

Dynamic topological orders in periodically driven systems

Andrew C. Potter

Adrian Po (Berkeley)

Lukasz Fidkowski (Stony Brook)

Takahiro Morimoto (Berkeley)

Ashvin Vishwanath (Harvard)

Plan

New non-equilibrium dynamical phases from periodic driving

$$H(t+T) = H(t)$$

Floquet symmetry protected topological phases (SPTs)

- aka driven + interacting topological insulators
 - 1. ACP, T. Morimoto, A Vishwanath Phys. Rev. X 6, 041001 (2016)
 - 2. ACP. T Morimoto, arXiv:1610.03485

Chiral Floquet phases

Edge: one-way pumping of quantum information

3. Po, Fidkowski, Morimoto, ACP, Vishwanath arXiv:1609.00006

"World Map" of quantum matter (Equilibrium, T=0)

Symmetry required

(Ground-state) Entanglement

Isolated ("closed") quantum many-body systems

Ultracold atoms

image: http://www.lens.unifi.it

Trapped Ions

image: www.laserfocusworld.com

NV Centers

image: www.labnews.co.uk

$$|\Psi(0)\rangle = |\psi_1\rangle \otimes |\psi_2\rangle \otimes \cdots \otimes |\psi_L\rangle = \sum_n c_n |n\rangle$$

 $|\Psi(t)\rangle = e^{-iHt} |\Psi(0)\rangle$
 $H(t+T) = H(t)$

New universal quantum phenomena in dynamics?

Periodic Driving 1: Engineer new interactions

$$H(t+T) = H(t)$$
 \longrightarrow $H_{\text{eff}} \approx H_0 + \frac{iT}{2} \int_0^T dt_1 \int_0^{t_1} dt_2 [H(t_1), H(t_2)] + \dots$

$$U(T) = e^{-iH_{\text{eff}}T}$$

Lindner, Refael, Galitski Nat. Phys. '11 Many others...

Periodic Driving 1: Engineer new interactions

$$H(t+T) = H(t)$$
 \longrightarrow $H_{\text{eff}} \approx H_0 + \frac{iT}{2} \int_0^T dt_1 \int_0^{t_1} dt_2 [H(t_1), H(t_2)] + \dots$

$$U(T) = e^{-iH_{\text{eff}}T}$$

Lindner, Refael, Galitski Nat. Phys. '11 Many others...

Cold atoms

Synthetic Gauge Fields

Lin et al. (Speilman group) Nature '09; Aidelsburger et al. (Bloch group) PRL '11

Periodic Driving 1: Engineer new interactions

$$H(t+T) = H(t)$$
 \longrightarrow $H_{\text{eff}} \approx H_0 + \frac{iT}{2} \int_0^T dt_1 \int_0^{t_1} dt_2 [H(t_1), H(t_2)] + \dots$

$$U(T) = e^{-iH_{\text{eff}}T}$$

Lindner, Refael, Galitski Nat. Phys. '11 Many others...

Cold atoms

Synthetic Gauge Fields

Lin et al. (Speilman group) Nature '09; Aidelsburger et al. (Bloch group) PRL '11

Solids

Photo-induced Anomalous Quantum Hall state in TI surface

Wang et al. (Gedik Group) Science '13

New types of band topology due to periodicity of quasi-energy

$$U(T) = \mathcal{T}\left\{e^{-\int_0^T dt H(t)}\right\} \qquad \epsilon_n \simeq \epsilon_n + \frac{2\pi}{T}\mathbb{Z}$$
$$H(t+T) = H(t)$$

Kitagawa, Berg, Rudner, Demler PRB '10; Jiang et al. PRL '11; many others...

New types of band topology due to periodicity of quasi-energy

$$U(T) = \mathcal{T}\left\{e^{-\int_0^T dt H(t)}\right\} \qquad \epsilon_n \simeq \epsilon_n + \frac{2\pi}{T}\mathbb{Z}$$
$$H(t+T) = H(t)$$

Kitagawa, Berg, Rudner, Demler PRB '10; Jiang et al. PRL '11; many others...

Why do we pay attention to non-interacting band topology?

(all systems are interacting, not perfectly clean, etc...)

New types of band topology due to periodicity of quasi-energy

$$U(T) = \mathcal{T}\left\{e^{-\int_0^T dt H(t)}\right\} \qquad \epsilon_n \simeq \epsilon_n + \frac{2\pi}{T}\mathbb{Z}$$
$$H(t+T) = H(t)$$

Kitagawa, Berg, Rudner, Demler PRB '10; Jiang et al. PRL '11; many others...

Why do we pay attention to non-interacting band topology?

(all systems are interacting, not perfectly clean, etc...)

Usual (equilibrium, T -> 0):

- ground-state + gap => physics dominated by filled bands
- weak interactions/disorder don't close the gap (band topology inherited by many-body system)

New types of band topology due to periodicity of quasi-energy

$$U(T) = \mathcal{T}\left\{e^{-\int_0^T dt H(t)}\right\} \qquad \epsilon_n \simeq \epsilon_n + \frac{2\pi}{T}\mathbb{Z}$$
$$H(t+T) = H(t)$$

Kitagawa, Berg, Rudner, Demler PRB '10; Jiang et al. PRL '11; many others...

Why do we pay attention to non-interacting band topology?

(all systems are interacting, not perfectly clean, etc...)

Usual (equilibrium, T -> 0):

- ground-state + gap => physics dominated by filled bands
- weak interactions/disorder don't close the gap (band topology inherited by many-body system)

Floquet:

- no "lowest" energy state,
- What single-particle levels are "filled"?
 (is there a sense of equilibrium?)

Many-body spectrum

Fate of generic driven/interacting system?

Fate of generic driven/interacting system?

Fate of generic driven/interacting system?

- runaway heating to effective infinite temperature steady state
- no sense of distinct dynamical "phases"
 (all infinite temperature states are equivalent without a phase transition)
- bulk band topology does not govern physics system (even for arbitrarily weak interactions)

Solution: Many body localization (MBL)

Strong disorder + Isolated system => No thermal equilibrium

Basko, Aleiner, Altshuler; Pal, Huse; many others

All eigenstates have local (area-law) entanglement (like gapped ground-states)

Bauer, Nayak

"T=0" Quantum order possible in all eigenstates

Huse et al.; Bauer, Nayak

Experimental realizations: cold atoms, trapped ions, Bloch & Monroe Groups (likely many more to come)

Can (periodically) drive without heating

Driven SPT phases

New SPT phases from driving?

Haldane Spin-Chain, Topological Insulators,...

1D: ACP, T. Morimoto, A Vishwanath PRX '16 [see also: Keyserlingk, Sondhi; Else, Nayak; Roy, Harper]

2D: ACP, T Morimoto arXiv '16

Takahiro Morimoto (Berkeley)

Ashvin Vishwanath (Harvard)

(dual of pi-SG model in Khemani, Lazarides, Moessner, Sondhi PRL '16)

$$g = \prod_{i} \sigma_{i}^{x}$$

 \mathbf{Z}_2 Symmetry

(dual of pi-SG model in Khemani, Lazarides, Moessner, Sondhi PRL '16)

$$g = \prod_{i} \sigma_{i}^{x}$$

Z₂ Symmetry

$$H(t) = \begin{cases} \sum_{i} h_{i} \sigma_{i}^{x} & 0 \le t < T_{1} \\ \sum_{i} J \sigma_{i}^{z} \sigma_{i+1}^{z} & T_{1} \le t < T \end{cases}$$

No Eq. SPT

$$J(T - T_1) = \pi/2: \qquad e^{-i\pi/2\sum_i \sigma_i^z \sigma_{i+1}^z} = \prod_i \sigma_i^z \sigma_{i+1}^z = \sigma_1^z \sigma_2^z \sigma_2^z \sigma_3^z \sigma_3^z \dots \sigma_L^z = \sigma_1^z \sigma_L^z$$

(dual of pi-SG model in Khemani, Lazarides, Moessner, Sondhi PRL '16)

$$g = \prod_{i} \sigma_{i}^{a}$$

 \mathbf{Z}_2 Symmetry

$$H(t) = \begin{cases} \sum_{i} h_{i} \sigma_{i}^{x} & 0 \le t < T_{1} \\ \sum_{i} J \sigma_{i}^{z} \sigma_{i+1}^{z} & T_{1} \le t < T \end{cases}$$

No Eq. SPT

$$J(T - T_1) = \pi/2: \qquad e^{-i\pi/2\sum_i \sigma_i^z \sigma_{i+1}^z} = \prod_i \sigma_i^z \sigma_{i+1}^z = \sigma_1^z \sigma_2^z \sigma_2^z \sigma_3^z \dots \sigma_L^z = \sigma_1^z \sigma_L^z$$

(dual of pi-SG model in Khemani, Lazarides, Moessner, Sondhi PRL '16)

$$g = \prod_{i} \sigma_i^a$$

Z₂ Symmetry

$$H(t) = \begin{cases} \sum_{i} h_{i} \sigma_{i}^{x} & 0 \le t < T_{1} \\ \sum_{i} J \sigma_{i}^{z} \sigma_{i+1}^{z} & T_{1} \le t < T \end{cases}$$

No Eq. SPT

$$J(T-T_1)=\pi/2:$$

$$J(T - T_1) = \pi/2: \qquad e^{-i\pi/2\sum_i \sigma_i^z \sigma_{i+1}^z} = \prod_i \sigma_i^z \sigma_{i+1}^z = \sigma_1^z \sigma_2^z \sigma_2^z \sigma_3^z \sigma_3^z \dots \sigma_L^z = \sigma_1^z \sigma_L^z$$

$$U(T) = \mathcal{T}e^{-i\int_0^T H(t)} = \sigma_1^z \sigma_L^z e^{-i\sum_i h_i \sigma_i^x} \neq e^{-iH_{\text{local}}T}$$

(dual of pi-SG model in Khemani, Lazarides, Moessner, Sondhi PRL '16)

$$g = \prod_{i} \sigma_i^x$$

Z₂ Symmetry

$$H(t) = \begin{cases} \sum_{i} h_{i} \sigma_{i}^{x} & 0 \le t < T_{1} \\ \sum_{i} J \sigma_{i}^{z} \sigma_{i+1}^{z} & T_{1} \le t < T \end{cases}$$

$$J(T - T_1) = \pi/2: \qquad e^{-i\pi/2\sum_i \sigma_i^z \sigma_{i+1}^z} = \prod_i \sigma_i^z \sigma_{i+1}^z = \sigma_1^z \sigma_2^z \sigma_2^z \sigma_3^z \sigma_3^z \dots \sigma_L^z = \sigma_1^z \sigma_L^z$$

$$U(T) = \mathcal{T}e^{-i\int_0^T H(t)} = \sigma_1^z \sigma_L^z e^{-i\sum_i h_i \sigma_i^x} \neq e^{-iH_{\text{local}}T}$$

- Edge spins flip around z each period,
- "Spin-echo" away any symmetry preserving edge field
- Spin-echo usually requires fine-tuning (pi-pulse), but this is stable to errors!

What protects the edges?

$$g = \prod_{i} \sigma_i^x$$

Z₂ Symmetry

$$e^{-i\pi/2\sum_{i}\sigma_{i}^{z}\sigma_{i+1}^{z}} = \prod_{i}\sigma_{i}^{z}\sigma_{i+1}^{z} = \sigma_{1}^{z}\sigma_{2}^{z}\sigma_{2}^{z}\sigma_{3}^{z}\dots\sigma_{L}^{z} = \sigma_{1}^{z}\sigma_{L}^{z}$$
$$\sigma_{\mathrm{edge}}^{x} = \pm 1 \to \mp 1$$

"Quantum archimedes screw"

- Symmetry "charge" (irreducible representation) pumped onto edge during each period
- Possible charges are discrete, "quantized" can't be continuously altered by small perturbations
- Pumping different symmetry charges (irreducible representations) <=> different FSPT phases

Entanglement spectrum (micromotion)

Entanglement spectrum (micromotion)

$$|\Psi(t)\rangle = \underbrace{e^{-i\epsilon t/T}}_{\text{phase periodic}} \underbrace{|u(t)\rangle}_{\text{micro-motion"}}$$

$$|u(t)\rangle = \sum_{n} \frac{e^{-E_n(t)/2}}{\sqrt{Z}(t)} |u_{L,n}(t)\rangle \otimes |u_{R,n}(t)\rangle$$

Entanglement spectrum (micromotion)

$$|\Psi(t)\rangle = \underbrace{e^{-i\epsilon t/T}}_{\text{phase periodic}} \underbrace{|u(t)\rangle}_{\text{"micro-motion"}}$$

$$|u(t)\rangle = \sum_{n} \frac{e^{-E_n(t)/2}}{\sqrt{Z}(t)} |u_{L,n}(t)\rangle \otimes |u_{R,n}(t)\rangle$$

Entanglement spectrum (micromotion)

$$|\Psi(t)\rangle = \underbrace{e^{-i\epsilon t/T}}_{\text{phase periodic}} \underbrace{|u(t)\rangle}_{\text{micro-motion"}}$$

$$|u(t)\rangle = \sum_{n} \frac{e^{-E_n(t)/2}}{\sqrt{Z}(t)} |u_{L,n}(t)\rangle \otimes |u_{R,n}(t)\rangle$$

Entanglement spectrum (micromotion)

$$|\Psi(t)\rangle = \underbrace{e^{-i\epsilon t/T}}_{\text{phase periodic}} \underbrace{|u(t)\rangle}_{\text{micro-motion"}}$$

$$|u(t)\rangle = \sum_{n} \frac{e^{-E_n(t)/2}}{\sqrt{Z}(t)} |u_{L,n}(t)\rangle \otimes |u_{R,n}(t)\rangle$$

ACP, T. Morimoto, A Vishwanath PRX '16

Cohomology: Extra time-translation symmetry

Kunneth Formula:
$$\mathcal{H}^2\left(G\times\mathbb{Z},U(1)\right)=\mathcal{H}^2\left(G,U(1)\right)\times\mathcal{H}^1\left(G,U(1)\right)$$

 $G \longrightarrow G \times \mathbb{Z}$

Kunneth Formula (boson phases)

1D Equilibrium Nev

New Floquet Phases

Possible charges = $H^1(G,U(1))$

Generalizations to 2D

2D Floquet SPTs:

• 0D charge = 0D SPT => 1D SPT

ACP, T. Morimoto ACP, T. Morimoto arXiv 1610.03485 (see also Else & Nayak PRB '16)

Floquet enriched topological phases

- Example: gauged Floquet SPT
- More general: pumping 1D topological chains of emergent anyons
- Anyons get permuted each pumping cycle

Chiral Floquet phases

So far: discrete time-translation = extra symmetry of dynamics Is this all?

Adrian Po (Berkeley)

Lukasz Fidkowski (Stony Brook)

(Berkeley)

Takahiro Morimoto Ashvin Vishwanath (Harvard)

Chiral Floquet phases

So far: discrete time-translation = extra symmetry of dynamics Is this all? No!

Adrian Po (Berkeley)

Lukasz Fidkowski (Stony Brook)

(Berkeley)

Takahiro Morimoto Ashvin Vishwanath (Harvard)

Chiral Floquet phases

So far: discrete time-translation = extra symmetry of dynamics Is this all? No!

Intrinsically topological dynamics (no symmetry)

Adrian Po (Berkeley)

Lukasz Fidkowski (Stony Brook)

(Berkeley)

Takahiro Morimoto Ashvin Vishwanath (Harvard)

Non-Equilibrium chiral matter?

No chiral edges in energy conserving MBL systems

Chern number = obstacle to localization

Halperin, "82 Nandkishore ACP, PRB '14

- Can prove even in the presence of arbitrary interactions
 - any MBL system will not have "gravitational anomaly" (no thermal quantum Hall effect)

Kitaev '06 ACP, Vishwanath arXiv '15

Non-Equilibrium chiral matter?

No chiral edges in energy conserving MBL systems

Chern number = obstacle to localization

Halperin, "82 Nandkishore ACP, PRB '14

- Can prove even in the presence of arbitrary interactions
 - any MBL system will not have "gravitational anomaly" (no thermal quantum Hall effect)

Kitaev '06 ACP, Vishwanath arXiv '15

SWAP model

(Direct bosonic analog of free-fermion version by Rudner, Berg, Levin, Titum, Lindner, Refael PRX '13, '16)

$$U(T) = e^{-iH_5}e^{-iH_4}e^{-iH_3}e^{-iH_2}e^{-iH_1}$$

$$U_{1...4}(T) = \begin{cases} 1 & \text{bulk} \\ \hat{T}_1 & \text{edge} \end{cases}$$

SWAP model

(Direct bosonic analog of free-fermion version by Rudner, Berg, Levin, Titum, Lindner, Refael PRX '13, '16)

$$U(T) = e^{-iH_5}e^{-iH_4}e^{-iH_3}e^{-iH_2}e^{-iH_1}$$

Disorder step

$$H_5 = \sum_i \vec{h}_i \cdot \vec{S}_i$$

$$U_{1...4}(T) = \begin{cases} 1 & \text{bulk} \\ \hat{T}_1 & \text{edge} \end{cases}$$

Localized bulk: edge dynamics occurs separate from bulk

What is topological about this state?

Rudner, Berg, Levin, PRX '2013

Single particle winding invariant (fermion version) Rudner, Berg, Levin, PRX '2013

Single particle winding invariant (fermion version) *Rudner, Berg, Levin, PRX '2013* Many-particle invariant?

Single particle winding invariant (fermion version) *Rudner, Berg, Levin, PRX '2013*Many-particle invariant?

Single particle winding invariant (fermion version) *Rudner, Berg, Levin, PRX '2013*Many-particle invariant?

Quantized chiral edge current?

Spin/Particle number?
 (related: magnetization density)
 Nathan et al. arXiv:1610.03590

Single particle winding invariant (fermion version) *Rudner, Berg, Levin, PRX '2013* Many-particle invariant?

- Spin/Particle number?
 (related: magnetization density)
 Nathan et al. arXiv:1610.03590
 - Depends on spin/density profile of initial state (not quantized in the usual sense)

Single particle winding invariant (fermion version) *Rudner, Berg, Levin, PRX '2013* Many-particle invariant?

- Spin/Particle number?
 (related: magnetization density)
 Nathan et al. arXiv:1610.03590
 - Depends on spin/density profile of initial state (not quantized in the usual sense)
 - Not even necessarily a good quantum number

Single particle winding invariant (fermion version) *Rudner, Berg, Levin, PRX '2013* Many-particle invariant?

- Spin/Particle number?
 (related: magnetization density)
 Nathan et al. arXiv:1610.03590
 - Depends on spin/density profile of initial state (not quantized in the usual sense)
 - Not even necessarily a good quantum number
- Energy?

Single particle winding invariant (fermion version) *Rudner, Berg, Levin, PRX '2013*Many-particle invariant?

- Spin/Particle number?
 (related: magnetization density)
 Nathan et al. arXiv:1610.03590
 - Depends on spin/density profile of initial state (not quantized in the usual sense)
 - Not even necessarily a good quantum number
- Energy?
 - Definitely not conserved in driven case

Single particle winding invariant (fermion version) *Rudner, Berg, Levin, PRX '2013*Many-particle invariant?

- Spin/Particle number?
 (related: magnetization density)
 Nathan et al. arXiv:1610.03590
 - Depends on spin/density profile of initial state (not quantized in the usual sense)
 - Not even necessarily a good quantum number
- Energy?
 - Definitely not conserved in driven case

Rudner, Berg, Levin, PRX '2013

Single particle winding invariant (fermion version) Rudner, Berg, Levin, PRX '2013

Single particle winding invariant (fermion version) *Rudner, Berg, Levin, PRX '2013*Many-particle invariant?

Single particle winding invariant (fermion version) Rudner, Berg, Levin, PRX '2013

Many-particle invariant? Nathan et al. arXiv:1610.03590

Single particle winding invariant (fermion version) Rudner, Berg, Levin, PRX '2013

Many-particle invariant? Nathan et al. arXiv:1610.03590

Single particle winding invariant (fermion version) Rudner, Berg, Levin, PRX '2013

Many-particle invariant? Nathan et al. arXiv:1610.03590

Quantized chiral edge current?

 Spin/Particle number? (related: magnetization density)

Single particle winding invariant (fermion version) Rudner, Berg, Levin, PRX '2013

Many-particle invariant? Nathan et al. arXiv:1610.03590

- Spin/Particle number? (related: magnetization density)
 - Depends on spin/density profile of initial state (not quantized in the usual sense)

Single particle winding invariant (fermion version) *Rudner, Berg, Levin, PRX '2013*Many-particle invariant? *Nathan et al. arXiv:1610.03590*

- Spin/Particle number? (related: magnetization density)
 - Depends on spin/density profile of initial state (not quantized in the usual sense)
 - Not ever necessarily a good quantum number

Single particle winding invariant (fermion version) Rudner, Berg, Levin, PRX '2013

Many-particle invariant? Nathan et al. arXiv:1610.03590

- Spin/Rarticle number? (related: magnetization density)
 - Depends on spin/density profile of initial state (not quantized in the usual sense)
 - Not ever necessarily a good quantum number
- Energy?

Single particle winding invariant (fermion version) *Rudner, Berg, Levin, PRX '2013*Many-particle invariant? *Nathan et al. arXiv:1610.03590*

- Spin/Particle number? (related: magnetization density)
 - Depends on spin/density profile of initial state (not quantized in the usual sense)
 - Not ever necessarily a good quantum number
- Energy?
 - Definitely not conserved in driven case

Single particle winding invariant (fermion version) *Rudner, Berg, Levin, PRX '2013*Many-particle invariant? *Nathan et al. arXiv:1610.03590*

- Spin/Particle number? (related: magnetization density)
 - Depends on spin/density profile of initial state (not quantized in the usual sense)
 - Not ever necessarily a good quantum number
- Energy?
 - Definitely not conserved in driven case

Single particle winding invariant (fermion version) *Rudner, Berg, Levin, PRX '2013*Many-particle invariant? *Nathan et al. arXiv:1610.03590*

Quantized chiral edge current?

- Spin/Particle number? (related: magnetization density)
 - Depends on spin/density profile of initial state (not quantized in the usual sense)
 - Not ever necessarily a good quantum number
- Energy?
 - Definitely not conserved in driven case

Quantized pumping of quantum information around edge

A quantum information flow gauge

Algebra of observables:
$$\mathcal{A} = \{\sum_{i,j=1}^{\mathcal{D}_{\mathcal{A}}} a_{ij} | i \rangle \langle j | \; ; \; \; a_{ij} \in \mathbb{C} \}$$
 $e_{ij} = |i \rangle \langle j |$

Overlap of algebras:

$$\langle \mathcal{A}, \mathcal{B} \rangle = \frac{\sqrt{\mathcal{D}_{\mathcal{A}} \mathcal{D}_{\mathcal{B}}}}{\mathcal{D}_{\text{tot}}} \sqrt{\sum_{i,j=1}^{\mathcal{D}_{\mathcal{A}}} \sum_{l,m=1}^{\mathcal{D}_{\mathcal{B}}} \left| \text{tr} \left(e_{ij}^{a\dagger} e_{lm}^{b} \right) \right|^{2}} \qquad \langle \mathcal{A}, \mathcal{B} \rangle = \begin{cases} 1 & [\mathcal{A}, \mathcal{B}] = 0 \\ \mathcal{D}_{\mathcal{A}} & \mathcal{A} = \mathcal{B} \end{cases}$$

log <A,B> = "how much information about A is contained in B"

Topological index (GNVW):

$$u = \log \frac{\langle U(A_L), A_R \rangle}{\langle A_L, U(A_R) \rangle} \in \log \mathbb{Q}_+$$
 imbalance of information flow (-> left) - (<- right)

A quantum information flow gauge

D. Gross, V. Nesme, H. Vogts, R.F. Werner arXiv:0910.3675

Algebra of observables:
$$\mathcal{A} = \{\sum_{i,j=1}^{\mathcal{D}_{\mathcal{A}}} a_{ij} | i \rangle \langle j | \; ; \; \; a_{ij} \in \mathbb{C} \}$$
 $e_{ij} = |i \rangle \langle j |$

Overlap of algebras:

$$\langle \mathcal{A}, \mathcal{B} \rangle = \frac{\sqrt{\mathcal{D}_{\mathcal{A}} \mathcal{D}_{\mathcal{B}}}}{\mathcal{D}_{\text{tot}}} \sqrt{\sum_{i,j=1}^{\mathcal{D}_{\mathcal{A}}} \sum_{l,m=1}^{\mathcal{D}_{\mathcal{B}}} \left| \text{tr} \left(e_{ij}^{a\dagger} e_{lm}^{b} \right) \right|^{2}} \qquad \langle \mathcal{A}, \mathcal{B} \rangle = \begin{cases} 1 & [\mathcal{A}, \mathcal{B}] = 0 \\ \mathcal{D}_{\mathcal{A}} & \mathcal{A} = \mathcal{B} \end{cases}$$

log <A,B> = "how much information about A is contained in B"

Topological index (GNVW):

$$u = \log \frac{\langle U(A_L), A_R \rangle}{\langle A_L, U(A_R) \rangle} \in \log \mathbb{Q}_+$$
 imbalance of information flow (-> left) - (<- right)

T₁ is acts locally: (information propagates w/ finite speed)

T₁ is acts locally: (information propagates w/ finite speed)
But....

T₁ is acts locally: (information propagates w/ finite speed)

But....

Cannot be realized with time evolution by a local Hamiltonian

- Intuitive argument:
 - local Hamiltonian can always have edge
 - behavior at edge is sick! ``pile-up" of states (non-unitary)

T₁ is acts locally: (information propagates w/ finite speed)

But....

Cannot be realized with time evolution by a local Hamiltonian

- Intuitive argument:
 - local Hamiltonian can always have edge
 - behavior at edge is sick! ``pile-up" of states (non-unitary)
- Proof: D. Gross, V. Nesme, H. Vogts, R.F. Werner arXiv:0910.3675

T₁ is acts locally: (information propagates w/ finite speed)

But....

Cannot be realized with time evolution by a local Hamiltonian

- Intuitive argument:
 - local Hamiltonian can always have edge
 - behavior at edge is sick! ``pile-up" of states (non-unitary)
- Proof: D. Gross, V. Nesme, H. Vogts, R.F. Werner arXiv:0910.3675

but, OK for boundary of local 2D system (no edge)

$$\nu_{\text{SWAP}} = \log \frac{\langle U(\mathcal{A}_L), \mathcal{A}_R \rangle}{\langle \mathcal{A}_L, U(\mathcal{A}_R) \rangle} = \log(2)$$

$$\nu_{\text{SWAP}} = \log \frac{\langle U(\mathcal{A}_L), \mathcal{A}_R \rangle}{\langle \mathcal{A}_L, U(\mathcal{A}_R) \rangle} = \log(2)$$

Contrast to quantum Hall edge states

$$\nu_{\text{SWAP}} = \log \frac{\langle U(\mathcal{A}_L), \mathcal{A}_R \rangle}{\langle \mathcal{A}_L, U(\mathcal{A}_R) \rangle} = \log(2)$$

Contrast to quantum Hall edge states

 amount of information sent by QH edge not quantized (depends on v*T — discrete pumping vs continuous flow)

$$\nu_{\text{SWAP}} = \log \frac{\langle U(\mathcal{A}_L), \mathcal{A}_R \rangle}{\langle \mathcal{A}_L, U(\mathcal{A}_R) \rangle} = \log(2)$$

Contrast to quantum Hall edge states

- amount of information sent by QH edge not quantized (depends on v*T — discrete pumping vs continuous flow)
- QH edges don't sharply exist out of equilibrium

$$\nu_{\text{SWAP}} = \log \frac{\langle U(\mathcal{A}_L), \mathcal{A}_R \rangle}{\langle \mathcal{A}_L, U(\mathcal{A}_R) \rangle} = \log(2)$$

Contrast to quantum Hall edge states

- amount of information sent by QH edge not quantized (depends on v*T — discrete pumping vs continuous flow)
- QH edges don't sharply exist out of equilibrium
- Multiplicative rather than additive structure of index

Fermion chiral Floquet phases

```
+ \qquad = \text{trival}
\cdots F
\cdots F
```

Fermion state equivalent to 2-state boson w/ nu=log(2)

- Can show: counter-propagating fermion and boson edges can be deformed to a trivial state (requires edge-reconstruction by non-chiral modes — stable topological equivalence)
- Contrast to equilibrium:
 8x minimal fermion chiral state = minimal Boson c.s.
- Remaining challenge: generalize formal index to deal with fermionic operator algebras

$$\nu_F = \log 2$$

Fractional chiral Floquet phases?

Non-fractional:

- U(T) ~ 1 (bulk),
 chiral translation (boundary)
- Edge: pumps qudits with integer d

Non-fractional:

- U(T) ~ 1 (bulk),
 chiral translation (boundary)
- Edge: pumps qudits with integer d

Fractional

- U(T) ~ e^{-iH_TO} (bulk)
 chiral translation of anyons (boundary)
- Edge: pumps fractional qudits with irrational d

Non-fractional:

- U(T) ~ 1 (bulk),
 chiral translation (boundary)
- Edge: pumps qudits with integer d

Fractional

- U(T) ~ e^{-iH_TO} (bulk)
 chiral translation of anyons (boundary)
- Edge: pumps fractional qudits with irrational d

Localization: requires Abelian topological order

Potter, Vasseur arXiv '16

- Looks like d=1 only?
- No!: Can pump "sqrt" of an Abelian anyon

Non-fractional:

- U(T) ~ 1 (bulk),
 chiral translation (boundary)
- Edge: pumps qudits with integer d

Fractional

- U(T) ~ e^{-iH_TO} (bulk)
 chiral translation of anyons (boundary)
- Edge: pumps fractional qudits with irrational d

Localization: requires Abelian topological order

Potter, Vasseur arXiv '16

- Looks like d=1 only?
- No!: Can pump "sqrt" of an Abelian anyon

$$\mathbb{Z}_2$$
 TO: Majorana, $d = \sqrt{2}, \ \nu = \frac{1}{2} \log 2$

Non-fractional:

- U(T) ~ 1 (bulk),
 chiral translation (boundary)
- Edge: pumps qudits with integer d

Fractional

- U(T) ~ e^{-iH_TO} (bulk)
 chiral translation of anyons (boundary)
- Edge: pumps fractional qudits with irrational d

Localization: requires Abelian topological order

Potter, Vasseur arXiv '16

- Looks like d=1 only?
- No!: Can pump "sqrt" of an Abelian anyon

$$\mathbb{Z}_2$$
 TO: Majorana, $d=\sqrt{2},\ \nu=\frac{1}{2}\log 2$ \mathbb{Z}_N TO: Parafermion, $d=\sqrt{N},\ \nu=\frac{1}{2}\log N$

Z2 Example - Driven Kitaev Honeycomb model

•
$$H_1 = \frac{\pi}{2} \sum_{\langle ij \rangle \in \mathbf{X}} S_i^x S_j^x$$

•
$$H_2 = \frac{\pi}{2} \sum_{\langle ij \rangle \in \mathbf{X}} S_i^y S_j^y$$

$$H_3 = \frac{\pi}{2} \sum_{\langle ij \rangle \in \mathbf{X}} S_i^z S_j^z$$

Z2 Example - Driven Kitaev Honeycomb model

Bulk:

Bulk evolution = evolution w/r.t. static Hamiltonian w/ Z2 TO
 Edge:

• c's pumped around edge chirally

- 2x Majorana edge = 1x fermion edge = spin-1/2 boson
- Fractional chiral index: $\nu_M = \frac{1}{2} \log 2$

"World Map" of (Driven) quantum matter

Symmetry required

(Excited-state) Entanglement