Beyond parafermions: Topological defects in non-Abelian systems

Erez Berg

Weizmann Institute of Science

In collaboration with: Netanel Lindner (Technion) Ady Stern (Weizmann)

Related work with: G. Refael, J. Motruk, F. Pollmann, A. Turner

Before we begin, a short advertisement...

Modern quantum materials realize a remarkably rich set of electronic phases. This school will explore the many new concepts and methods which have been developed in recent years, moving beyond the traditional paradigms of Fermi liquid theory and spontaneous symmetry breaking. In particular, longrange quantum entanglement appears in topological and quantum-critical states, and the school will discuss new techniques required to describe their observable properties.

Application deadline: **31.10.2016 For more details:** www.as.huji.ac.il/horizons-in-quantum General Director: David Gross UCSB

Director: Subir Sachdev Harvard University

Codirectors: Erez Berg Weizmann Institute of Science

Dror Orgad The Hebrew University

Speakers: Erez Berg Weizmann Institute of Science

Andrey Chubukov University of Minnesota

Antoine Georges Collège de France

Sean Hartnoll Stanford University

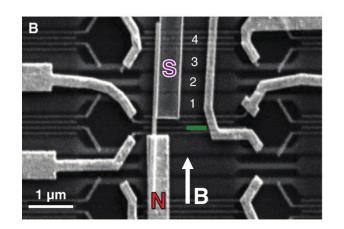
Steve Kivelson Stanford University

Subir Sachdev Harvard University

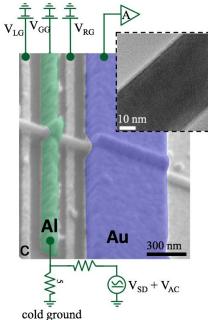
Nati Seiberg IAS, Princeton

Senthil Todadri MIT

Majorana zero modes



Mourik, Frolov, Kouwenhoven, et al. (2012)



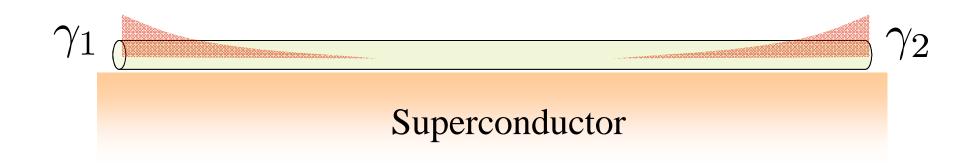
Epitaxial Majorana Device

Churchill, Krogstrup Albrecht, Marcus et al. (2013-2016)

Das, Ronen, Heiblum, et al. (2012)

Ferromagnetic atomic chains: Nadj-Perge, Yazdani et. al. (2014)

Majorana zero modes in a topological superconductor



- Gapped system, two degenerate ground states, characterized by having a different fermion parity
- Defects (in this case, the edges of the system) carry protected zero modes
- Ground state degeneracy is "topological": no local measurement can distinguish between the two states!

Kitaev (2001), Oreg et al. (2010), Lutchyn et al. (2010),...

Topological zero modes: What's next?

Gapped, local Hamiltonians of fermions or bosons in 1D, can give (at best) Majorana zero modes.

Fidkowski and Kitaev, 2010; Turner, Pollmann, EB, Oshikawa, 2010; Schuch, Perez-Garcia, and Cirac, 2011; Chen, Gu, Wen, 2011

Outline

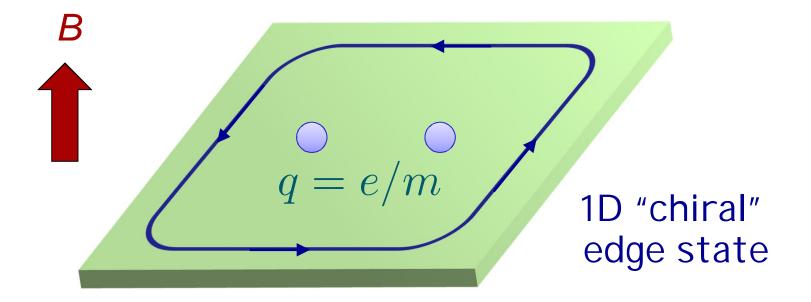
- "Fractionalized Majoranas" on fractional quantum Hall edges
 - Fractionalized 1D superconductors
 Twist defects

- Twist defects in non-Abelian phases: I sing anyon systems
 - Setup: states and operators
 - Braiding
 - Chains of interacting defects

Beyond Majorana fermions

Consider the effectively 1D boundaries of 2D a topological phase which supports (abelian) anyons.

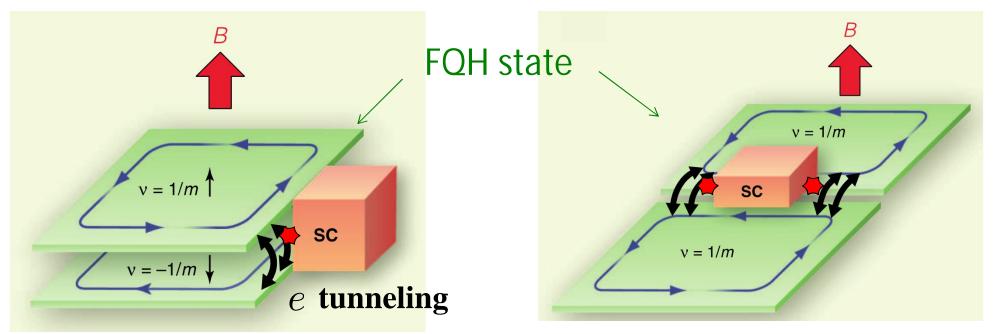
For example: v = 1/m Fractional Quantum Hall (Laughlin) state



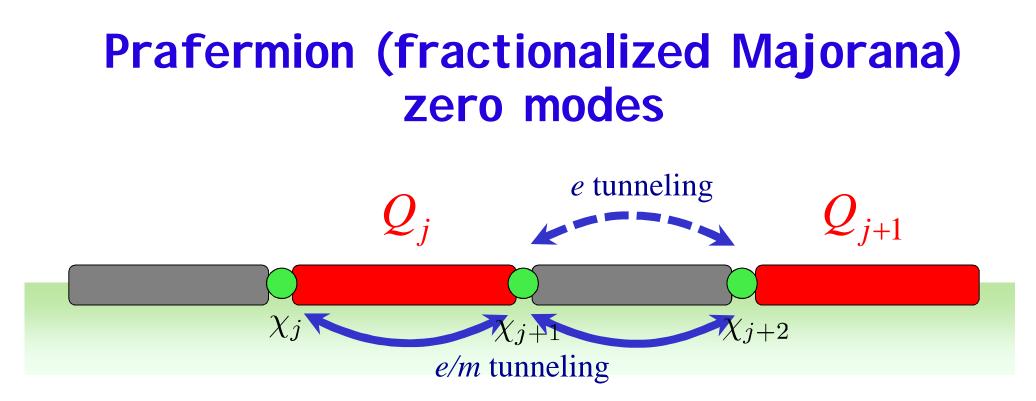
Beyond Majorana fermions

Setups for fractionalized Majorana zero modes:

Fractionalized Majorana (Parafermion) zero modes!



Lindner, EB, Stern, Refael (2012); Clarke, Alicea, Shtengel (2013); Cheng (2013)

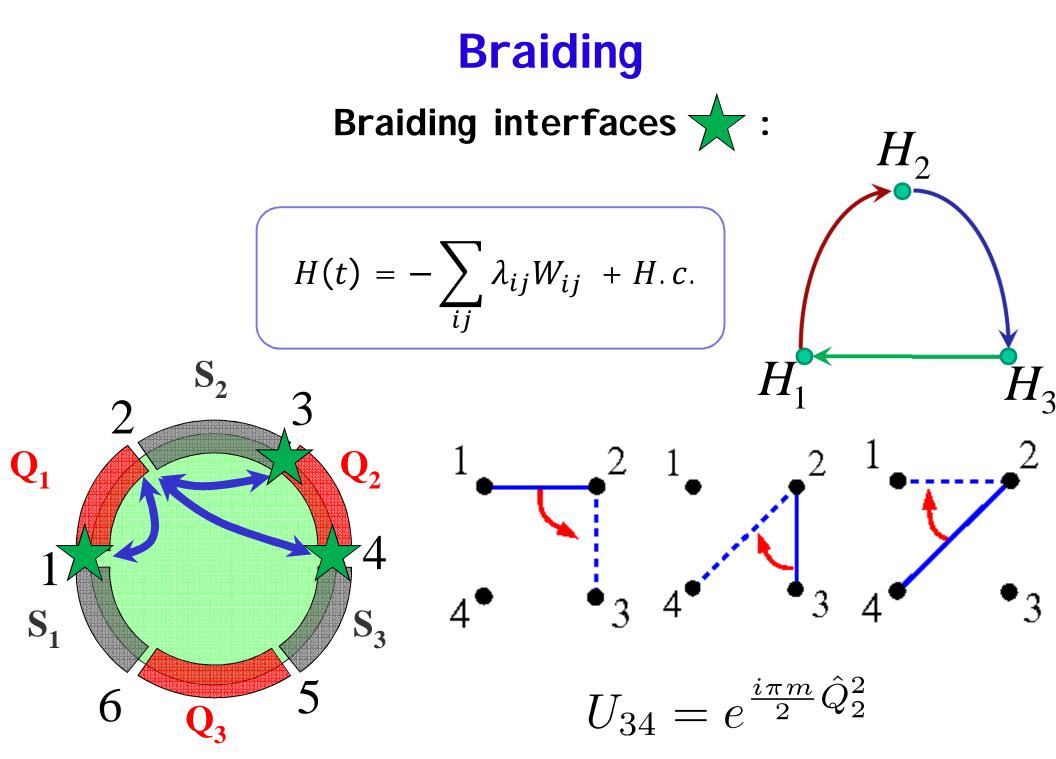


Topologically degenerate Hilbert space: 2m states per SC domain

Physical operators:

Laughlin quasi-particle tunneling between "zero modes" described by unitary operators W_{ii}

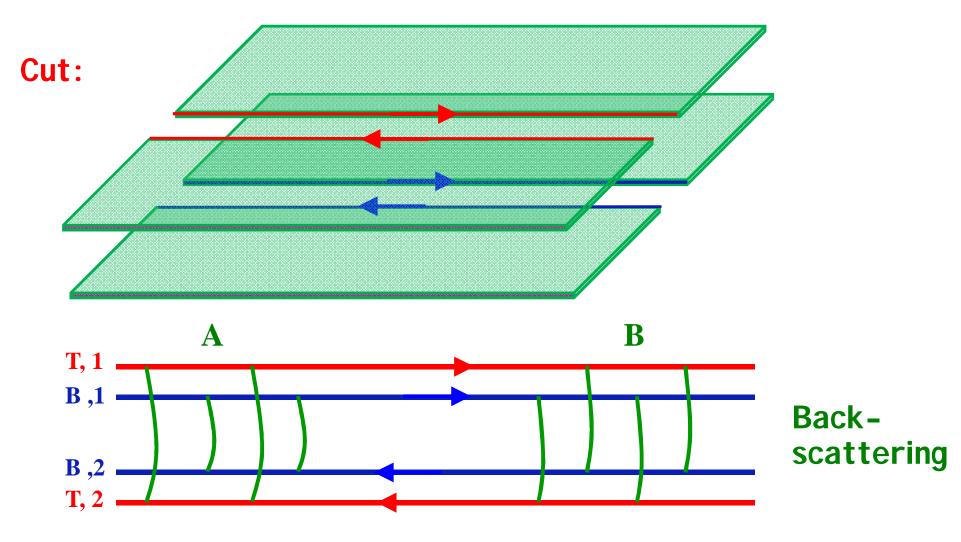
Commutation rule of physical operators: $W_{ij}W_{jk} = e^{i\pi/m}W_{jk}W_{ij}$ ("parafermion" exchange relation)



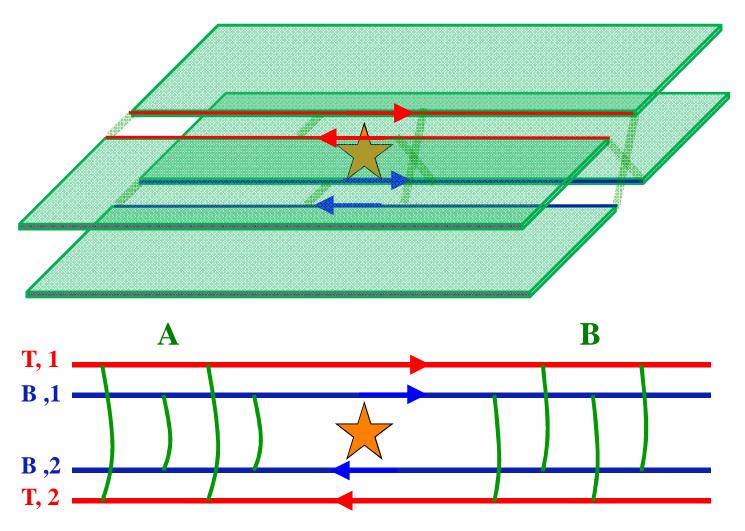
Following braiding scheme for Majoranas: Alicea et al. (2010)

Another example: v=1/3 bilayer

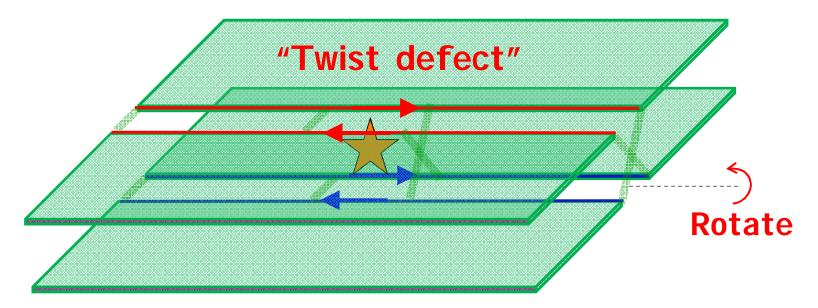
Another example: v=1/3 bilayer

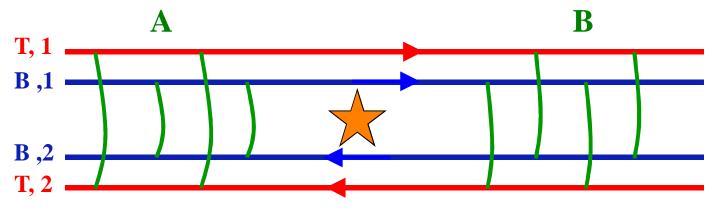


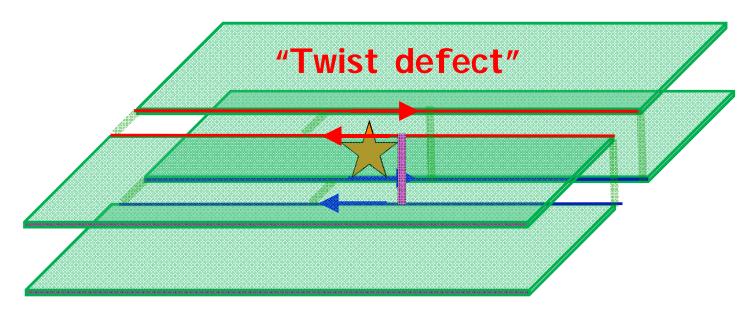
v=1/3 bilayer

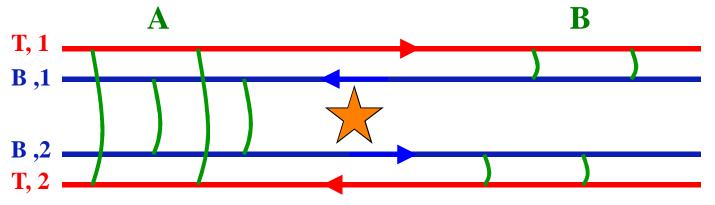


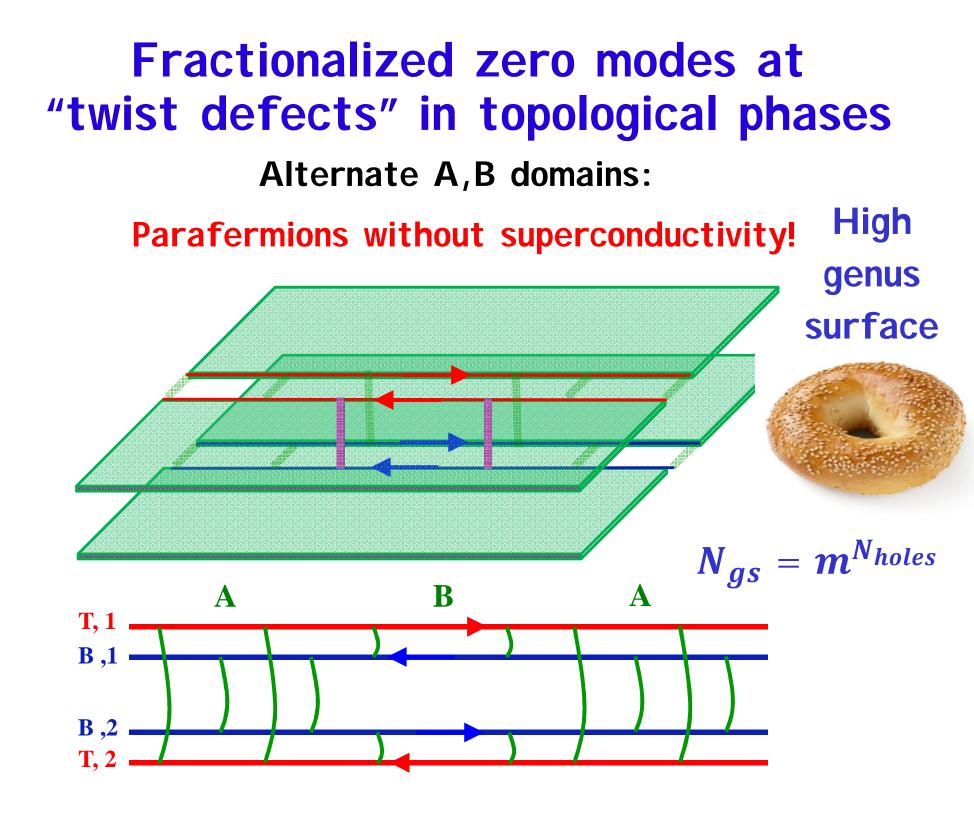
v = 1/m bilayer









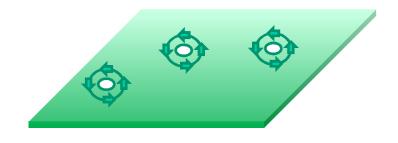


- "Fractionalized Majoranas" on fractional quantum Hall edges
 - Fractionalized 1D superconductors
 Twist defects

- Twist defects in non-Abelian phases: I sing anyon systems
 - Setup: states and operators
 - Braiding

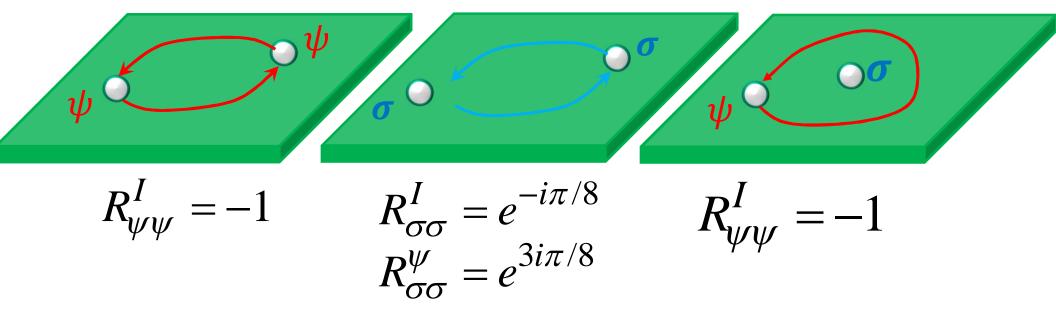
I sing anyons

 $v = \frac{5}{2}$ QHE $p_x + ip_y$ Superconductors Kitaev's hexagonal spin model



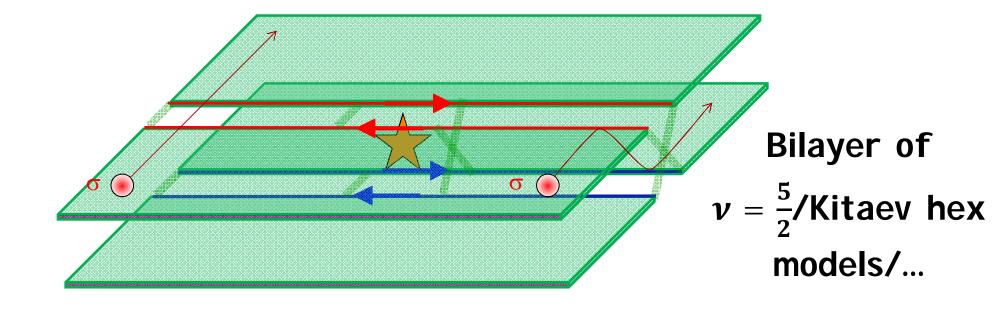
Three types of particles: I (vacuum), ψ (fermion), σ (vortex)

Fusion rules:
$$\psi \times \psi = I$$
 $\sigma \times \psi = I$
 $\sigma \times \sigma = I + \psi$



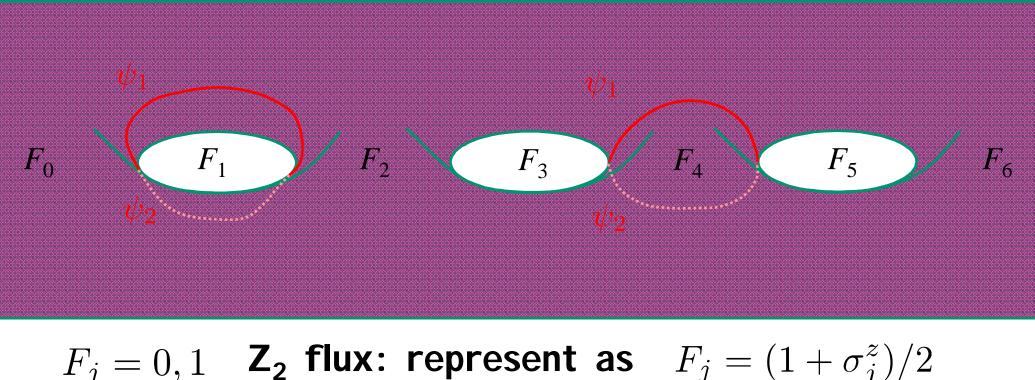
Defects in a bilayer I sing phase

- What is the mathematical description of the zero modes associated with the defects?
- Can the zero modes realize universal TQC even though the host I sing phase is not universal?



The Hilbert space

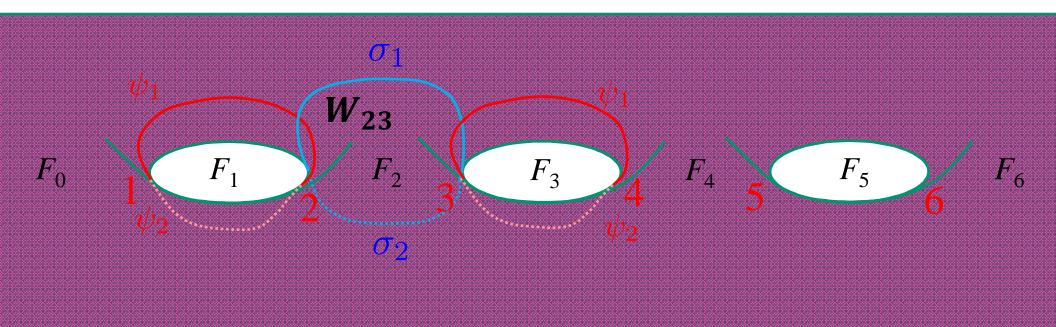
States can be described fluxes of holes, and measured by fermion loop operators



 $F_j = 0, 1$ Z_2 mux: represent as $F_j = (1 + \sigma_j^2)/2$ Not all flux states are ground states

Creating flux states

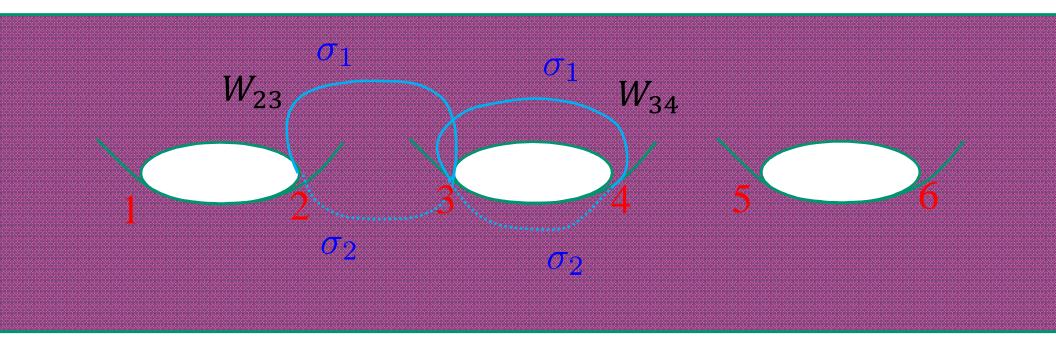
Flux states can be created by σ loops



 σ loop operator W_{23} flips F_1 and F_3

Blocking rules

Final state has ψ excitation!

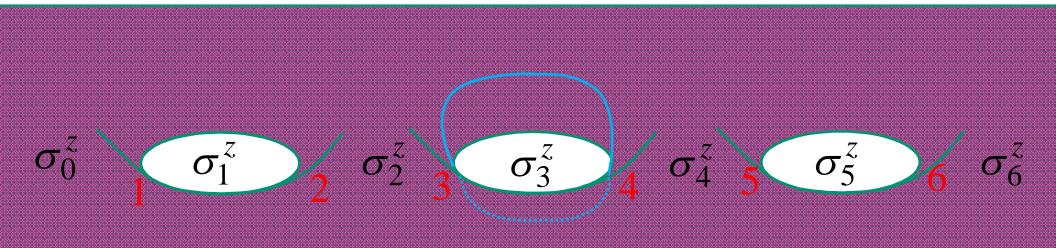


$$W_{23}^{-1}W_{34}^{-1}W_{23}W_{34} = 0$$

(projected to the ground state subspace)

Tunneling operators

Nearest neighbors: form in a convenient gauge:



$$W_{i,i+1} = \sigma_{i-1}^{x} \left(\frac{1 + \sigma_{i}^{z}}{2} \right) \sigma_{i+1}^{x}$$

Hermitian -not unitary (projected)

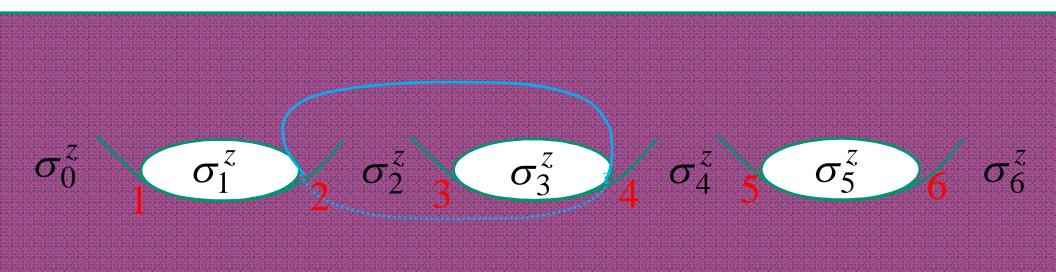
Tunneling operators

Tunneling of σ quasiparticles between zero modes: W_{mn}

Generalization of the parafermion algebra:

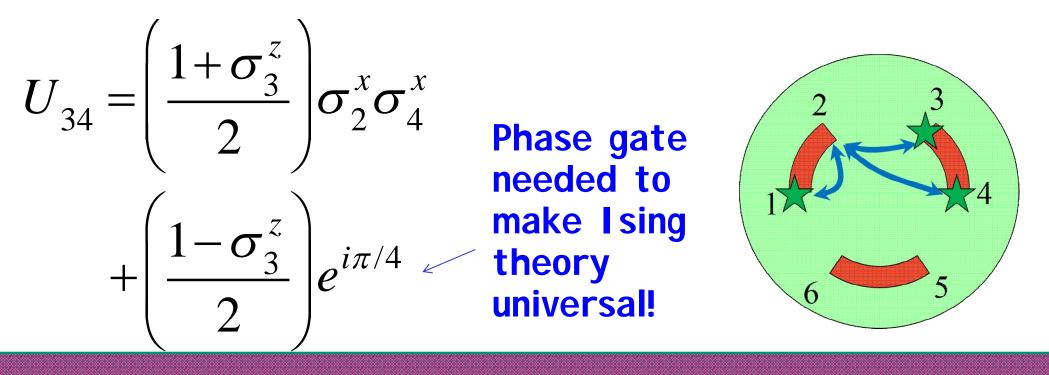
$$W_{mn} = e^{i\pi/8} \left(W_{mk} W_{kn} + h.c \right)$$

"tri-algebra"



Braiding

EB, Lindner, Stern (in preparation)



Braiding implements a "dynamical topology change" Freedman, Nayak, Walker (2006); Barkeshli, Jian, Qi (2013)

Chains of interacting defects

With Ari Turner, Netanel Lindner

Chains of interacting defects

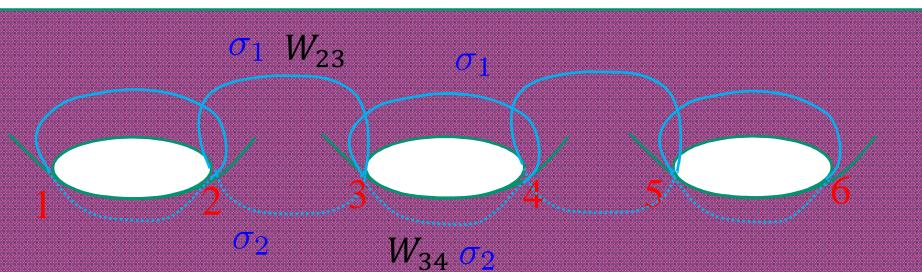
$$H = \sum_{n} J_{n} \, \sigma_{n-1}^{x} \frac{1 + \sigma_{n}^{z}}{2} \sigma_{n+1}^{x}$$

Symmetries:

Z₂ flux $U_1 = \prod_n \sigma_{2n+1}^z, U_2 = \prod_n \sigma_{2n}^z$ conservation

 $P = \rho^{i\frac{\pi}{4}(\sigma_1^z - \sigma_1^z \sigma_2^z + \sigma_1^z \sigma_2^z \sigma_3^z + \cdots)}$

Fermion parity conservation



Chains of interacting defects

$$H = \sum_{n} J_n \, \sigma_{n-1}^x \frac{1 + \sigma_n^z}{2} \sigma_{n+1}^x$$

Kramers-Wannier duality: $\tau_n^z \tau_{n-1}^z = -\sigma_n^z$

$$\tau_n^{\chi} = \sigma_n^{\chi} \sigma_{n-1}^{\chi}$$

Symmetries become local!

$$A = e^{i\frac{\pi}{4}\sum_n \tau_n^z}, B = A = e^{i\frac{\pi}{2}\sum_n \tau_n^x}$$

 D_4 group: $A^4 = 1$, $BA = A^{-1}B$

$$H = \sum_{n} \frac{J_n}{2} (\tau_n^x \tau_{n+1}^x + \tau_n^y \tau_{n+1}^y)$$

Conclusions

In Abelian phases they harbor parafermion (fractional Majorana) zero modes.

In a non-Abelian I sing phase they realize new zero modes that enrich the non-Abelian statistics of the host phase.

Pure I sing anyons (Kitaev spin model) + defects: universal for TQC.

Bilayer of $v = \frac{5}{2}$ is not, however... Other physical realization? (E.g. p + ip SC, networks of Kitaev chains: Barkeshli, Sau, 2015)

Thank you.