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Outline

• Introduction.   

• Isotropic 3D LLs of Dirac fermions from non-minimal coupling. 

• Isotropic 3D LLs of non-relativistic fermions from Aharanov-
Casher coupling – strong TI insulators. 

• Generalization to arbitrary dimensions.
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• 2D Landau levels in the external magnetic fields.  

2D quantum Hall effect with LLs

• Magnetic band-structure characterized by the topological 
TKNN (Chern) number. 

• Chiral edge modes responsible for quantized transverse 
charge transport; stable against disorder and interactions.
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Quantum Anomalous Hall model without LLs  

• Chern number             if             ,   
Mass changes sign at K1,2.   
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• Honeycomb lattice with complex-valued next-nearest neighbor 
hopping.
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F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988); X. L 
Qi, et al, PRB 74,85308 (2006)
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2D time-reversal invariant TIs with and without LLs   

• The Kane-Mele model: two copies of Haldane model.

• Bernevig--Zhang model: LLs with opposite chiralities for spin 
up and down electrons. ---- fractional 2D TIs. 

Quantum spin Hall state

• Odd numbers of helical edge modes are stable against disorder; 
topological Z2-index. 
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• 2D TIs without LLs were 
predicted and realized in 2D 
HgTe/HgCdTe quantum wells.
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• Various 3D strong TIs based Bloch-wave band structures with 

non-trivial Z2 index have been predicted and realized.

• Odd numbers of surface 

Dirac cones detected  by 

ARPES, quantum oscillations, 

STM etc. 

Bi2Te3, Bi2Se3, etc IOP, Osaka, Princeton, 

Stanford, Tsinghua, Wuerzburg, etc

3D strong TIs without LLs   
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• Question: can we construct 3D strong TIs based on LLs?  

Here we mean 3D isotropic LLs, not stacked 2D LL layers. 
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Motivation of 3D strong TIs with LLs ?   

• How to characterize the topo-properties within harmonic 

potentials, one of the simplest types of inhomogeneity? (open)

LL in arbitrary-D flat space= harmonic  oscillator + spin-

orbit coupling  simple enough for the qual exam. 

• LL wavefunctions are simple, explicit, and elegant. 

• Flat spectra + analytical properties may facilitate the study of 

high dimensional fractional TIs due to interactions (open). 
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• Particles couple to the SU(2) gauge field on the S4 sphere.  
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• Single particle LLLs

 4D integer and fractional TIs with time reversal symmetry

 Dimension Reduction to 3D and 2D TIs (Qi, Hughes, Zhang).  
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Science 294, 824 (2001). 

Pioneering Work: LLs on 4D-sphere ---Zhang and Hu

• 4D LLs in flat space – Elvang and Polchinski, 2002. 
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E = v0| p | massless Dirac 

spectrum

v0 = 106 m/s = c/300

Quantum Hall Effect of Relativistic Fermions

Graphene Landau Levels

Generalize to 3D and above with spherical symmetry?

G. Semenoff, Phys. Rev. Lett., 53, 2449 (1984); 
Novoselov, Geim et al., Nature 438, 197 (2005);
Y. Zhang, P. Kim et al, Nature 438, 201,(2005)
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Outline

• Introduction.   

• Isotropic 3D LLs of Dirac fermions from non-minimal coupling. 

• Isotropic 3D LLs of non-relativistic fermions from 
Aharanov-Casher coupling – strong TI insulators. 

• Possible realizations?

A brief review of Landau levels (LLs) and topological band states



Review: 2D LLs in the symmetric gauge   

• 2D LL Hamiltonian = 2D harmonic oscillator  (HO)+ orbital 
Zeeman. 
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Different organization leads to non-trivial topo-structure
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• 3D LL Hamiltonian = 3D HO + spin-orbit coupling.

How to work in 3D? – Aharanov-Casher potential !!  
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• has the same set of eigenstates of 3D HO in the 

eigen basis of j. 
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Constructing 3D Landau Levels from 3D HO Eigen-states
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3D LL wavefunctions
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The highest weight state in the 3D Landau Levels
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ê

3
ˆ// eS


• The highest weight state as coherent states. 

• The highest weight states form over-

complete basis for all the jz eigenstates. 

• The highest weight state            .  Both      and      are conserved. 
 jj

z

  22
4/

,

0
),(

g

z

lr

l

LLL

jjj
e

iyx
r



 











 





2D-like LLs with spin perpendicular 

to the plane of the orbital motion.

z
L

z
S



Understanding the highest weight state from classical EOM
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Review: chiral liquid of 2D QHE edge
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Helical Surface Modes
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3D strong TI from Landau Levels
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Non-uniform Particle Density in 3 Dimensions

2j+1 degenerate states
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• Introduction.   

• Square root problem: 3D Isotropic LLs of Dirac 
fermions from non-minimal coupling. 

• 3D Isotropic LLs of non-relativistic fermions from Aharanov-
Casher coupling – strong TI insulators. 

A brief review of Landau levels (LLs) and topological band states

Outline

• Generalization to higher dimensions.



Review:  2D LL Hamiltonian of Dirac Fermions 
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3D LL: Dirac equation in phase-space
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• If we only keep the     and    terms in the 3D Dirac LL 

Hamiltonian, it reduces to 2 copies of 2D Dirac LL Hamiltonian.

Reduce back to 2D
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• The square of           gives two copies of          with opposite 
helicity eigenstates.
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Zeroth LLs as half-fermion modes

• The LL spectra are symmetric with respect to zero energy, thus 
each state of the zeroth LL contributes    ½- fermion charge 
depending on the zeroth LL is filled or empty. 

G. Semenoff, Phys. Rev. Lett., 53, 2449 (1984).
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• For the 2D case, the vacuum charge  density is                    ,  
known as parity anomaly. 

• For our 3D case, the vacuum charge 
density is plus or minus of the half of 
the particle density of the non-
relativistic LLLs ---- “parity”-type 
anomaly? 
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Helical surface mode of 3D Dirac LL
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of the open boundary problem of 3D non-

relativistic  LLs. 
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surface modes for the Dirac case.
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• Introduction.   

• Isotropic 3D LLs of Dirac fermions from non-minimal coupling. 

• Isotropic 3D LLs of non-relativistic fermions from Aharanov-
Casher coupling – strong TI insulators. 

A brief review of Landau levels (LLs) and topological band states

Outline

• Generalization to higher dimensions.
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Non-relativistic LLs in D-dimensions
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• D-dimensional LL Hamiltonian = D-dimensional harmonic 

oscillator  (HO)+ spin-orbit coupling. 
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• If D=2k+1, SO(D) has one fundamental spinor, H is irreducible. 

• If D=2k, SO(D) has two fundamental spinors, H is reducible. 
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LL Hamiltonian of Dirac Fermions in Arbitrary Dimensions
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• For odd dimensions.

• For even dimensions.
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Conclusions

• We generalize 2D LLs to 3 dimensions and above with the full 

rotational symmetry, including both non-relativistic and relativistic 

cases. 

• The non-relativistic D-dimensional LL problem is a  

D dimensional harmonic oscillator + spin-orbit coupling.

• The relativistic version is a square-root problem corresponding 

to Dirac equation with non-minimal coupling.  

• Each filled LL contributes to a helical surface mode. For the 3D 

non-relativistic LLs, the system is a 3D TI if odd LLs are filled. 

• Open questions: interaction effects; experimental realizations; 

characterization of topo-properties with harmonic potentials 


