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"Oversimplified" Introduction to SPT States

e Bosonic Symmetry Protected Topological (SPT) States
e Generalization of TI/TSC to spin/boson systems
e Bulk: gapped and non-degenerate; Boundary: gapless
e Always require strong interactions

e Example: 1d Haldane phase of spin-1 chain  Haldane 1983
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e Field theory: O(3) NLSM + O term (m|S*|=2Z)
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"Oversimplified" Introduction to SPT States

e Higher dimensional bosonic SPT states are much more
complicated, they can be classified mathematically.
Chen, Gu, Liu, Wen 2011; Kapustin 2014; Wen 2014; Kitaev ...

e \What about lattice model/Hamiltonian?
e Levin-Gu model
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e The boundary is gapless assuming the Z2 symmetry.

Levin, Gu 2012
Chen, Liu, Wen 2012



"Oversimplified" Introduction to SPT States

e More generic properties:

e The boundary of many 2d bosonic SPT states can be
thought of as 1+1d O(4) WZW CFT with anisotropies:
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e SO(4)~SU(2). x SU(2)r.

e Example: The boundary of bosonic integer quantum Hall
state, corresponds to breaking the SU(2). symmetry
completely, but break the SU(2)r symmetry to U(7) charge
conservation symmetry. Senthil, Levin 2012

e Goal: To find a realistic condensed matter system to realize/
mimic bosonic SPT state in 2d.



Realize 2d Bosonic SPT States in Bilayer Graphene

e Proposal:
Bilayer graphene under (strong) magnetic field can be driven
into a "bosonic" SPT state with U(1)xU(1) symmetry by
Coulomb interaction. Bi, Zhang, You, Young, Balents, Liu, Xu (2016)

(a) no interaction (b) with interaction

e
—
gapless fermion modes gapless boson modes
e Meaning:

e Boundary: gapless boson modes with U(1)xU(1) symmetry,
fermion modes gapped out by interaction.
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gapless fermion modes gapless boson modes
e Meaning:
e Bulk: quantum phase transition between BSPT and trivial
state only closes boson gap, fermions remain gapped.




Boundary Analysis

e Boundary: fermion modes gapped out under interaction,
remaining gapless boson modes with U(1)xU(1) symmetry.

e Single layer graphene under perpendicular magnetic field
without interactions.
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e Helical edge mode: a pair of counter-propagating
fermion modes (c=1 CFT)



Boundary Analysis

e Bilayer graphene
e Noninteracting: QSHx2, two helical edge modes (c=2)

e Coulomb interaction is relevant — gaps out all the fermion
modes — only a pair of gapless counter-propagating boson
modes (c=1 CFT)

® Bosonization
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Boundary Analysis
e Boundary theory
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e Boundary collective modes:
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® We can derive the boundary effective theory. It’'s an O(4) WZW
model at level-1 (with anisotropy)
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Boundary Analysis

e Boundary: fermion modes gapped out under interaction,
remaining gapless boson modes with U(1)xU(1) symmetry.

e Naive picture for why the boundary must be gapless:
spin defect carries charge, charge defect carries spin

charge 2

e Edge current is transported by the bosonic edge modes
(charge 2e Cooper pairs) — shot noise measurement

® Tunneling from a normal metal — single particle gap

® Such purely bosonic gapless boundary cannot occur with

Only one Iayer of QSH insulator Wu, Bernevig, Zhang (2005)

Xu, Moore (2005)



Boundary Analysis

e Bulk wave function can be derived from boundary CFT correlation
according to the bulk-boundary correspondence.  Moore, Read (1991)
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® The last factor encodes the essential physics that the spin and
charge view each other as flux. Consistent with the flux attachment
picture of Senthil & Levin 2012. Senthil, Levin (2012)



Bulk Analysis

e Bulk: quantum phase transition between BSPT and trivial state
only closes boson gap, fermions remain gapped.

e Bulk theory can be build from boundary with a Chalker-
Coddington / coupled-wire type of model
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e Example: Chern insulator & trivial insulator. We can build the
bulk with coupled chiral fermions. The quantum critical point
between Chern insulator and trivial insulator is precisely a
2+1d Dirac fermion.



Bulk Analysis

e Bulk: quantum phase transition between BSPT and trivial state
only closes boson gap, fermions remain gapped.

e Bulk theory can be build from boundary with a Chalker-
Coddington / coupled-wire type of model
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e Boundary theory only has gapless bosons (at low energy)
— expect (and supported by numerics) that bulk transition
is also "bosonic" — mimic a bosonic SPT-trivial transition.



Sign Problem Free Lattice Model

® The spirit: spherical chicken

Leonard Hofstadter from the Big Bang Theory:

There's this farmer, and he has these chickens,
but they won't lay any eggs. So, he calls a
physicist to help. The physicist then does some
calculations, and he says, um, I have a solution,
but it only works with spherical chickens in a
vacuum/!

* Topological state, is a chicken that can be thought of as a sphere,
so seemingly different chickens can behave exactly the same.



Sign Problem Free Lattice Model

e We designed a lattice model with all the key physics and with
no sign problem

H = Hband + Hint

Hpang = —t Z C,T( Cjr + Z ZZAU C,T[ o’ Cjr
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1
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e Simple limits of this model:
® Free limit: bilayer QSH, osh = +2 (depending on A)
e Strong J-interacting limit: trivial Mott, osh=0

¥) = H(CJ{T ¢y — ¢, ¢51)10)  rung singlet product state

Slagle, You, Xu (2014)
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Sign Problem Free Lattice Model
e Determinant QMC (Edge)

. fermion correlation y SDWY/SC correlation
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- When the fermion Green’s function already decays
exponentially at the boundary, bosonic modes still have
power law correlation, until the system hits the bulk
transition into the trivial Mott phase.

Wu et al. 2016



Sign Problem Free Lattice Model

e Determinant QMC (Bulk)
e Fermion gap always finite.

® Bosonic modes become
gapless at the SPT-trivial
critical point.

e Fundamentally different
from free fermion QSH
transition.

e Because the fermionic degrees
of freedom never show up at
either the boundary or the bulk
guantum transition, the whole
system can be viewed as a
bosonic SPT state.
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Sign Problem Free Lattice Model

®There’s a family of 2d Sign Problem Free lattice model for Bosonic
SPTs with Sp(N)xSp(N) symmetry. And the boundary realizes Sp(N)-
xSp(N)-1 CFT.

e Take 2N identical copies of QSH insulators. Free boundary theory:
2N
Hygy = » / dx (w},Liaxwl,L - w},Rz‘axwl,R) ~U2N)1 x U2N)_
=1

e CFT decomposition U2N); =Sp(N)1 + SU(2)n
® nteractions gap out SU(2) sector and all the fermions, while leaves
the Sp(N) sector intact (bosonic).

Hint ~ =Jsu2), Jsv@)n

e An effective time reversal symmetry guarantees the model is sign
problem free.

You, Bi, Mao, Xu (2015)
Barkeshli, Wen (2010)



A Theory for the Bulk Transition
o A conjectured field theory for the bulk transition:
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e mis the tuning parameter of the transition. Across the
transition, the Hall conductivity of external field A (B il Fisher 200
changes by +2 (-2) — consistent with the BSPT physics’

e |t has the desired SO(4) ~ SU(2)xSU(2) symmetry, because

of the self-dual structure Xu, You 2015; Karch, Tong 2016; Hsin, Seiberg, 2016

® Besides our numerical results, other numerics studies also

suggest that Nr=2 QEDs3 (at m = 0) is indeed a CFT.
Karthik, Narayanan 2016



Summary

¢ Predictions: (b) with interaction

® The boundary is a conductor with
single particle gap

FRR s
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e Contrast between transport and xiﬁx%&&%’b&\%

tunneling
gapless boson modes

e The competition between magnetic and electric field in the
bulk may lead to a purely bosonic quantum phase transition,
with gapped electron but gapless bosonic collective modes;

e Other possible systems:
e Topological mirror insulator Zhang, Xu, Liu (2014)



