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Periodic Driving 1: Engineer new interactions

Cold atoms

2.5 3 105, and a Zeeman shift vZ/2p5 gmBB/h < 2.71 MHz, pro-
duced by a real magnetic bias field Bŷy. The l 5 801.7 nm Raman
beams propagated along ŷy+x̂x and differed in frequency by a constant
DvL^vZ, where a small Raman detuning d 5DvL 2 vZ largely
determined the vector potential A!x . The scalar light shift from the
Raman beams, combined with the dipole trap, gave an approximately
symmetric three-dimensional potential, with frequencies fx, fy, fz <
70 Hz. Here, BkL~h

! ffiffiffi
2
p

l
# $

and EL~B2k2
L

!
2m are the appropriate

units for the momentum and energy.
The spin and momentum states jmF, kxæ coupled by the Raman

beams can be grouped into families of states labelled by the
momentum Bkx. Each family Y(kx) 5 {j21, kx12kLæ,j0, kxæ,j11,
kx 2 2kLæ} is composed of states that differ in linear momentum
along x̂x by 62BkL, and are Raman-coupled with strength BVR. For
each kx, the three dressed states are the eigenstates in the presence of
the Raman coupling, with energies24 Ej(kx). The resulting vector
potential is tunable within the range {2kLvq!A!x

!
Bv2kL. In addi-

tion, Ej(kx) includes a scalar potential16 V9. A!x , V9, and m* are func-
tions of Raman coupling VR and detuning d, and for our typical
parameters m* < 2.5m, reducing fx from about 70 Hz to about
40 Hz. The BEC’s chemical potential m/h < 1 kHz is much smaller
than the ,h 3 10 kHz energy separation between dressed states, so
the BEC only occupies the lowest-energy dressed state. Further, it
justifies the harmonic expansion around q!A!x

!
B, valid at low energy.

Hence, the complete single-atom Hamiltonian is H~H!xz
B2 k2

y zk2
z

% &.
2mzV rð Þ, where V(r) is the external potential includ-

ing V9(VR, d).
The dressed BEC starts in a uniform bias field B~B0ŷy, at Raman

resonance (d 5 0), corresponding to A!x~024. To create a synthetic
field B*, we applied a field gradient b9 such that B~ B0{b’yð Þŷy,

ramping in 0.3 s from b9 5 0 to a variable value up to 0.055 Tm21,
and then held it constant for th to allow the system to equilibrate. The
detuning gradient d0~gmBb0=B generates a spatial gradient in A!x . For
the detuning range in our experiment, LA!x

!
Ld is approximately

constant, leading to an approximately uniform synthetic field B*

given by B!~LA!x
!
Ly~d’LA!x

!
Ld (see Fig. 1d). To probe the dressed

state, we switched off the dipole trap and the Raman beams in less
than 1 ms, projecting each atom into spin and momentum compo-
nents. We absorption-imaged the atoms after a time-of-flight (TOF)
ranging from 10.1 ms to 30.1 ms (Fig. 1e, f).

For a dilute BEC in low synthetic fields, we expect to observe
vortices. In this regime, the BEC is described by a macroscopic wave-
function y(r) 5 jy(r)jeiw(r), which obeys the Gross–Pitaevskii equa-
tion (GPE). The phase w winds by 2p around each vortex, with
amplitude jyj5 0 at the vortex centre. The magnetic flux WB* results
in Nv vortices and for an infinite, zero-temperature system, the vor-
tices are arrayed in a lattice25 with density q*B*/h. For finite systems
vortices are energetically less favourable, and their areal density is
below this asymptotic value, decreasing to zero at a critical field B!c .
For a cylindrically symmetric BEC, B!c is given by q!B!c

!
h~

5= 2pR2ð Þln 0:67R=jð Þ where R is the Thomas–Fermi radius and j
is the healing length26. B!c is larger for smaller systems. For our
non-cylindrically symmetric system, we numerically solve the GPE
to determine B!c for our experimental parameters (see Methods).

For synthetic fields greater than the critical value, we observed
vortices that enter the condensate and reach an equilibrium vortex
number Nv after about 0.5 s. Owing to a shear force along x̂x when the
Raman beams are turned off, the nearly symmetric in situ atom cloud
tilts during TOF. Although the vortices’ positions may rearrange, any
initial order is not lost. During the time of our experiment, the
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Figure 1 | Experiment summary for synthesizing magnetic fields. a, The
BEC is in a crossed dipole trap in a magnetic field B~ B0{b’yð Þŷy. Two
Raman beams propagating along ŷy+x̂x (linearly polarized along ŷy+x̂x) have
frequencies vL and vL 1DvL. b, Raman coupling scheme within the F 5 1
manifold: vZ and e are the linear and quadratic Zeeman shifts, and d is the
Raman detuning. c, Energy–momentum dispersion relations. The grey
curves represent the states without Raman coupling; the three coloured

curves represent Ej(kx) of the dressed states. The arrow indicates the
minimum at kmin. d, Vector potential q!A!x~Bkmin versus Raman detuning
d. The insets show the dispersion E1(kx) for Bd 5 0 (top inset) and 22EL

(bottom inset). e, f, Dressed BEC imaged after a 25.1-ms TOF without
(e) and with (f) a gradient. The spin components mF 5 0 and 61 separate
along ŷy owing to the Stern–Gerlach effect.
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Synthetic Gauge Fieldsvortices did not form a lattice and the positions of the vortices were
irreproducible between different experimental realizations, consist-
ent with our GPE simulations. We measured Nv as a function of
detuning gradient d0 at two couplings, BVR 5 5.85EL and 8.20EL

(Fig. 2). For each VR, vortices appeared above a minimum gradient
when the corresponding field B!h i~d’ LA!x

!
Ld

" #
exceeded the crit-

ical field B!c . (For our coupling, B* is only approximately uniform
over the system and ÆB*æ is the field averaged over the area of the
BEC.) The inset shows Nv for both values of VR plotted versus
WB!=W0~Aq! B!h i=h, the vortex number for a system of area
A~pRxRy with the asymptotic vortex density, where Rx (or Ry) is
the Thomas–Fermi radius along x̂x or ŷyð Þ. The system size, and thus
B!c , are approximately independent of VR, so we expected this plot to
be nearly independent of Raman coupling. Indeed, the data for
BVR 5 5.85EL and 8.20EL only deviated for Nv , 5, probably owing
to the intricate dynamics of vortex nucleation27.

Figure 3 illustrates a progression of images showing that vortices
nucleate at the system’s edge, fully enter to an equilibrium density
and then decay along with the atom number. The timescale for vortex
nucleation depends weakly on B*, and is more rapid for larger B* with
more vortices. It is about 0.3 s for vortex number Nv $ 8, and
increases to about 0.5 s for Nv 5 3. For Nv 5 1 (B* near B!c ), the single
vortex always remains near the edge of the BEC. In the dressed state,
spontaneous emission from the Raman beams removes atoms from
the trap, causing the population to decay with a 1.4(2)-s lifetime, and
the equilibrium vortex number decreases along with the area of the
BEC.

To verify that the dressed BEC has reached equilibrium, we pre-
pared nominally identical systems in two different ways. First, we
varied the initial atom number and measured Nv as a function of
atom number N at a fixed hold time of th 5 0.57 s. Second, starting
with a large atom number, we measured both Nv and N, as they
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Figure 2 | Appearance of vortices at different detuning gradients. Data was
taken for N 5 1.4 3 105 atoms at hold time th 5 0.57 s. a–f, Images of the
| mF 5 0æ component of the dressed state after a 25.1-ms TOF with detuning
gradient d0/2p from 0 to 0.43 kHzmm21 at Raman coupling BVR 5 8.20EL.
g, Vortex number Nv versus d0 at BVR 5 5.85EL (blue circles) and 8.20EL (red
circles). Each data point is averaged over at least 20 experimental

realizations, and the uncertainties represent one standard deviation s. The
inset displays Nv versus the synthetic magnetic flux WB!=W0~Aq! B!h i=h in
the BEC. The dashed lines indicate d0, below which vortices become
energetically unfavourable according to our GPE computation, and the
shaded regions show the 1s uncertainty from experimental parameters.
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Figure 3 | Vortex formation. a–f, Images of the | mF 5 0æ component of the
dressed state after a 30.1-ms TOF for hold times th between 20.019 s and
2.2 s. The detuning gradient d0/2p is ramped to 0.31 kHzmm21 at the
coupling BVR 5 5.85EL. g, Top panel shows time sequence of d0. (a.u.,

arbitrary units.) Bottom panel shows vortex number Nv (solid symbols) and
atom number N (open symbols) versus th with a population lifetime of
1.4(2) s. The number in parentheses is the uncorrelated combination of
statistical and systematic 1s uncertainties.
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Periodic Driving 1: Engineer new interactions

Cold atoms

2.5 3 105, and a Zeeman shift vZ/2p5 gmBB/h < 2.71 MHz, pro-
duced by a real magnetic bias field Bŷy. The l 5 801.7 nm Raman
beams propagated along ŷy+x̂x and differed in frequency by a constant
DvL^vZ, where a small Raman detuning d 5DvL 2 vZ largely
determined the vector potential A!x . The scalar light shift from the
Raman beams, combined with the dipole trap, gave an approximately
symmetric three-dimensional potential, with frequencies fx, fy, fz <
70 Hz. Here, BkL~h
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The spin and momentum states jmF, kxæ coupled by the Raman

beams can be grouped into families of states labelled by the
momentum Bkx. Each family Y(kx) 5 {j21, kx12kLæ,j0, kxæ,j11,
kx 2 2kLæ} is composed of states that differ in linear momentum
along x̂x by 62BkL, and are Raman-coupled with strength BVR. For
each kx, the three dressed states are the eigenstates in the presence of
the Raman coupling, with energies24 Ej(kx). The resulting vector
potential is tunable within the range {2kLvq!A!x
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Bv2kL. In addi-

tion, Ej(kx) includes a scalar potential16 V9. A!x , V9, and m* are func-
tions of Raman coupling VR and detuning d, and for our typical
parameters m* < 2.5m, reducing fx from about 70 Hz to about
40 Hz. The BEC’s chemical potential m/h < 1 kHz is much smaller
than the ,h 3 10 kHz energy separation between dressed states, so
the BEC only occupies the lowest-energy dressed state. Further, it
justifies the harmonic expansion around q!A!x
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B, valid at low energy.

Hence, the complete single-atom Hamiltonian is H~H!xz
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2mzV rð Þ, where V(r) is the external potential includ-

ing V9(VR, d).
The dressed BEC starts in a uniform bias field B~B0ŷy, at Raman

resonance (d 5 0), corresponding to A!x~024. To create a synthetic
field B*, we applied a field gradient b9 such that B~ B0{b’yð Þŷy,

ramping in 0.3 s from b9 5 0 to a variable value up to 0.055 Tm21,
and then held it constant for th to allow the system to equilibrate. The
detuning gradient d0~gmBb0=B generates a spatial gradient in A!x . For
the detuning range in our experiment, LA!x

!
Ld is approximately

constant, leading to an approximately uniform synthetic field B*

given by B!~LA!x
!
Ly~d’LA!x

!
Ld (see Fig. 1d). To probe the dressed

state, we switched off the dipole trap and the Raman beams in less
than 1 ms, projecting each atom into spin and momentum compo-
nents. We absorption-imaged the atoms after a time-of-flight (TOF)
ranging from 10.1 ms to 30.1 ms (Fig. 1e, f).

For a dilute BEC in low synthetic fields, we expect to observe
vortices. In this regime, the BEC is described by a macroscopic wave-
function y(r) 5 jy(r)jeiw(r), which obeys the Gross–Pitaevskii equa-
tion (GPE). The phase w winds by 2p around each vortex, with
amplitude jyj5 0 at the vortex centre. The magnetic flux WB* results
in Nv vortices and for an infinite, zero-temperature system, the vor-
tices are arrayed in a lattice25 with density q*B*/h. For finite systems
vortices are energetically less favourable, and their areal density is
below this asymptotic value, decreasing to zero at a critical field B!c .
For a cylindrically symmetric BEC, B!c is given by q!B!c

!
h~

5= 2pR2ð Þln 0:67R=jð Þ where R is the Thomas–Fermi radius and j
is the healing length26. B!c is larger for smaller systems. For our
non-cylindrically symmetric system, we numerically solve the GPE
to determine B!c for our experimental parameters (see Methods).

For synthetic fields greater than the critical value, we observed
vortices that enter the condensate and reach an equilibrium vortex
number Nv after about 0.5 s. Owing to a shear force along x̂x when the
Raman beams are turned off, the nearly symmetric in situ atom cloud
tilts during TOF. Although the vortices’ positions may rearrange, any
initial order is not lost. During the time of our experiment, the
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Figure 1 | Experiment summary for synthesizing magnetic fields. a, The
BEC is in a crossed dipole trap in a magnetic field B~ B0{b’yð Þŷy. Two
Raman beams propagating along ŷy+x̂x (linearly polarized along ŷy+x̂x) have
frequencies vL and vL 1DvL. b, Raman coupling scheme within the F 5 1
manifold: vZ and e are the linear and quadratic Zeeman shifts, and d is the
Raman detuning. c, Energy–momentum dispersion relations. The grey
curves represent the states without Raman coupling; the three coloured

curves represent Ej(kx) of the dressed states. The arrow indicates the
minimum at kmin. d, Vector potential q!A!x~Bkmin versus Raman detuning
d. The insets show the dispersion E1(kx) for Bd 5 0 (top inset) and 22EL

(bottom inset). e, f, Dressed BEC imaged after a 25.1-ms TOF without
(e) and with (f) a gradient. The spin components mF 5 0 and 61 separate
along ŷy owing to the Stern–Gerlach effect.

NATURE | Vol 462 | 3 December 2009 LETTERS

629
 Macmillan Publishers Limited. All rights reserved©2009

Synthetic Gauge Fieldsvortices did not form a lattice and the positions of the vortices were
irreproducible between different experimental realizations, consist-
ent with our GPE simulations. We measured Nv as a function of
detuning gradient d0 at two couplings, BVR 5 5.85EL and 8.20EL

(Fig. 2). For each VR, vortices appeared above a minimum gradient
when the corresponding field B!h i~d’ LA!x

!
Ld

" #
exceeded the crit-

ical field B!c . (For our coupling, B* is only approximately uniform
over the system and ÆB*æ is the field averaged over the area of the
BEC.) The inset shows Nv for both values of VR plotted versus
WB!=W0~Aq! B!h i=h, the vortex number for a system of area
A~pRxRy with the asymptotic vortex density, where Rx (or Ry) is
the Thomas–Fermi radius along x̂x or ŷyð Þ. The system size, and thus
B!c , are approximately independent of VR, so we expected this plot to
be nearly independent of Raman coupling. Indeed, the data for
BVR 5 5.85EL and 8.20EL only deviated for Nv , 5, probably owing
to the intricate dynamics of vortex nucleation27.

Figure 3 illustrates a progression of images showing that vortices
nucleate at the system’s edge, fully enter to an equilibrium density
and then decay along with the atom number. The timescale for vortex
nucleation depends weakly on B*, and is more rapid for larger B* with
more vortices. It is about 0.3 s for vortex number Nv $ 8, and
increases to about 0.5 s for Nv 5 3. For Nv 5 1 (B* near B!c ), the single
vortex always remains near the edge of the BEC. In the dressed state,
spontaneous emission from the Raman beams removes atoms from
the trap, causing the population to decay with a 1.4(2)-s lifetime, and
the equilibrium vortex number decreases along with the area of the
BEC.

To verify that the dressed BEC has reached equilibrium, we pre-
pared nominally identical systems in two different ways. First, we
varied the initial atom number and measured Nv as a function of
atom number N at a fixed hold time of th 5 0.57 s. Second, starting
with a large atom number, we measured both Nv and N, as they
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Figure 2 | Appearance of vortices at different detuning gradients. Data was
taken for N 5 1.4 3 105 atoms at hold time th 5 0.57 s. a–f, Images of the
| mF 5 0æ component of the dressed state after a 25.1-ms TOF with detuning
gradient d0/2p from 0 to 0.43 kHzmm21 at Raman coupling BVR 5 8.20EL.
g, Vortex number Nv versus d0 at BVR 5 5.85EL (blue circles) and 8.20EL (red
circles). Each data point is averaged over at least 20 experimental

realizations, and the uncertainties represent one standard deviation s. The
inset displays Nv versus the synthetic magnetic flux WB!=W0~Aq! B!h i=h in
the BEC. The dashed lines indicate d0, below which vortices become
energetically unfavourable according to our GPE computation, and the
shaded regions show the 1s uncertainty from experimental parameters.
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Figure 3 | Vortex formation. a–f, Images of the | mF 5 0æ component of the
dressed state after a 30.1-ms TOF for hold times th between 20.019 s and
2.2 s. The detuning gradient d0/2p is ramped to 0.31 kHzmm21 at the
coupling BVR 5 5.85EL. g, Top panel shows time sequence of d0. (a.u.,

arbitrary units.) Bottom panel shows vortex number Nv (solid symbols) and
atom number N (open symbols) versus th with a population lifetime of
1.4(2) s. The number in parentheses is the uncorrelated combination of
statistical and systematic 1s uncertainties.
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TI

is still too small to be explained by the surface states
alone. However, the low-temperature transport exhibits
interesting 2D mesoscopic effects that are not com-
pletely understood !Checkelsky et al., 2009". Doping
Bi2Se3 with copper leads to a metallic state that shows
superconducting behavior #Fig. 17!b"$ below 3.8 K
!Wray et al., 2009; Hor, Williams, et al., 2010". This has
important ramifications for some of the devices pro-
posed in Sec. IV.

V. EXOTIC BROKEN SYMMETRY SURFACE PHASES

Now that the basic properties of topological insulators
have been established, we may ask what can be done
with them. In this section we argue that the unique prop-
erties of topological insulator surface and edge states are
most dramatic if an energy gap can be induced in them.
This can be done by breaking T symmetry with an exter-
nal magnetic field !Fu and Kane, 2007" or proximity to a
magnetic material !Qi, Hughes, and Zhang, 2008", by
breaking gauge symmetry due to proximity to a super-
conductor !Fu and Kane, 2008", or by an excitonic insta-
bility of two coupled surfaces !Seradjeh, Moore, and
Franz, 2009". In this section we review the magnetic and
superconducting surface phases.

A. Quantum Hall effect and topological magnetoelectric effect

1. Surface quantum Hall effect

A perpendicular magnetic field will lead to Landau
levels in the surface electronic spectrum and the quan-
tum Hall effect. The Landau levels for Dirac electrons
are special, however, because a Landau level is guaran-
teed to exist at exactly zero energy !Jackiw, 1984". This
zero Landau level is particle-hole symmetric in the sense
that the Hall conductivity is equal and opposite when
the Landau level is full or empty. Since the Hall conduc-
tivity increases by e2 /h when the Fermi energy crosses a
Landau level the Hall conductivity is half integer quan-
tized !Zheng and Ando, 2002",

!xy = !n + 1/2"e2/h . !17"

This physics has been demonstrated in experiments on
graphene !Novoselov et al., 2005; Zhang et al., 2005".
However, there is an important difference. In graphene
Eq. !17" is multiplied by 4 due to the spin and valley
degeneracy of graphene’s Dirac points, so the observed
Hall conductivity is still integer quantized. At the sur-
face of the topological insulator there is only a single
Dirac point. Such a “fractional” integer quantized Hall
effect should be a cause for concern because the integer
quantized Hall effect is always associated with chiral
edge states, which can only be integer quantized. The
resolution is the mathematical fact that a surface cannot
have a boundary. In a slab geometry shown in Fig. 18!a",
the top and bottom surfaces are necessarily connected to
each other and will always be measured in parallel !Fu
and Kane, 2007", doubling the 1/2. The top and bottom

can share a single chiral edge state, which carries the
integer quantized Hall current.

A related surface quantum Hall effect, called the
anomalous quantum Hall effect, can be induced with the
proximity to a magnetic insulator. A thin magnetic film
on the surface of a topological insulator will give rise to
a local exchange field that lifts the Kramers degeneracy
at the surface Dirac points. This introduces a mass term
m into the Dirac equation #Eq. !16"$, as in Eq. !4". If the
EF is in this energy gap, there is a half integer quantized
Hall conductivity !xy=e2 /2h !Pankratov, 1987", as dis-
cussed in Sec. II.B.2. This can be probed in a transport
experiment by introducing a domain wall into the mag-
net. The sign of m depends on the direction of the mag-
netization. At an interface where m changes sign #Fig.
18!d"$ there will be a 1D chiral edge state, analogous to
unfolding the surface in Fig. 18!b".

2. Topological magnetoelectric effect and axion electrodynamics

The surface Hall conductivity can also be probed
without the edge states either by optical methods or by
measuring the magnetic field produced by surface cur-
rents. This leads to an intriguing topological magneto-
electric effect !Qi, Hughes, and Zhang, 2008; Essin,
Moore, and Vanderbilt, 2009". Imagine a cylindrical to-
pological insulator with magnetically gapped surface
states and an electric field E along its axis. The azi-
muthal surface Hall current !e2 /2h"%E% leads to a
magnetic-dipole moment associated with a magnetiza-
tion M="E, where the magnetoelectric polarizability is
given by "=e2 /2h.

A field theory for this magnetoelectric effect can be
developed by including a # term in the electromagnetic
Lagrangian, which has a form analogous to the theory of
axion electrodynamics that has been studied in particle
physics contexts !Wilczek, 1987",
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FIG. 18. !Color online" Surface quantum Hall effect. !a" The
Dirac spectrum is replaced by Landau levels in an orbital mag-
netic field. !b" The top and bottom surfaces share a single chi-
ral fermion edge mode. !c" A thin magnetic film can induce an
energy gap at the surface. !d" A domain wall in the surface
magnetization exhibits a chiral fermion mode.
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Solids

Photo-induced Anomalous Quantum Hall  
state in TI surface

Wang et al. (Gedik Group) Science ‘13

Lindner, Refael, Galitski Nat. Phys. ’11
Many others…
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• ground-state + gap => physics dominated by filled bands  
• weak interactions/disorder don’t close the gap  

(band topology inherited by many-body system)
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• no “lowest” energy state,  
• What single-particle levels are “filled”?  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runaway heating to effective infinite temperature steady state 
no sense of distinct dynamical “phases”  
(all infinite temperature states are equivalent without a phase transition) 
bulk band topology does not govern physics system  
(even for arbitrarily weak interactions)

Fate of generic driven/interacting system?
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Floquet  
Many-body spectrum
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Strong disorder + Isolated system => No thermal equilibrium

All eigenstates have local (area-law) entanglement  
(like gapped ground-states)

“T=0” Quantum order possible in all eigenstates

Experimental realizations: cold atoms, trapped ions,  
(likely many more to come)

Can (periodically) drive without heating

Solution: Many body localization (MBL)

Basko, Aleiner, Altshuler; Pal, Huse; many others

Bauer, Nayak

Huse et al.; Bauer, Nayak

Bloch & Monroe Groups

Periodically Driving a Many-Body Localized Quantum System

Pranjal Bordia,1, 2 Henrik Lüschen,1, 2 Ulrich Schneider,1, 2, 3 Michael Knap,4 and Immanuel Bloch1, 2

1Fakultät für Physik, Ludwig-Maximillians-Universität München, Schellingstr. 4, 80799 Munich, Germany
2Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany

3Cavendish Laboratory, University of Cambridge,
J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

4Department of Physics, Walter Schottky Institute, and Institute for Advanced Study,
Technical University of Munich, 85748 Garching, Germany

(Dated: July 28, 2016)

We experimentally study a periodically driven many-body localized system realized by interacting
fermions in a one-dimensional quasi-disordered optical lattice. By preparing the system in a far-
from-equilibrium state and monitoring the remains of an imprinted density pattern, we identify a
localized phase at high drive frequencies and an ergodic phase at low ones. These two distinct phases
are separated by a dynamical phase transition which depends on both the drive frequency and the
drive strength. Our observations are quantitatively supported by numerical simulations and are
directly connected to the change in the statistical properties of the e↵ective Floquet Hamiltonian.

Introduction.— Quantum many-body systems far
from equilibrium arise naturally in a variety of disci-
plines, ranging from condensed matter to cosmology. In
recent years, there has been an intense focus on un-
derstanding the dynamical evolution of quantum many-
body systems that are well isolated from their environ-
ment [1, 2]. Particularly, in periodically driven systems
exotic phenomena can emerge that are absent in their
undriven counterparts. For example, topologically non-
trivial band structures can be realized by driving topo-
logically trivial systems [3–9] and ergodic phases can be
created by driving non-ergodic quantum systems [10–16].

In undriven systems, a robust non-ergodic phase can

be realized by adding strong disorder to an interacting
many-body system, leading to the phenomenon of many-
body localization (MBL) [17–25]. In an ideal MBL phase,
global transport and thermalization are absent, and some
memory of the initial conditions persists locally for arbi-
trarily long times even at finite energy densities [19, 20],
as underlined in experiments [22–25]. Recent theoret-
ical works have further proposed that combining MBL
and periodic driving can lead to novel symmetry pro-
tected topological phases with no direct equilibrium ana-
logues [26–32]. It is therefore highly pertinent to exper-
imentally study the interplay of disorder and periodic
driving in interacting quantum systems.

FIG. 1. Schematic of the experiment and the dynamical phase diagram. (a) A density-wave pattern of spinful
fermionic atoms occupying only the even sites of a disordered optical lattice evolves under (b) a periodic modulation of the
on-site disorder potentials �i with frequency ⌫ and amplitude A. (c) The phase diagram for the strongly driven system
(A = �) as a function of inverse frequency 1/⌫ and characteristic disorder strength �: In the infinite-frequency limit (x-axis),
the disorder-induced phase transition from an ergodic phase to a many-body localized phase is recovered at a critical disorder
strength �c (black point). While at high but finite drive frequencies the system remains localized for strong disorder, it
delocalizes at low drive frequencies. These phases are separated by a drive-induced transition (blue line).
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Ponte, Papic, Huveneers, Abanin; 
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Driven SPT phases

Takahiro Morimoto 
(Berkeley)

Ashvin Vishwanath 
(Harvard)

1D: ACP, T. Morimoto, A Vishwanath PRX ’16  
[see also: Keyserlingk, Sondhi; Else, Nayak; Roy, Harper]

2D: ACP, T Morimoto arXiv ’16

SPT Trivialw/ Symmetry

w/out Symmetry

Haldane Spin-Chain, Topological Insulators,…

New SPT phases from driving?



Ex: Periodically driven Ising chain
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Ex: Periodically driven Ising chain
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Edge spins flip around z each period,  
“Spin-echo” away any symmetry preserving edge field 
Spin-echo usually requires fine-tuning (pi-pulse), but this is stable to errors!
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What protects the edges?
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“Quantum archimedes screw”

• Symmetry “charge” (irreducible representation) pumped 
onto edge during each period 

• Possible charges are discrete, “quantized”  
can’t be continuously altered by small perturbations 

• Pumping different symmetry charges  
(irreducible representations) <=> different FSPT phases 

ACP, T. Morimoto, A Vishwanath PRX ‘16  
(see also  von Keyserlingk & Sondhi, Else & Nayak, Harper & Roy)
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G �! G⇥ Z
H2 (G⇥ Z, U(1)) = H2 (G,U(1))| {z }⇥H1 (G,U(1))| {z }Kunneth Formula: 

(boson phases)
1D Equilibrium New Floquet Phases

Possible charges = H1(G,U(1))

Cohomology: Extra time-translation symmetry

ACP, T. Morimoto, A Vishwanath PRX ‘16 (see also Else & Nayak)

ACP, T. Morimoto, A Vishwanath PRX ‘16



2D Floquet SPTs:
0D charge = 0D SPT => 1D SPT 

Floquet enriched topological phases
Example: gauged Floquet SPT 
More general: pumping 1D topological chains of emergent anyons 
Anyons get permuted each pumping cycle

Generalizations to 2D

Upump = e�iT1Hpump

trivial 1D SPT

Y

P

UP
pump

ACP, T. Morimoto arXiv 1610.03485

ACP, T. Morimoto ACP, T. Morimoto arXiv 1610.03485  
(see also Else & Nayak PRB ‘16)
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So far: discrete time-translation = extra symmetry of dynamics

Is this all?

Chiral Floquet phases

Adrian Po 
(Berkeley)

Lukasz Fidkowski 
(Stony Brook)

Takahiro Morimoto 
(Berkeley)

Ashvin Vishwanath 
(Harvard)

Po, Fidkowski, Morimoto, ACP, Vishwanath arXiv:1609.00006 

http://arxiv.org/abs/1609.00006
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Intrinsically topological dynamics (no symmetry)
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No chiral edges in energy conserving MBL systems

Chern number = obstacle to localization 

Can prove even in the presence of arbitrary interactions  
• any MBL system will not have “gravitational anomaly”  

(no thermal quantum Hall effect)

Non-Equilibrium chiral matter?
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What if energy is not conserved?



SWAP model
(Direct bosonic analog of free-fermion version  

by Rudner, Berg, Levin, Titum, Lindner, Refael PRX ’13, ’16)
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Disorder step

H5 =
X
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~hi · ~Si

Localized bulk: 
edge dynamics 
occurs separate 

from bulk
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Single particle winding invariant (fermion version)
Many-particle invariant?

Quantized chiral edge current?
Spin/Particle number?  
(related: magnetization density)
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Quantized pumping of quantum information around edge

Po, Fidkowski, Morimoto, ACP, Vishwanath arXiv:1609.00006 

http://arxiv.org/abs/1609.00006
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Dynamical chiral index of SWAP model

⌫SWAP = log

hU (AL) ,ARi
hAL, U (AR)i

= log(2)

Po, Fidkowski, Morimoto, ACP, Vishwanath arXiv:1609.00006 
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Dynamical chiral index of SWAP model

⌫SWAP = log

hU (AL) ,ARi
hAL, U (AR)i

= log(2)

⌫ = log

2

3

2-state SWAP (1->2->3->4)

3-state SWAP (4->3->2->1)

Contrast to quantum Hall edge states
• amount of information sent by QH edge not quantized 

(depends on v*T — discrete pumping vs continuous flow)
• QH edges don’t sharply exist out of equilibrium
• Multiplicative rather than additive structure of index

Po, Fidkowski, Morimoto, ACP, Vishwanath arXiv:1609.00006 

(1) (2)

(3) (4)

Uedge(T )

AL AR

U(AL) = AR

U =
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Fermion state equivalent to 2-state boson w/ nu=log(2)
Can show: counter-propagating fermion and boson edges can 
be deformed to a trivial state  
(requires edge-reconstruction by non-chiral modes — stable topological equivalence) 

Contrast to equilibrium:  
8x minimal fermion chiral state = minimal Boson c.s. 
Remaining challenge: generalize formal index to deal with 
fermionic operator algebras 

Fractional chiral Floquet phases?

Fermion chiral Floquet phases

Po, Fidkowski, Morimoto, ACP, Vishwanath, arXiv ‘16

. . .. . . F
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⌫F = log 2



Fractional chiral Floquet phases

(1) (2)

(3) (4)

Po, Fidkowski, Morimoto, Vishwanath, ACP to appear
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Z2 Example - Driven Kitaev Honeycomb model
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Bulk: 
• Bulk evolution = evolution w/r.t. static Hamiltonian w/ Z2 TO 

Edge: 
• c’s pumped around edge chirally 
• 2x Majorana edge = 1x fermion edge = spin-1/2 boson 
• Fractional chiral index: ⌫M =

1

2

log 2

Kitaev ‘05

Po, Fidkowski, Morimoto, Vishwanath, ACP to appear



“World Map” of (Driven) quantum matter

Symmetry protected 
Topological phases 
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