantum Hall effect with LLs

e 2D Landau levels in the external magnetic fields.

e Magnetic band-structure characterized by the topological
TKNN (Chern) number.

e Chiral edge modes responsible for quantized transverse
charge transport; stable against disorder and interactions.
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Quantum Anomalous Hall model without LLs

e Honeycomb lattice with complex-valued next-nearest neighbor
hopping.

Hw = _tz {C+(FA)C(FB) + h-C'}

H —=->t{e’c (r)c(r/)y+e"c (r )c(r)

+ h.c.}

e Chern number v = +1 if 5§ 20,7,
Mass changes sign at Ki..

F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988); X. L
Qi, et al, PRB 74,85308 (2006)



2D time-reversal invariant TIs with and without LLs

e The Kane-Mele model: two copies of Haldane model.

e Odd numbers of helical edge modes are stable against disorder;
topological Z2-index.

e Bernevig--Zhang model: LLs with opposite chiralities for spin

up and down electrons. ---- fractional 2D TIs.
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e 2D TIs without LLs were Quantum spin Hall state
predicted and realized in 2D i @

HgTe/HgCdTe quantum wells. » ’ - 6



3D strong TIs without LLs

« Various 3D strong Tls based Bloch-wave band structures with
non-trivial Z2 index have been predicted and realized.

Bi,Te,, Bi,Se;, etc |IOP, Osaka, Princeton,
Stanford, Tsinghua, Wuerzburg, etc

« Odd numbers of surface
Dirac cones detected by
ARPES, quantum oscillations,
STM etc.




Motivation of 3D strong TIs with LLs ?

* Question: can we construct 3D strong Tls based on LLs?
Here we mean 3D isotropic LLs, not stacked 2D LL layers.

 LL wavefunctions are simple, explicit, and elegant.
LL in arbitrary-D flat space= harmonic oscillator + spin-

orbit coupling - simple enough for the qual exam.

 Flat spectra + analytical properties may facilitate the study of
high dimensional fractional TIs due to interactions (open).

* How to characterize the topo-properties within harmonic
potentials, one of the simplest types of inhomogeneity? (open)



Pioneering Work: LLs on 4D-sphere ---Zhang and Hu
Science 294, 824 (2001).

* Particles couple to the SU(2) gauge field on the S* sphere.
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- 4D integer and fractional Tls with time reversal symmetry
- Dimension Reduction to 3D and 2D TlIs (Qi, Hughes, Zhang).

* 4D LLs in flat space — Elvang and Polchinski, 2002. 9



Quantum Hall Effect of Relativistic Fermions

E = vy| p | massless Dirac
spectrum

Vo= 10% m/s = ¢/300

G. Semenoff, Phys. Rev. Lett., 53, 2449 (1984); n=_2
Novoselov, Geim et al., Nature 438, 197 (2005);
Y. Zhang, P. Kim et al, Nature 438, 201,(2005)

Generalize to 3D and above with spherical symmetry?




Outline

e Introduction.

A brief review of Landau levels (LLs) and topological band states

o Isotropic 3D LLs of non-relativistic fermions from
Aharanov-Casher coupling — strong TI insulators.

e Isotropic 3D LLs of Dirac fermions from non-minimal coupling.

e Possible realizations?
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Review: 2D LLs in the symmetric gauge

2 N 1 - .
H® = ——(P-—A)", A==Bxr

2 M C 2

e 2D LL Hamiltonian = 2D harmonic oscillator (HO)+ orbital
Zeeman.

« H,, . has the same set of eigenstates as 2D HO.

12



Different organization leads to non-trivial topo-structure

E (hw)=2n +|m|+1

2D, HO

* When viewed horizontally, they are topologically trivial.

- When viewed along the diagonal line because e, /(7hw) = —m,
they become LLs.

m -z i(21%)

* LLL wavefunctions. y =1z"¢e . Z=X+1y, m2>0.
13



How to work in 3D? — Aharanov-Casher potential !!
* Replace the U(1) potential to the SU(2) gauge potential in 3D.

go-a/f x T

- 1 - -
2D: A=—Bixr =—>» 3D: A, =

2
« 3D LL Hamiltonian = 3D HO + spin-orbit coupling.

1
2

. P 1 . -
HLBL: +—I\/Ia)2r2—a)c7aﬁ-L a)zlegl | - hC_
2 M 2 Mc 9 |eg|
1 - e -, M .,
=—(P-—A) ——w'r
2 M C 2

- H” has the same set of eigenstates of 3D HO in the
eigen basis of j.

* The full 3D rotational symm. + time-reversal symm. 14



Constructing 3D Landau Levels from 3D HO Eigen-states

3
Eopw (B@) =20 +1+ —

2
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L 32
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L oMl >
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3D LL wavefunctions

l//nr,j+,|,jz (r’Q) — Rnr’l(r)YL'I’jz (Q)

* 1. :Landau level index (] ] )
+m. + —

: - : | 2 (Q)\

Y, .. (Q): spin-orbit coupled N )
spherical harmonics with the Vi, () =I 1 }
positive helicity. Cfeme s |
| Y L@)]

L 21 +1 i )

 The LLL wavefunctions:

2 2
-r /4Ig

v JLLLJ (F,Q) - rIYL,I,jZ (Q)e
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The highest weight state in the 3D Landau Levels

* The highest weight state J, = J,. Both L, and S are conserved.

m (x +iy) 11 2D-like LLs with spin perpendicular
y o (r,Q) = e : :
Leoda=l, 0 to the plane of the orbital motion.

* The highest weight state as coherent states.
S /€.
(r,Q)=[(6 +i6) r] ® g4,

LLL
Vi
+

high

* The highest weight states form over-
complete basis for all the j, eigenstates.
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Understanding the highest weight state from classical EOM

« If we fix the direction of s , and
choose r, and p in the plane
perpendicular to s , then the
motion is coplanar, which
reduces to the 2D cyclotron
motion. The plane of motion
passes the center.

* Helical structure: we can rotate
the motion plane and S together.




Review: chiral liquid of 2D QHE edge

' e » Each LL contributes a branch of
/ chiral edge modes.
- H

PEooos s « AS m goes large, eigen-states are
m, pushed to the open edge, and develop
' dispersion.
Halperin, PRB, 25, 2185 (1982)
2D p 2 1 2 2
bulk +_I“l\’t5<r _a)Lz
2M 2

. h2m2
H edge = 2
2 MR

-mhaw, (Mm~m_ >0)

Hﬁ(ﬂzvjk—h)
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Helical Surface Modes

Surface Effective Hamiltonian for the positive
helicity branch

3D p2 1 2 2 -
H = +—Mr—a)0-L
2M 2

1

2D

O+ 1) E/E, R/I =8
= . —hol
2 MR

surface

G-L=lh=0-(R& xp)=RE -(Px5)

2D

=v (I-1)hi/R=vé (pxo)-u

plane




3D strong TI from Landau Levels

« Each LL contributes to one helical Fermi surfaces

Positive helicity branch o - L= 1h

k, =1hlR
« Strong Z, Tl

Odd filling gives odd numbers of Dirac Fermi surface.

leane:Vér'(pxa)_lu 21



Non-uniform Particle Density in 3 Dimensions

- el 2j+1 degenerate states

e Estimation based on classic radius of LLL orbits.

classic \/7 class class I g
r oc /11 r —r oc
I g I+1 I \/T

p(r) = 2(I+1) oc \/Iilg_3 ~ rlg_4

2

47er A r

 Exact calculation of particle density for filled LLLs.

") 1 ( 2 2F(23 rz)‘.r; T
Pu )= 2 e o T
V2 | 7l 21 !
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Outline

e Introduction.

A brief review of Landau levels (LLs) and topological band states

e 3D Isotropic LLs of non-relativistic fermions from Aharanov-
Casher coupling — strong TI insulators.

e Square root problem: 3D Isotropic LLs of Dirac
fermions from non-minimal coupling.

e Generalization to higher dimensions.
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Review: 2D LL Hamiltonian of Dirac Fermions

1

2D e e . - R
H, =v{(p,-—A)o +(p,-—A)o}, A=—-Bxr
C C 2

Rewritten in terms of complex combinations of phonon operators.

°D \/;VFh 0 I(a: — |a;) 1 X I _
TR , =—(—+I—p) I=X,Y.
L, | -i(a, +ia,) 0 J2 1,
E 4
n=2
o LL dispersions: E_ = trw~/n n=1
n=2~0
e Zero energy LL is a branch of half-fermion N
modes due to the chiral symmetry. T o

e Graphene QHE exhibits a pair of the above LL Hamiltonian. 24



3D LL: Dirac equation in phase-space

» Generalizing {1,—i} €<—>2D harmonic oscillator operators {a ,a }
to {~ic,.—ic,.—ic, 3> 3D harmonic oscillator operators {a .,a ., a,}

LL

e ho 0 ic-a ) o 0 o (p+inr/l))
— o -(

H = —— _ _ .,
2 lo -a 0 (p—inr/l)) 0

 This Lagrangian shows non-minimal Pauli coupling.

. Vi __ 0i i o X'
L:l//{lh(yoao_vyiai)}l//+I_W00i|: v, Goi:_;[yO’yi]’ F :I_
g

g

* A related Hamiltonian was studied before under the name of
Dirac oscillator, but its connection to LL and topological properties
was not noticed. Benitez, et al, PRL, 64, 1643 (1990) 25



Reduce back to 2D

- If we only keep the &, and o terms in the 3D Dirac LL
Hamiltonian, it reduces to 2 copies of 2D Dirac LL Hamiltonian.

* They are time-reversal pairs, which can be considered as
quantum spin Hall LLs of Dirac fermions.

( a —ia;
. i o 0 axa:+aya; | a:+ia;
HLL Irac - :V|
2 \oca +oa 0 a, —ia,
La\x+iay
( p, = p,x1p,
| P,
=V
| A |
P A=A iA
p.+ A J
h fi X
A = LA\



A square root problem: \/H3D’SChroedinger __ 4 3D Dirac

LL T LL

 The square of H " gives two copies of (") with opposite
helicity eigenstates.

(H3DDirac)2 62 M 0

LL

|
Q,
_|_
|\>|oo
=+

ho |2 2M 2

-~ 3
0 - (L-oc +—h)
2

* LL solutions: dispersionless with respect to j. Eigen-states
constructed based on non-relativistic LLs.

£~ tho /_”r, The zeroth LL:
LL 1 Wnr,j_uz LL 4 il
5l - . ' \Po;j’l’jz B .

| | \/E - Il’”nv—l.j J+1, 0
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Zeroth LLs as half-fermion modes

* The LL spectra are symmetric with respect to zero energy, thus
each state of the zeroth LL contributes * 2- fermion charge
depending on the zeroth LL is filled or empty.

_ le’
» For the 2D case, the vacuum charge density is 1o = + oh B /

known as parity anomaly. G. Semenoff, Phys. Rev. Lett., 53, 2449 (1984).

E A
 For our 3D case, the vacuum charge n=2
density is plus or minus of the half of + =1
the particle density of the non- #=0 -po===-cc-h
relativistic LLLs ---- “parity”-type #=0
anomaly? n=- ;

n




Helical surface mode of 3D Dirac LL

3D

* The mass of the vacuum outside M — +w

3D 3D 3D 50_:
H< :HLL H> - - —
p-c —-M

* Roughly, this is the square root problem
of the open boundary problem of 3D non-

relativistic LLs. = /

- Each surface mode for n>0 of the /
non-relativistic case splits a pair

surface modes for the Dirac case.

* The surface mode of Dirac zeroth-LL
of Is singled out. Whether it is upturn
or downturn depends on the sign of
the vacuum mass.




Outline

e Introduction.

A brief review of Landau levels (LLs) and topological band states

e Isotropic 3D LLs of non-relativistic fermions from Aharanov-
Casher coupling — strong TI insulators.

e Isotropic 3D LLs of Dirac fermions from non-minimal coupling.

e Generalization to higher dimensions.
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Non-relativistic LLs in D-dimensions

 D-dimensional LL Hamiltonian = D-dimensional harmonic
oscillator (HO)+ spin-orbit coupling.

» Generalizing the 3 2X2 Pauli matrices {o*, oY, 0%}

to (2k+1) 2kX 2k I-matrices r'... r
D —dim P2 1 2 2 (k)
H | = + —Mw r "'(‘)Fi,-aﬂ'l—ij
2M 2 |
[
r“=-—mr*,r", L =rp-rp, i,j=12.,D

o If D=2k+1, SO(D) has one fundamental spinor, H is irreducible.
* If D=2k, SO(D) has two fundamental spinors, H is reducible.
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LL Hamiltonian of Dirac Fermions in Arbitrary Dimensions

* For odd dimensions.

 For even dimensions.
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Conclusions

* We generalize 2D LLs to 3 dimensions and above with the full
rotational symmetry, including both non-relativistic and relativistic

cases.

» The non-relativistic D-dimensional LL problem is a
D dimensional harmonic oscillator + spin-orbit coupling.

 The relativistic version is a square-root problem corresponding
to Dirac equation with non-minimal coupling.

 Each filled LL contributes to a helical surface mode. For the 3D
non-relativistic LLs, the system is a 3D Tl if odd LLs are filled.

* Open questions: interaction effects; experimental realizations;

characterization of topo-properties with harmonic potentials
33



