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"Oversimplified" Introduction to SPT States

• Bosonic Symmetry Protected Topological (SPT) States

• Generalization of TI/TSC to spin/boson systems

• Bulk: gapped and non-degenerate; Boundary: gapless 

• Always require strong interactions

• Example: 1d Haldane phase of spin-1 chain  
 
 

• Field theory: O(3) NLSM + Θ term (                ) 
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"Oversimplified" Introduction to SPT States

• Higher dimensional bosonic SPT states are much more 
complicated, they can be classified mathematically.

• What about lattice model/Hamiltonian?

• Levin-Gu model  
 

• CZX model

• The boundary is gapless assuming the Z2 symmetry.
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• More generic properties:

• The boundary of many 2d bosonic SPT states can be 
thought of as 1+1d O(4) WZW CFT with anisotropies:

• SO(4)~SU(2)L x SU(2)R. 

• Example: The boundary of bosonic integer quantum Hall 
state, corresponds to breaking the SU(2)L symmetry 
completely, but break the SU(2)R symmetry to U(1) charge 
conservation symmetry.

• Goal: To find a realistic condensed matter system to realize/
mimic bosonic SPT state in 2d.

"Oversimplified" Introduction to SPT States

Senthil, Levin 2012
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Realize 2d Bosonic SPT States in Bilayer Graphene

• Proposal: 
Bilayer graphene under (strong) magnetic field can be driven 
into a "bosonic" SPT state with U(1)×U(1) symmetry by 
Coulomb interaction.

• Meaning:

• Boundary: gapless boson modes with U(1)×U(1) symmetry, 
fermion modes gapped out by interaction.

Bi, Zhang, You, Young, Balents, Liu, Xu (2016)
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• Proposal: 
Bilayer graphene under (strong) magnetic field can be driven 
into a "bosonic" SPT state with U(1)×U(1) symmetry by 
Coulomb interaction. Bi, Zhang, You, Young, Balents, Liu, Xu (2016)

• Meaning:

• Bulk: quantum phase transition between BSPT and trivial 
state only closes boson gap, fermions remain gapped. 



Boundary Analysis

• Boundary: fermion modes gapped out under interaction, 
remaining gapless boson modes with U(1)×U(1) symmetry.

• Single layer graphene under perpendicular magnetic field 
without interactions. 
 
 
 
 

• Helical edge mode: a pair of counter-propagating 
fermion modes (c=1 CFT)

Abanin, Lee, Levitov 2006, Fertig, Brey 2006 Young et.al. 2014



Boundary Analysis

• Bilayer graphene

• Noninteracting: QSH×2, two helical edge modes (c=2)

• Coulomb interaction is relevant → gaps out all the fermion 
modes → only a pair of gapless counter-propagating boson 
modes (c=1 CFT)

• Bosonization  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Boundary Analysis
• Boundary theory

• Boundary collective modes:

• SC

• XY SDW

• We can derive the boundary effective theory. It’s an O(4) WZW 
model at level-1 (with anisotropy) 
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Boundary Analysis

• Boundary: fermion modes gapped out under interaction, 
remaining gapless boson modes with U(1)×U(1) symmetry.

• Naïve picture for why the boundary must be gapless: 
spin defect carries charge, charge defect carries spin  
 
 
 

• Edge current is transported by the bosonic edge modes 
(charge 2e Cooper pairs) → shot noise measurement

• Tunneling from a normal metal → single particle gap

• Such purely bosonic gapless boundary cannot occur with 
only one layer of QSH insulator Wu, Bernevig, Zhang (2005)

Xu, Moore (2005)



Boundary Analysis

• Bulk wave function can be derived from boundary CFT correlation 
according to the bulk-boundary correspondence.

• The last factor encodes the essential physics that the spin and 
charge view each other as flux. Consistent with the flux attachment 
picture of Senthil & Levin 2012. 
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Bulk Analysis

• Bulk: quantum phase transition between BSPT and trivial state 
only closes boson gap, fermions remain gapped.

• Bulk theory can be build from boundary with a Chalker-
Coddington / coupled-wire type of model  
 
 
 
 

• Example: Chern insulator & trivial insulator. We can build the 
bulk with coupled chiral fermions. The quantum critical point 
between Chern insulator and trivial insulator is precisely a 
2+1d Dirac fermion.

to>te, trivial to<te, Chern insulator



Bulk Analysis

• Bulk: quantum phase transition between BSPT and trivial state 
only closes boson gap, fermions remain gapped.

• Bulk theory can be build from boundary with a Chalker-
Coddington / coupled-wire type of model  
 
 
 
 
 

• Boundary theory only has gapless bosons (at low energy) 
→ expect (and supported by numerics) that bulk transition 
is also "bosonic" → mimic a bosonic SPT-trivial transition.

to>te, trivial to<te, BSPT



Sign Problem Free Lattice Model

• The spirit: spherical chicken

Leonard Hofstadter from the Big Bang Theory: 

There's this farmer, and he has these chickens, 
but they won't lay any eggs. So, he calls a 
physicist to help. The physicist then does some 
calculations, and he says, um, I have a solution, 
but it only works with spherical chickens in a 
vacuum! 

• Topological state, is a chicken that can be thought of as a sphere, 
so seemingly different chickens can behave exactly the same.



Sign Problem Free Lattice Model

• We designed a lattice model with all the key physics and with 
no sign problem 
 
 
 
 
 
 

• Simple limits of this model:

• Free limit: bilayer QSH, σsH = ±2 (depending on λ)

• Strong J-interacting limit: trivial Mott, σsH = 0
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Sign Problem Free Lattice Model

• Determinant QMC (Edge) 2

group analysis [27] provide us with analytical evidence of
gapless bosonic edge, which is supported by an extended
version of dynamical mean-field theory calculation at fi-
nite temperatures[28], unbiased numerical evidence that
can prove the conclusion is still demanded, and it is the
task of this paper.
Here, we employ large-scale QMC simulation to the

zigzag ribbon geometry, i.e., the bilayer Kane-Mele-
Hubbard model with periodic boundary condition along
a1 direction and open boundary along a2 direction (see
Fig. 1 (a)). On finite-size ribbon, our unbiased results
unveil a substantial region (∼ t) of bosonic SPT phase
from the exponential decay of the single-particle Green’s
function along the boundary before the bulk quantum
phase transition, while the gapless O(4) bosonic modes
prevail on the edge with power-law correlation functions.
Model and Method. The Hamiltonian [24, 27] of the

AA-stacked bilayer Kane-Mele-Hubbard model is given
by

Ĥ = −t
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(ĉ†ξiαĉξjα + ĉ†ξjαĉξiα)
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2 ,
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with D̂1i,2i =
∑

σ ĉ
†
1iσ ĉ2iσ. Here α, β denote the spin

species and ξ = 1, 2 stand for the layer index. The first
term in Eq. (1) describes the nearest-neighbor hopping
(green lines in Fig. 1 (a)) and the second term represents
spin-orbital coupling (blue lines with arrows in Fig. 1
(a)). The third term J is the interlayer antiferromagnetic
Heisenberg (approximated) interaction [24], and the last
term Jz denotes the interlayer antiferromagnetic Ising in-
teraction [27]. When J > 0 and Jz > 0, we can prove
that there is no fermion sign problem in the QMC calcu-
lations [27].
This Hamiltonian possesses a high symmetry, SO(4)×

SO(3) [24, 27]. When Jz = 0, in the bulk, J drives
a continuous quantum phase transition from a quantum
spin Hall (QSH) phase to an interlayer dimer phase at
Jc ≈ 3.73t, and since there is no spontaneous symmetry
breaking at both sides of this transition, it is dubbed as
a bona fide interaction-driven topological phase transi-
tion [24]. On the other hand, when J = 0, it is perceiv-
able that Jz will eventually drive the system into a spin-
density-wave phase with magnetization along z direction
(SDW-Z) which spontaneously breaks the SO(3) sym-
metry and time-reversal symmetry. Our numerical data
shows that the SDW-Z order establishes when Jz > 2.0t.
More information about the J−Jz phase diagram is given
in Supplemental Material [29].

FIG. 2. (Color online) The log-log plot of single-particle
Green’s function at the boundary as a function of interlayer
antiferromagnetic interaction J/t when (a) Jz = 0 and (b)
Jz = t. In both cases, results show the exponential decay
before the bulk topological phase transition Jc.

The QSH phase still survives when the interlayer in-
teractions are not sufficiently strong. However, we will
show that the gapless edge modes in the interacting QSH
phase are carried by bosons emerging from interacting
fermionic degrees of freedoms, hence the system is actu-
ally in a bosonic SPT state before the bulk phase transi-
tion (the BSPT phase in Fig. 1 (b)). This conclusion is
drawn upon the numerical observation of exponential de-
cay of single-particle Green’s function on the edge before
the bulk quantum phase transition, while at the same
time bosonic O(4) correlation functions present a clear
power-law decay.

The QMC method employed here is the projective
auxiliary-field quantum Monte Carlo approach [30, 31].
It is a zero-temperature version of the determinantal
QMC algorithm. The specific implementation of the
QMC method on the model in Eq. (1) is presented in
Ref. [24]. The projection parameter is chosen atΘ = 50/t
and the Trotter slice ∆τ = 0.05/t. Since the gapless edge
modes are hallmarks of SPTs, we perform the simulation
with periodic (open) boundary condition along a1 (a2)
direction (see Fig. 1 (a)). The main results in this pa-
per are obtained from a ribbon with La1

= 27, La2
= 9

which is large enough to obtain controlled representa-
tion of thermodynamic limit behaviors of BSPT phase in
Fig. 1 (b).
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Ĥ = −t
∑

ξ⟨i,j⟩α
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fermion correlation
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FIG. 4. (Color online) The log-log plot of equal-time two-
particle O(4) vector correlation function at the boundary for
(a) Jz = 0 and (b) Jz = t. Both panels show the power-law
decay behaviors before the bulk topological phase transition
at Jc.

spin (SDW-XY) correlation function and superconduct-
ing pairing (SC) correlation function at the boundary.
According to the analysis in Ref. [27], we define them as

N+−
AA (rj − ri) =

1

2
[S±

A1A1
(rj − ri)− S±

A1A2
(rj − ri)

− S±
A2A1

(rj − ri) + S±
A2A2

(rj − ri)]

∆AA(rj − ri) = ⟨Ψ| ∆̂†
iA1A2

∆̂jA1A2
|Ψ⟩ / ⟨Ψ|Ψ⟩ (4)
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mn(rj − ri) = ⟨Ψ| 1

2
(Ŝ+

i Ŝ−
j + Ŝ−

i Ŝ+
j ) |Ψ⟩ / ⟨Ψ|Ψ⟩,

m,n = A1, A2 denote the A sublattice sites in the first
and second layer. i and j label the unit cells. Ŝ+

i is

the spin flip operator and ∆̂†
iA1A2

is the interlayer singlet
creation operator. Fig. 4 (a) and (b) show the SDW-
XY correlation function at the boundary as a function of
J/t. Before the bulk quantum phase transition, they all
show the power-law decay at J < Jc. Due to the SO(4)
symmetry, the SDW-XY and SC correlation function is
exactly the same because they rotate into each other [24,
27]. So the physical bosonic boundary modes are simply
the SDW-XY and SC fluctuations on the boundary.
Turning on an extra on-site Hubbard interaction

U
∑

i(n̂i↑ + n̂i↓ − 1)2 (see Sec. VII in Supplemental Ma-
terial [29] for the U path chosen in the bulk phase di-
agram) to our original model Eq. (1) would break the
O(4) symmetry, and change the scaling dimension of

FIG. 5. (Color online) Edge spin N+−

AA
(r) and pairing

∆A1A2
(r) correlation functions for increasing U/t, at J/t =

2.75 and Jz = 0. Inset shows the extracted Luttinger param-
eters as a function of U/t.

the spin and Cooper pair operators. According to the
bosonization analysis in Ref. [27], the spin and pairing
O(4) bosonic modes always have power-law correlation,
with N+−

AA (r) ∝ |r|−α and ∆AA(r) ∝ |r|−β . α and β
depend on the Luttinger parameters, but their product
remains a universal constant: αβ = 1. This is due to the
fact that, spin and charge are a pair of conjugate vari-
ables at the boundary, which is a physical consequence of
the SPT state in the bulk. This prediction is confirmed
in our simulation. In Fig. 5, at J/t = 2.75 Jz = 0 and
gradually increasing U , N+−

AA (r) and ∆AA(r) have the
same power law α = β ∼ 1 at U = 0, but as U increases,
α and β start to deviate, but their product αβ remains
close to 1, as shown in the inset of Fig. 5, till the bulk
transition to a SDW-XY phase at Uc ∼ 1.3t [24, 29].
Discussion. In this Letter, we have performed QMC

simulation for a proposed interacting lattice fermion
model, and explicitly demonstrated that this system
shows a bosonic SPT state, in the sense that the bound-
ary has gapless bosonic modes, but no gapless fermionic
modes under interaction. Recently it was also proposed
that the same physics can be realized in an AB stacking
bilayer graphene under a strong out-of-plane magnetic
field and Coulomb interaction [32]. Our model, though
technically different, should belong to the same topologi-
cal class, and it has the advantage of being sign problem
free for QMC simulation. Unbiased information of such
strongly correlated system, including transport and spec-
tral properties, can be obtained from QMC simulation,
and quantitative comparison with the up-coming exper-
iments are hence made possible.

The numerical calculations were carried out at the
National Supercomputer Center in Guangzhou on the
Tianhe-2 platform. H.Q.W., Y.Y.H. and Z.Y.L. ac-
knowledge support from the National Natural Science
Foundation of China (NSFC Grant Nos. 11474356 and

4

FIG. 4. (Color online) The log-log plot of equal-time two-
particle O(4) vector correlation function at the boundary for
(a) Jz = 0 and (b) Jz = t. Both panels show the power-law
decay behaviors before the bulk topological phase transition
at Jc.

spin (SDW-XY) correlation function and superconduct-
ing pairing (SC) correlation function at the boundary.
According to the analysis in Ref. [27], we define them as

N+−
AA (rj − ri) =

1

2
[S±

A1A1
(rj − ri)− S±

A1A2
(rj − ri)

− S±
A2A1

(rj − ri) + S±
A2A2

(rj − ri)]

∆AA(rj − ri) = ⟨Ψ| ∆̂†
iA1A2

∆̂jA1A2
|Ψ⟩ / ⟨Ψ|Ψ⟩ (4)

where S±
mn(rj − ri) = ⟨Ψ| 1

2
(Ŝ+
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α and β start to deviate, but their product αβ remains
close to 1, as shown in the inset of Fig. 5, till the bulk
transition to a SDW-XY phase at Uc ∼ 1.3t [24, 29].
Discussion. In this Letter, we have performed QMC

simulation for a proposed interacting lattice fermion
model, and explicitly demonstrated that this system
shows a bosonic SPT state, in the sense that the bound-
ary has gapless bosonic modes, but no gapless fermionic
modes under interaction. Recently it was also proposed
that the same physics can be realized in an AB stacking
bilayer graphene under a strong out-of-plane magnetic
field and Coulomb interaction [32]. Our model, though
technically different, should belong to the same topologi-
cal class, and it has the advantage of being sign problem
free for QMC simulation. Unbiased information of such
strongly correlated system, including transport and spec-
tral properties, can be obtained from QMC simulation,
and quantitative comparison with the up-coming exper-
iments are hence made possible.

The numerical calculations were carried out at the
National Supercomputer Center in Guangzhou on the
Tianhe-2 platform. H.Q.W., Y.Y.H. and Z.Y.L. ac-
knowledge support from the National Natural Science
Foundation of China (NSFC Grant Nos. 11474356 and

SDW/SC correlation

• When the fermion Green’s function already decays 
exponentially at the boundary, bosonic modes still have 
power law correlation, until the system hits the bulk 
transition into the trivial Mott phase.

Wu et al. 2016



Sign Problem Free Lattice Model

• Determinant QMC (Bulk)

• Fermion gap always finite.

• Bosonic modes become 
gapless at the SPT-trivial 
critical point.

• Fundamentally different 
from free fermion QSH 
transition.

• Because the fermionic degrees 
of freedom never show up at 
either the boundary or the bulk 
quantum transition, the whole 
system can be viewed as a 
bosonic SPT state.

He et al. 2015



Sign Problem Free Lattice Model

•There’s a family of 2d Sign Problem Free lattice model for Bosonic 
SPTs with Sp(N)xSp(N) symmetry. And the boundary realizes Sp(N)1 

xSp(N)-1 CFT.

•Take 2N identical copies of QSH insulators. Free boundary theory:

•CFT decomposition
•Interactions gap out SU(2) sector and all the fermions, while leaves 
the Sp(N) sector intact (bosonic). 

•An effective time reversal symmetry guarantees the model is sign 
problem free. 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You, Bi, Mao, Xu (2015)
Barkeshli, Wen (2010)
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A Theory for the Bulk Transition
• A conjectured field theory for the bulk transition:

• m is the tuning parameter of the transition. Across the 
transition, the Hall conductivity of external field A (B) 
changes by +2 (-2) → consistent with the BSPT physics

• It has the desired SO(4) ~ SU(2)xSU(2) symmetry, because 
of the self-dual structure

• Besides our numerical results, other numerics studies also 
suggest that Nf = 2 QED3 (at m = 0) is indeed a CFT.

Xu, You 2015; Karch, Tong 2016; Hsin, Seiberg, 2016

Senthil, Fisher 2005

Karthik, Narayanan 2016



Summary

• Predictions:

• The boundary is a conductor with  
single particle gap

• Contrast between transport and  
tunneling

• The competition between magnetic and electric field in the 
bulk may lead to a purely bosonic quantum phase transition, 
with gapped electron but gapless bosonic collective modes;

• Other possible systems:

• Topological mirror insulator Zhang, Xu, Liu (2014) 


